Analisis Komparatif Evaluasi Performa Algoritma Klasifikasi pada Readmisi Pasien Diabetes

Mochammad Yusa, Ema Utami, Emha T. Luthfi


Abstract. Readmission is associated with quality measures on patients in hospitals. Different attributes related to diabetic patients such as medication, ethnicity, race, lifestyle, age, and others result in the calculation of quality care that tends to be complicated. Classification techniques of data mining can solve this problem. In this paper, the evaluation on three different classifiers, i.e. Decision Tree, k-Nearest Neighbor (k-NN), dan Naive Bayes with various setting
parameter, is developed by using 10-Fold Cross Validation technique. The targets of parameter performance evaluated is based on term of Accuracy, Mean Absolute Error (MAE), dan Kappa Statistic. The selected dataset consists of 47 attributes and 49.735 records. The result shows that k-NN classifier with k=100 has a better performance in term of accuracy and Kappa Statistic, but Naive Bayes outperforms in term of MAE among other classifiers.
Keywords: k-NN, naive bayes, diabetes, readmission

Abstrak. Proses Readmisi dikaitkan dengan perhitungan kualitas penanganan pasien di rumah sakit. Perbedaan atribut-atribut yang berhubungan dengan pasien diabetes proses medikasi, etnis, ras, gaya hidup, umur, dan lain-lain, mengakibatkan perhitungan kualitas cenderung rumit. Teknik klasifikasi data mining dapat menjadi solusi dalam perhitungan kualitas ini. Teknik klasifikasi merupakan salah satu teknik data mining yang perkembangannya cukup signifikan. Di dalam penelitian ini, model algoritma klasifikasi Decision Tree, k-Nearest Neighbor (k-NN), dan Naive Bayes dengan berbagai parameter setting akan dievaluasi performanya berdasarkan nilai performa Accuracy, Mean Absolute
Error (MAE), dan Kappa Statistik dengan metode 10-Fold Cross Validation. Dataset yang dievaluasi memiliki 47 atribut dengan 49.735 records. Hasil penelitian menunjukan bahwa performa accuracy, MAE, dan Kappa Statistik terbaik didapatkan dari Model Algoritma Naive Bayes.
Kata Kunci: k-NN, naive bayes, diabetes, readmisi

Full Text:




  • There are currently no refbacks.

Jurnal Buana Informatika
ISSN: 2089-7642
Organized by Informatics Department - Universitas Atmajaya Yogyakarta
Published by Informatics Department - Universitas Atmajaya Yogyakarta