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ABSTRACT 

This study analyzes the structure and spatial distribution of listed companies in China's strategic emerging industries 

(SEIs) from 2010 to 2021, using a quantitative approach. An industrial diversity index is created to assess provincial 

structures, and spatial agglomeration is examined through a spatial autocorrelation model. The distribution is visualized 

with kernel density estimation (KDE), and migration patterns of the gravity center are tracked. The key findings are as 

follows: (1) Significant regional disparities in SEI development exist, with greater diversity in the Yangtze River Delta 

(YRD), Beijing-Tianjin-Hebei (BTH), and the Pearl River Delta (PRD) compared to other regions; (2) The distribution 

shows strong positive spatial autocorrelation, indicating a pronounced agglomeration effect; (3) The spatial center of 

gravity primarily shifts within Central China; (4) The distribution follows a pattern of decreasing concentration from the 

eastern coastal areas to the western inland regions, with scattered presence in the central and northeastern regions; (5) 

Key factors such as economic development (DN values), policy support, R&D investments, passenger turnover, and 

technology market activity play a significant role in shaping the number of listed companies in each region. This analysis 

offers valuable insights for policymakers aiming to guide regional industrial development. 
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1. INTRODUCTION 

 

 In September 2010, China introduced the initiative to 

accelerate the development of SEIs. These sectors, built 

upon key technological advances, are expected to lead 

China's economic growth by promoting knowledge-

intensive and technology-driven industries. At the same 

time, the focus on these industries facilitates the 

upgrading of the industrial structure, promotes a shift 

from extensive to intensive economic growth, and 

strengthens China's competitive edge on the global stage. 

By 2019, the added value of SEIs contributed 11.5% to 

China’s GDP, and this figure is projected to exceed 17% 

by 2025 . In the "14th Five-Year Plan" released last year, 

the importance of advancing these industries and 

reinforcing national scientific and technological 

capabilities was reaffirmed. 

 Many nations and regions have introduced various 

policies to foster SEIs, leveraging their industry and 

technology advantages. For instance, the U.S. State 

Department outlined a national strategy focusing on the 

growth of "key and emerging technologies," identifying 

20 priority sectors such as advanced computing, AI, 

biotechnology, semiconductors, and advanced 

manufacturing. Likewise, the European Union published 

a report on strengthening the industrial value chain, 

establishing six forward-looking industries, including 

advanced materials, aero-engine technologies, AI, 

biotechnologies, energy technologies, and quantum 

information science, among others. The development of 

emerging sectors plays a significant role in enhancing 

economic, scientific, technological, and sustainable 

development worldwide. For example, offshore wind 

energy projects continue to supply clean power across 

Europe, highlighting the employment potential of 

emerging industries (Bento and Fontes, 2019). In Spain, 

the government is promoting technological innovation 

while advancing marine renewable energy (García et al., 

2021). Furthermore, some researchers argue that the rise 

of robotics and automation is crucial for achieving 

sustainable development goals (Guenat, 2022). From both 

environmental and economic perspectives, the increasing 

adoption of electric vehicles is critical for reducing 

reliance on fossil fuels in the transport sector (Vrabie, 

2022), while also significantly cutting greenhouse gas 

emissions and fostering sustainable urban development 

(Isik, 2021). 

 The development and spatial distribution of emerging 

industries are influenced by multiple factors, including 

policies, technological advancements, financial services, 

and leading enterprises. A key aspect of the 

commercialization of emerging technologies is the ability 

of firms to convert innovations into marketable products. 

From an enterprise efficiency standpoint, market demand 

largely determines the location of production for 

emerging industries (Krugman and Venables, 1995). 

Driven by profit motives, businesses often favor larger 

markets (Heiens et al., 2019). Additionally, high-tech 

firms founded by academic entrepreneurs are likely to 

prioritize proximity to universities, research institutions, 

and capital markets. (Kolympiris et al., 2015). On one 

hand, the development of transportation infrastructure 

lowers communication costs and facilitates the flow of 

personnel, capital, and other resources (Donaldson and 

Hornbeck, 2016). A well-connected transport network 

encourages businesses to concentrate in key cities, 

reduces market fragmentation, and enhances resource 

allocation efficiency (Wang et al., 2021). In contrast, 

rising transaction costs are a significant factor 

contributing to the uneven distribution of enterprises 

(Venables, 2000). On the other hand, areas offering ample 

land supply are particularly attractive to businesses and 

can greatly influence their spatial distribution (Dai et al., 

2021). Furthermore, industrial policies play a crucial role 

in shaping the location of emerging industries. All else 

being equal, firms tend to gravitate toward regions with 

lower tax burdens (Goel and Haruna, 2007). 

 The operational data of listed firms serve as a key 

indicator for assessing their scale and growth potential. 

This paper examines the diversity index of SEIs using 

data from industrial companies listed on China’s A-share 

market between 2010 and 2021. Further analysis of the 

spatial autocorrelation patterns of these companies is 

conducted using Moran's I index. By applying spatial 

analysis and statistical techniques, the paper explores the 

distribution, evolution trends, and factors influencing the 

location of listed companies in strategic emerging sectors, 

offering valuable insights for research on the evolution of 

business clusters.  

    

2.  MATERIALS AND METHODS 

 

2.1. Data source 

 

The data for this study are derived from companies in 

SEIs listed on China’s A-share market from 2010 to 2021. 

Due to the absence of a specific statistical category for 

these industries, experts classify them based on the 

primary business activities of the listed companies. The 

data sources include the Choice financial platform, China 

Stock Market & Accounting Research (CSMAR) 

database, and Wind economic database. Key indicators in 

this study include stock code, industry name, enterprise 

address, administrative region code, revenue, and others. 

Additionally, using the enterprise address, longitude, and 

latitude coordinates are matched through AutoNavi’s API 

and then converted to World Geodetic System (WGS84) 

coordinates. After excluding special treatment (ST) and 

delisted companies, a total of 1,749 companies in SEIs are 

selected as research samples.  

Data for mechanism analysis primarily comes from 

official sources, such as local statistical yearbooks. 

Indicators like the growth rate of R&D investment, 

passenger turnover, technology market turnover, the 

number of patents granted in each province, sulfur dioxide 

emissions, university growth rates, and power 

consumption growth rates are derived from original data 

or calculated results from the Statistical Yearbooks. 

Policy data are sourced from Peking University’s Magic 

Weapon database, which contains all central and local 

regulations since 1949. The average DN value is obtained 

from the original Visible Infrared Imaging Radiometer 

Suite (VIIRS) satellite data provided by the National 

Geophysical Data Center (NGDC) of the United States. 
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The industrial structure upgrading index is calculated 

using the Theil index, while a gray prediction model is 

applied to fill in missing data for certain years. 

 Based on China’s 13th Five-Year Plan for the 

Development of National Strategic Emerging Industries, 

the Decision on Accelerating the Cultivation of Strategic 

Emerging Industries, the National Economic Industry and 

Code (GB/T 4754-2017), and the Classification Criteria 

of High-Tech Industries (2017), SEIs are classified into 

eight categories (Table 1). 

 

2.2. Method 

 

2.2.1. Industrial diversity index 

 

The industrial diversity index quantifies how evenly 

revenue is distributed across different strategic emerging 

industries (SEIs) within a province. A region with only 

one industry, the diversity index would be 0, indicating no 

variety. Conversely, a province that hosts multiple 

industries has a higher index, reflecting balanced revenue 

contributions. The index uses information entropy, a 

measure of system "disorder," where higher entropy 

means more industries coexist with comparable revenue 

shares. For instance, if a province’s SEIs generate equal 

revenue across all sectors, entropy reaches its maximum 

value. The information entropy of the strategic emerging 

industry structure indicates the level of order within 

provincial industries. A higher entropy value suggests a 

lower level of order, greater differences in the industrial 

structure, and a more complex distribution of industries. 

Conversely, a lower entropy value indicates a higher 

degree of order in the industrial structure and fewer types 

of industries (Dong and Li, 2022). The calculation 

formula is as follows: 

Gj
i = −∑ Pj

i lnPj
im

j=1            (1) 

Here, the diversity index of SEIs. (Gj
i) in province j 

reflects the industrial structure through information 

entropy, with units in bits (NAT). Pj
i  indicates the 

proportion of revenue generated by listed companies in 

SEIs relative to the total revenue of such companies in the 

province j. This diversity index measures the evenness in 

the distribution of SEIs across provinces. According to the 

maximum-minimum entropy principle, when a region 

contains only one type of industry, entropy is at its 

minimum, i.e., Gj
i=0. Conversely, when the revenues of 

industrial listed companies are evenly distributed within a 

province, the industrial structure is stable, and 

information entropy reaches its maximum. As the number 

of strategic emerging industry types increases, the 

system's order decreases, and entropy rises. 

 

2.2.2. Moran’s index 

 

 The spatial autocorrelation analysis adopts a 

contiguity-based spatial weight matrix, which posits that 

geographically proximate regions exhibit stronger 

industrial interactions. Sensitivity analyses substituting 

economic distance weights yielded negligible deviations 

in global Moran’s I values, reinforcing the robustness of 

spatial dependence patterns. Moran’s I evaluates whether 

regions with similar numbers of SEI firms cluster together 

geographically. A positive value suggests that provinces 

with many firms tend to neighbor other high-density 

provinces, while a negative value would imply a 

checkerboard-like pattern. The analysis consistently 

showed positive Moran’s I values, confirming that SEIs 

aggregate in "hotspots" rather than scattering randomly. 

 Spatial autocorrelation is a primary technique for 

identifying spatial relationships among geographical 

elements (Liu et al., 2021). Moran's I index measures the 

degree of spatial autocorrelation, taking into account both 

the attribute values of the elements and the spatial 

distance between them. The formula is as follows (Wang 

et al., 2020). 

I =
n∑ ∑ w(i,j)(xi−x

−
)(xj−x

−
)n

j=1,j≠i
n
i=1

[∑ ∑ w(i,j)n
j=1,j≠i

n
i=1 ] ∑ (xi−x

−
)
2n

i=1

        (2) 

where x
−
= ∑ xi n⁄n

i=1 , xi and xj represent the observed 

values of a spatial aspect on the regional units. i, j, and w 

(i, j) are the spatial weight matrix. 

 

2.2.3. Kernel density estimation 

 

 KDE assumes that all listed firms within a given 

Table 1. Types of SEIs 

No Industry Category Segment Industries 

1. High-end equipment 

manufacturing industry 

Rail transit equipment, marine engineering equipment, aviation equipment, 

satellites and their applications, and intelligent manufacturing. 

2. Energy conservation and 

environmental protection 

industry 

Energy-efficient industry, advanced environmental protection industry, and 

resource recycling industry. 

3. Biological industry Biological agriculture, biomedical engineering, biomedicine, biological 

manufacturing, and biomass energy. 

4. Digital creative industry Digital creative equipment, digital content, and digital design services. 

5. New material industry High-performance composites, advanced structural materials, and new 

functional materials. 

6. New energy industry Wind energy, nuclear power technology, solar energy, and smart grid. 

7. New energy vehicle 

industry 

New energy vehicles. 

8. New generation 

information technology 

Electronic core foundation, high-end software and emerging information 

services, and next-generation information network. 
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bandwidth contribute equally to local industrial density 

estimates, regardless of firm size or sector. The model 

also treats provincial administrative boundaries as 

permeable to economic activities. KDE assumes that 

geographical phenomena can occur anywhere in space, 

but the likelihood of occurrence varies across different 

spatial locations (Zuo et al., 2021). To visually 

demonstrate the spatial clustering patterns of listed 

companies in various industries, KDE is used to analyze 

the spatial and temporal distribution characteristics of 

listed companies in SEIs. The formula is as follows. (Yu 

et al., 2015). 

f
∧

(x) =
1

nhd
∑ K [

(x−xi)

h
]n

i=1          (3) 

Where f
∧

(x) is the estimated density value at location x, 

K[ ] is the kernel function, h > 0 is the bandwidth, n is 

equal to the total number of features within the bandwidth, 

d is the dimension of the data; and (x – xi) is the distance 

between feature xi and location x. 

 

2.2.4. Spatial distribution of the gravity center and 

migration 

 

 The gravity center calculation weights firm locations 

solely by operating income, reflecting Porter’s emphasis 

on revenue as a proxy for industrial activity concentration. 

While this assumption excludes employment or asset-

based metrics, revenue data’s comprehensive coverage in 

financial databases ensures comparability across 

provinces. 

 The spatial barycenter transfer model illustrates the 

migration path and the trend of both centralized and 

dispersed distribution of spatial attributes, helping to 

analyze spatial changes in regional characteristics (Zhang 

et al., 2018). The movement of the gravity center reflects 

the asynchronous changes of listed companies in various 

SEIs across regions. The formula is as follows: 

X = (∑ xjEj
n
j=1 ) (∑ Ej

n
j=1 )⁄ ; 

Y = (∑ yjEj
n
j=1 ) (∑ Ej

n
j=1 )⁄         (4) 

Where Ej is the total operating income of the listed 

companies in the SEIs of the province j.  xj and yj are the 

geometric center coordinates of the provincial 

administrative unit. X and Y are the coordinates of the 

spatial distribution of the gravity center of each type of 

strategic emerging industry. 

 Gravity center migration model. The calculation 

formula of the gravity migration distance di of SEIs in a 

region in a year i is as follows: 

di = c × √(yj − yi)
2
+ (xj − xi)

2
       (5) 

Where (xi, yi) and (xj, yj) represent the gravity coordinates 

of a certain attribute in years i and j, respectively, and c is 

generally considered a constant (1° ≈ 111 km). 

 

3. RESULTS 

 

3.1. Diversity analysis of SEIs 

  

The results of the industrial diversity index show that 

from 2010 to 2021, the industrial development of China's 

provinces varied greatly (Fig. 1). Jiangsu Province, 

obtained a diversity index of 1.81, the highest of all 

provinces in 2014, while Xinjiang and Tibet had only one 

type of industry in 2010, and thus, their diversity indices 

were 0. On the basis of industrial diversity, the 

development of SEIs in the YRD, BTH, PRD is relatively 

balanced, and their average annual diversity indices are 

all greater than 1, at 1.5, 1.26, and 1.12, respectively. 

However, the average annual diversity index of Northwest 

China (Inner Mongolia, Gansu Province, Qinghai 

Province, Ningxia Hui Autonomous Region, and Xinjiang 

Uygur Autonomous Region) is less than 1, with Gansu 

Province having the highest industrial diversity index, 

0.84, and Xinjiang having an industrial diversity index of 

only 0.41. The average annual industrial diversity indices 

among provinces in Northeast China (Heilongjiang, Jilin, 

and Liaoning) are significantly different, and the highest 

index in Jilin Province is 2.01 times that in Heilongjiang 

Province. The development situations of Southwest China 

(Yunnan, Guizhou, Sichuan, Chongqing, and Tibet) and 

Northeast China are similar, and the diversity of industrial 

development among provinces varies significantly. The 

highest Sichuan Province is 3.88 times that of the Tibet 

Autonomous Region. The average annual industrial 

diversity index of Henan, Hunan, Anhui, and Jiangxi 

Provinces in the central region has reached 1.47, while the 

average index value of Shanxi and Hubei Provinces is 

only 0.65. Thus, the development levels of industrial 

diversity between these regions are significantly different. 

 From the time series, it can be seen that from 2010 to 

2021, the diversity index of SEIs in the YRD, BTH, and 

PRD showed a gradual growth trend (Figure 1). However, 

due to the impact of coronavirus disease 2019 (COVID-

19), there was a relatively significant adjustment in 2020. 

For example, compared with 2019, the industrial diversity 

index of Guangdong Province in 2020 decreased by 

52.36%, that of Zhejiang Province decreased by 43.14%, 

and that of Beijing decreased by 39.92%. However, over 

the same period, the provinces in Northwest and 

Southwest China experienced relatively rapid growth, 

with the industrial diversity index of Yunnan increasing 

by 38.24%, that of Tibet increasing by 29.51%, and that 

of Gansu increasing by 11.35%. From 2020 to 2021, the 

regions where the diversity index of SEIs fell rapidly in 

the early stage recovered rapidly. For example, the 

industrial diversity index of Guangdong Province in 2021 

was 2.09 times that in 2020 while that of Zhejiang 

Province, Beijing, and Shanghai increased by 78.51%, 

65.65%, and 37.86%, respectively. However, Shanxi and 

Xinjiang, where the index was relatively stable in the 

early stage, fell by 59.53% and 43.12%, respectively. 

 

3.2. Autocorrelation characteristics of spatial patterns 

  

To examine the spatial change trend of the distribution 

patterns of listed companies in China's SEIs from 2010 to 

2021, the number of listed companies in each province is 

counted, and the global Moran's I index for each province 

is calculated. Table 2 indicates that the global Moran's I 

values over the 12-year period are positive and 

statistically significant, indicating a notable positive 

spatial autocorrelation in the spatial distribution of listed 
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companies in China's SEIs. In other words, the 

distribution of listed companies across regions exhibits 

characteristics of spatial agglomeration. 

The spatial agglomeration of SEIs in China reveals a 

dynamic interplay between policy-driven dispersion and 

market-led re-concentration, characterized by a U-shaped 

trajectory in global Moran’s I values. Initially, the sharp 

34% decline in spatial autocorrelation from 2010 to 2012 

reflects the post-financial crisis decentralization, as firms 

reduced their regional dependency risks. This dispersion 

phase contrasts with the subsequent stabilization period 

(2013–2019), where moderate agglomeration persisted 

despite rising firm counts (Table 2), signaling policy 

balancing—centralized R&D subsidies in coastal 

provinces offset dispersion incentives for resource-

intensive sectors like energy conservation. Notably, the 

late re-concentration surge (2019–2021) aligns with 

China’s "Dual Circulation" strategy, accelerating NEV 

and digital infrastructure investments in eastern clusters. 

 

3.3. KDE of strategic emerging industry enterprises 

 

 As shown in Figure 2, the distribution of listed 

companies in China’s SEIs generally decreases from the 

eastern coastal regions to the western inland areas, with a 

scattered distribution in the central and northeast regions. 

The Yangtze River Delta (YRD), Beijing-Tianjin-Hebei 

(BTH), and Pearl River Delta (PRD) form the dominant 

high-density clusters, collectively accounting for over 

60% of listed SEI firms. These regions exhibit continuous 

spatial integration, driven by advanced infrastructure, 

innovation ecosystems, and policy synergies. For 

instance, the YRD’s density hotspot spans Shanghai, 

Jiangsu, and Zhejiang, reflecting cross provincial 

industrial linkages in high-end manufacturing and digital 

creativity. Northwest China, comprising Gansu, Ningxia, 

Qinghai, and Xinjiang, along with Shanxi and Inner 

Mongolia in North China, is are area with low density. 

 Figure 3 illustrates the spatial agglomeration patterns 

of strategic emerging industries (SEIs) in China. Three 

prominent geographical features emerge from the kernel 

density analysis: First, the Yangtze River Delta (YRD), 

Beijing-Tianjin-Hebei (BTH), and Pearl River Delta 

(PRD) regions form primary agglomeration cores for 

most industries. Second, coastal linearity characterizes 

the distribution of high-tech industries like new energy 

and biomedicine, extending from northern to southeastern 

coastal zones. Third, central-western regions exhibit a 

"multi-node scattering" pattern, with sporadic clusters 

concentrated along provincial borders. 

 Sectoral variations reveal that capital-intensive 

industries (e.g., high-end equipment manufacturing, new 

 
Figure 1. Industrial diversity of listed companies in SEIs in China 

Table 2. Spatial correlation of strategic emerging enterprises in China 

 Number of listed 

enterprises 

Moran’s I Z p-value 

2010   179 0.117   4.978 0.000 

2011   319 0.096   5.742 0.000 

2012   403 0.077   5.553 0.000 

2013   403 0.077   5.553 0.000 

2014   469 0.075   6.002 0.000 

2015   571 0.071   6.507 0.000 

2016   668 0.077   6.909 0.000 

2017   881 0.079   7.463 0.000 

2018   929 0.080   7.721 0.000 

2019 1073 0.078   7.988 0.000 

2020 1383 0.090 10.497 0.000 

2021 1749 0.101 13.222 0.000 
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materials) predominantly cluster in core economic zones 

while emerging sectors like new energy vehicles show 

transitional characteristics with dual concentrations in 

coastal hubs and selected inland junctions. Environmental 

industries demonstrate unique spatial duality - intensive 

coastal clusters coexist with hinterland diffusion along 

major transportation corridors. 

 

3.4. Analysis of the gravity center distribution of 

strategic emerging industry enterprises 

 

 The rotation angle θ of the standard deviation ellipse 

indicates a significant variation in the spatial distribution 

of listed enterprises in China’s SEIs, ranging from 11.79° 

to 170.21°. In 2010, the rotation angle was 26.9°, showing 

a spatial trend from "northeast to southwest." By 2021, the 

 

Figure 2. Kernel density of listed companies in China’s SEIs 

 

 
 

Figure 3. Kernel density of listed companies in different types of SEIs in China 
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angle reached 112.04°, indicating a "northwest to 

southeast" spatial trend. Similar trends were observed in 

2014, 2017, and 2019, while 2018 showed a distribution 

resembling a "due east to due west" alignment. 

 Regarding the coverage of the standard deviation 

ellipse, the differences from year to year are significant 

due to the varying lengths of the semi-major and semi-

minor axes. In 2010 and 2014, seven to eight provinces 

were fully covered, with some regions spanning 

approximately twelve provinces. In contrast, 2011 saw 

narrower coverage, fully covering only three provinces. 

In 2012 and 2021, around 54.84% of the provinces were 

fully covered, while approximately 29.03% were partially 

covered (Figure 4). 

 As illustrated in Figure 5, from 2010 to 2021, the 

spatial position of the gravity center of listed companies 

in China’s SEIs underwent notable changes. In 2010, the 

coordinates of the gravity center were 115.7323°E, 

29.5920°N while in 2021, they shifted to 116.3673°E, 

36.3318°N, resulting in a total migration distance of 

751.44 km, indicating a significant shift northward. 

During most periods, except for the 2014-2015 transition 

(with a movement of less than 100 km), the gravity center 

moved more than 100 km. The largest movement 

occurred between 2018 and 2019, with a shift of 512.64 

km. After the China Securities Regulatory Commission 

suspended IPOs in 2013, the gravity center remained 

unchanged in 2012 and 2013. Over the 12 years, the center 

 

 

Figure 3. Kernel density of listed companies in different types of SEIs in China (Continued) 

 

Figure 4. Standard deviation ellipse of listed companies in China’s SEIs 
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of gravity was primarily located in Jiangxi Province for 

five years and Hubei Province for three years, suggesting 

that it was generally centered around China’s central 

region. The movement speed of the gravity center has 

increased each year since 2015, indicating a broader 

fluctuation in its spatial distribution. 

 

3.5. Driving factors of the spatial pattern of strategic 

emerging industry enterprises 

 

 The differences in the spatial distribution of listed 

enterprises in China’s SEIs arise from the interaction of 

multiple factors. Based on existing literature and expert 

insights, this paper identifies four key explanatory 

variables for the number of listed enterprises in regional 

SEIs: economic development, government policy, 

innovation capacity, and industrial structure. The 

following variables are selected for empirical analysis: 

R&D investment (X1), average DN value (X2), policy 

count (X3), passenger turnover growth rate (X4), 

technology market turnover (X5), advanced industrial 

structure index (X6), the number of patents granted in each 

province (X7), logarithm of sulfur dioxide emissions (X8), 

growth rate of educational institutions (X9), and electricity 

consumption growth rate (X10). 

 The spatial panel model can be applied in two ways: 

fixed effects and random effects. The choice between 

these depends on the Hausman test. The statistical 

outcomes are presented in Table 3. The null hypothesis 

assumes random effects. With a p-value of 0.0002, which 

is less than 0.05, the null hypothesis is rejected, leading to 

the selection of the fixed effects model. 

 The data is processed using Stata 15.0, and the 

estimation results are presented in Table 4. From the 

model parameters, the mean DN value and the number of 

policies is significant at the 5% level. R&D investment, 

passenger turnover growth rate, and technology market 

turnover are significant at the 10% level. All significant 

variables have positive coefficients, suggesting that these 

factors contribute positively to the regional distribution of 

SEIs. 

   

4. DISCUSSIONS 

 

4.1. Spatial pattern differentiation characteristics of 

listed enterprises in SEIs 

 

 The spatial distribution of listed enterprises in 

strategic emerging industries (SEIs) reveals a pronounced 

hierarchical structure shaped by China’s distinct regional 

development trajectories. Eastern coastal regions, 

particularly the Yangtze River Delta (YRD), Beijing-

Tianjin-Hebei (BTH), and Pearl River Delta (PRD), 

emerge as the dominant innovation hubs, accounting for 

over 70% of high-value-added industries such as 

advanced equipment manufacturing and new generation 

 

Figure 5. Distribution of the gravity center of listed companies in China's SEIs 

Table 3. Test results of the panel model setting form 

 Fe Re Difference S.E. 

1X  1.1185680 0.3510970 0.7674712 0.4664911 

2X  6.1294460 0.8213297 5.3081170 1.7362160 

3X  0.3618003 0.3549549 0.0068454 0.1165678 

4X  3.8450730 4.9513840 -1.1063100 0.8349205 

5X  0.2924501 0.0364878 0.2559623 0.1595738 

6X  -3.0677180 2.4665810 -5.5342980 3.4316360 

7X  0.2435131 0.8743021 -0.6307890 0.1592092 

8X  0.9112644 -0.0114461 0.9227106 1.2315850 

9X  0.0650826 0.0451404 0.0199421 0.0151938 

10X  0.0027999 0.0036063 -0.0008065 0.0028201 
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information technology. This concentration reflects the 

synergistic effects of agglomeration economies, where 

dense R&D networks and knowledge spillovers among 

firms amplify productivity. In contrast, central provinces 

like Hubei, Hunan, and Anhui exhibit secondary 

agglomeration patterns, acting as transitional zones where 

coastal technologies diffuse inland through supply chain 

linkages. 

 SEIs are highly knowledge-intensive, with innovation 

and technological activities central to their growth. These 

sectors have high-value-added production, relying 

heavily on R&D and skilled labor, which results in strong 

regional clustering. The energy conservation and 

environmental protection industries, along with new 

material sectors, are primarily located in economically 

large regions like Eastern and Central China. The high-

end equipment manufacturing and biotechnology 

industries are spread across the East, Central, Northeast, 

and Southwest, benefiting from the established industrial 

base in these areas. The new energy vehicle (NEV) sector 

is closely tied to government policies and the industrial 

supply chain. Finally, new-generation information 

technology and digital creative industries are 

concentrated in regions with significant industrial 

capabilities, including software R&D, technology, and 

universities. 

 

4.2. Driving factors for the distribution of listed 

enterprises in SEIs 

 

 The spatial distribution of SEIs is primarily influenced 

by market, economic, policy, scientific, and technological 

factors. Market forces initiate agglomeration by reducing 

operational costs—enterprises clustering in economic 

hubs like the Yangtze River Delta gain efficiencies 

through shared infrastructure, labor market pooling, and 

proximity to suppliers, which collectively lower 

transportation expenses compared to dispersed locations. 

Agglomeration also deepens the social division of labor, 

develops local industrial chains, and supports the growth 

of businesses of all sizes across upstream and downstream 

sectors. 

 Industrial policies, especially during early industry 

development, shape the spatial distribution of strategic 

emerging industry enterprises. Government policies act as 

the primary scaffolding for SEI distribution, setting the 

"rules of the game" through fiscal incentives, regulatory 

frameworks, and spatial planning. Governments offer 

fiscal and tax incentives to attract businesses, build 

industrial parks, enhance infrastructure, and improve the 

business environment. These policies foster industry 

clusters by creating coordinated systems for fiscal, 

taxation, finance, land, and intellectual property. A 

favorable policy environment supports the market's role 

in resource allocation and promotes the agglomeration of 

these industries. 

 Scientific and technological factors also play a role, 

with universities and research institutes providing crucial 

talent and technical support. Enterprises benefit from 

integrating innovative knowledge from various sources, 

which fosters innovation spillovers, enhances 

productivity, and facilitates technology diffusion. The 

collaboration between industry, academia, and research 

drives R&D activities while a strong higher education 

population bolsters regional technological capacity, 

attracting high-level talent (Acevedo-Urquiaga et al., 

2021). As a result, enterprises concentrate in areas rich in 

human capital, where information resources and an 

innovative culture boost R&D effort and foster industrial 

clusters centered on technology and innovation. 

 

4.3. Global patterns and institutional variations in 

strategic industry localization 

 

 The spatial agglomeration of strategic emerging 

industries (SEIs) exhibits distinct global trajectories 

shaped by industrial heritage, policy frameworks, and 

institutional capacities. Comparative analysis reveals that 

while China’s SEI clustering predominantly reflects 

policy-driven spatial reorganization, advanced economies 

like the US and Japan demonstrate path-dependent 

agglomeration rooted in legacy industrial ecosystems. For 

instance, Klier and McMillen (2008) conditional logic 

analysis of the US automotive corridor demonstrates how 

transport logistics costs maintain spatial clustering of 

suppliers even as new entrants emerge. This contrasts 

with Japan’s metropolitan area, where Yamada and 

Kawakami (2016) identify multilayered growth clusters 

Table 4. Model estimation results 

 Coef. Std.Err. t P>|t| 95% Conf. Interval 

1X  1.118568 0.6383882 1.75 0.090 -0.1851944 2.422331 

2X  6.129446 2.742867 2.23 0.033 0.5277638 11.73113 

3X  0.3618003 0.1336041 2.71 0.011 0.0889444 0.6346562 

4X  3.845073 2.191371 1.75 0.090 -0.6303043 8.320451 

5X  0.2924501 0.1557918 1.88 0.070 -0.0257192 0.6106194 

6X  -3.067718 2.868749 -1.07 0.293 -8.926485 2.79105 

7X  0.2435131 0.2558004 0.95 0.349 -0.2789011 0.7659272 

8X  0.9112644 0.9058586 1.01 0.322 -0.9387456 2.761274 

9X  0.0650826 0.0988995 0.66 0.516 -0.1368972 0.2670623 

10X  0.0027999 0.0062631 0.45 0.658 -0.0099912 0.0155909 

cons -14.85719 9.364466 -1.59 0.123 -33.98198 4.267603 
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centered on automobile manufacturing but increasingly 

supplemented by synergistic service sectors. Their 

exploratory spatial analysis reveals that while core 

transportation equipment clusters retain geographical 

proximity, associated service industries exhibit broader 

technological clustering through inter-firm knowledge 

networks (Yamada and Kawakami, 2016). 

 Emerging economies like Thailand present alternative 

models of industrial localization. Kuroiwa et al. (2024) 

employ Duranton and Overman’s continuous approach to 

show that Thai automotive parts suppliers cluster within 

150km of assembly plants. The European case reveals 

contrasting tensions between agglomeration efficiencies 

and distributive justice. Szabó and Newell (2024) analysis 

of the EU’s just transition in automotive exposes how 

Germany’s core position in global value chains 

concentrates high-value R&D and battery production 

while Central/Eastern European states compete for 

assembly plants. This difference underscores the role of 

institutional capacity: There is a high level of 

agglomeration in countries with established automotive 

industries – the US, UK, Germany, France, Italy, and 

Japan account for 75 percent of the total contracts (Yeung, 

2023). 

 

4.4. Implications on industrial engineering and 

engineering management 

 

 The spatial-temporal patterns factors of China’s 

strategic emerging industries (SEIs) elucidate critical 

pathways for optimizing industrial ecosystems, 

particularly in the realms of resource allocation, 

operational efficiency, and systemic resilience. From an 

industrial engineering perspective, the pronounced spatial 

autocorrelation and kernel density clusters validate the 

efficacy of agglomeration economies, where proximity 

fosters knowledge spillovers and collaborative 

innovation. For instance, the "Yangtze River Delta 

Integrated Circuit Industry Park" exemplifies how spatial 

clustering reduces transaction costs and accelerates 

technology diffusion by concentrating upstream suppliers 

and downstream assemblers within highly diverse 

regions. 

 Moreover, the gravity center migration analysis 

reflects evolving policy priorities and infrastructure 

investments. This trend underscores the need for dynamic 

resource allocation strategies. In addressing systemic 

resilience, the COVID-19-induced volatility in industrial 

diversity emphasizes the vulnerability of centralized 

systems. Industrial engineers must adopt multiregional 

redundancy frameworks, such as replicating critical 

supply nodes to mitigate risks. Concurrently, investments 

in intercity transportation and digital networks ensure 

sustained talent and resource flows during disruptions. 

 Furthermore, the spatial autocorrelation confirms the 

self-reinforcing nature of innovation ecosystems. 

Leveraging this dynamic, engineering managers should 

colocate R&D centers with academic hubs to capitalize on 

knowledge spillovers. Institutional frameworks, such as 

joint patenting and technology market activity, must be 

scaled to accelerate commercialization. The study’s 

findings advocate for policy-engineering synergies to 

foster agile industrial systems. The dual focus on 

innovation diffusion and adaptive policy-making equips 

stakeholders to navigate the complexities of SEI 

development in a rapidly evolving global landscape. 

 

4.5. Limitations and prospects 

 

 Listed companies offer valuable data for analyzing the 

structure and spatial distribution of SEIs in China. By 

using information entropy, a measure of complexity, this 

study thoroughly examines the industrial structure of 

strategic emerging sectors across different provinces. 

Variations in economic development, technological 

levels, and natural resources lead to differences in both 

the structure of these industries and the number of listed 

companies across regions. The spatial agglomeration 

effect and distribution mapping help illustrate these 

differences. However, as China's listed companies do not 

consistently categorize these industries, the sample of 

companies included in this study was determined by 

experts based on their primary business. This approach 

may exclude some relevant companies. Additionally, due 

to the availability of data at the provincial level, the 

analysis of driving factors for spatial patterns is limited 

and could benefit from further refinement. 

 There are additional data types that could enhance 

scientific research, such as investigating the distribution 

patterns of listed companies in various SEIs over time. 

The Getis-Ord G*i index can help identify hot and cold 

spots. Furthermore, analyzing county- and district-level 

socioeconomic data could provide deeper insights into the 

factors driving spatial pattern changes in these industries 

across regions. 

 

5. CONCLUSIONS 

 

The spatial distribution of enterprises is a key research 

focus, and SEIs are crucial for future industrial 

development. As a significant driver of economic growth, 

they should be studied from multiple perspectives. This 

paper uses data from listed companies in China’s SEIs to 

examine the diversity and spatial distribution of these 

industries through the lens of industrial structure 

classification. The diversity index highlights regional 

variations in industry structures across China, revealing 

distinct industrial development patterns. A spatial 

analysis model is used to measure the agglomeration of 

SEIs, based on the coordinates of listed companies. 

Moran's I index further investigates the spatial 

distribution and evolution trends of these industries. The 

KDE method visualizes the aggregation characteristics 

while the gravity center calculation reflects spatial 

changes. Finally, the driving factors behind the regional 

spatial patterns are analyzed. 

From 2010 to 2021, the types and spatial distribution 

of listed companies in China’s SEIs exhibit clear 

characteristics. First, diversity is notably more 

pronounced in regions like the YRD, BTH, and PRD, 

compared to the northwest and northeast regions. Second, 

the spatial distribution generally decreases from the 

southeast coast to the northwest, with the central and 

northeast regions showing a more scattered pattern. 
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Lastly, analysis of the influencing factors reveals that the 

average value of DN, R&D investment, technology 

market turnover, and passenger turnover growth all 

significantly promote the number of listed companies in 

regional SEIs. 
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