Pengembangan Metode Ant Colony Optimization Pada Klasifikasi Tanaman Mangga Menggunakan K-Nearest Neighbor

Febri Liantoni, Luky Agus Hermanto

Abstract


Abstract. Leaf is one important part of a plant normally used to classify the types of plants. The introduction process of mango leaves of mangung and manalagi mango is done based on the leaf edge image detection. In this research the conventional edge detection process was replaced by ant colony optimization method. It is aimed to optimize the result of edge detection of mango leaf midrib and veins image. The application of ant colony optimization method successfully optimizes the result of edge detection of a mango leaf midrib and veins structure. This is demonstrated by the detection of bony edges of the leaf structure which is thicker and more detailed than using a conventional edge detection. Classification testing using k-nearest neighbor method obtained 66.67% accuracy.

Keywords: edge detection, ant colony optimization, classification, k-nearest neighbor.

 

Abstrak. Pengembangan Metode Ant Colony Optimization Pada Klasifikasi Tanaman Mangga Menggunakan K-Nearest Neighbor. Daun merupakan salah satu bagian penting dari tanaman yang biasanya digunakan untuk proses klasifikasi jenis tanaman. Proses pengenalan daun mangga gadung dan mangga manalagi dilakukan berdasarkan deteksi tepi citra struktur tulang daun. Pada penelitian ini proses deteksi tepi konvensional digantikan dengan metode ant colony optimization. Hal ini bertujuan untuk optimasi hasil deteksi tepi citra tulang daun mangga. Penerapan metode ant colony optimization berhasil mengoptimalkan hasil deteksi tepi struktur tulang daun mangga. Hal ini ditunjukkan berdasarkan dari hasil deteksi tepi citra struktur tulang daun yang lebih tebal dan lebih detail dibandingkan menggunakan deteksi tepi konvensional. Pengujian klasifikasi dengan metode k-nearest neighbor didapatkan nilai akurasi sebesar 66,67%.

Kata Kunci: deteksi tepi, ant colony optimization, klasifiaksi, k-nearest neighbor.


Full Text:

PDF


DOI: https://doi.org/10.24002/jbi.v8i4.1443

Refbacks

  • There are currently no refbacks.