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ABSTRACT

This study analyzes the structure and spatial distribution of listed companies in China's strategic emerging industries
(SEIs) from 2010 to 2021, using a quantitative approach. An industrial diversity index is created to assess provincial
structures, and spatial agglomeration is examined through a spatial autocorrelation model. The distribution is visualized
with kernel density estimation (KDE), and migration patterns of the gravity center are tracked. The key findings are as
follows: (1) Significant regional disparities in SEI development exist, with greater diversity in the Yangtze River Delta
(YRD), Beijing-Tianjin-Hebei (BTH), and the Pearl River Delta (PRD) compared to other regions; (2) The distribution
shows strong positive spatial autocorrelation, indicating a pronounced agglomeration effect; (3) The spatial center of
gravity primarily shifts within Central China; (4) The distribution follows a pattern of decreasing concentration from the
eastern coastal areas to the western inland regions, with scattered presence in the central and northeastern regions; (5)
Key factors such as economic development (DN values), policy support, R&D investments, passenger turnover, and
technology market activity play a significant role in shaping the number of listed companies in each region. This analysis
offers valuable insights for policymakers aiming to guide regional industrial development.
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1. INTRODUCTION

In September 2010, China introduced the initiative to
accelerate the development of SEIs. These sectors, built
upon key technological advances, are expected to lead
China's economic growth by promoting knowledge-
intensive and technology-driven industries. At the same
time, the focus on these industries facilitates the
upgrading of the industrial structure, promotes a shift
from extensive to intensive economic growth, and
strengthens China's competitive edge on the global stage.
By 2019, the added value of SEIs contributed 11.5% to
China’s GDP, and this figure is projected to exceed 17%
by 2025 . In the "14th Five-Year Plan" released last year,
the importance of advancing these industries and
reinforcing national scientific and technological
capabilities was reaffirmed.

Many nations and regions have introduced various
policies to foster SEls, leveraging their industry and
technology advantages. For instance, the U.S. State
Department outlined a national strategy focusing on the
growth of "key and emerging technologies," identifying
20 priority sectors such as advanced computing, Al,
biotechnology,  semiconductors, and  advanced
manufacturing. Likewise, the European Union published
a report on strengthening the industrial value chain,
establishing six forward-looking industries, including
advanced materials, aero-engine technologies, Al,
biotechnologies, energy technologies, and quantum
information science, among others. The development of
emerging sectors plays a significant role in enhancing
economic, scientific, technological, and sustainable
development worldwide. For example, offshore wind
energy projects continue to supply clean power across
Europe, highlighting the employment potential of
emerging industries (Bento and Fontes, 2019). In Spain,
the government is promoting technological innovation
while advancing marine renewable energy (Garcia et al.,
2021). Furthermore, some researchers argue that the rise
of robotics and automation is crucial for achieving
sustainable development goals (Guenat, 2022). From both
environmental and economic perspectives, the increasing
adoption of electric vehicles is critical for reducing
reliance on fossil fuels in the transport sector (Vrabie,
2022), while also significantly cutting greenhouse gas
emissions and fostering sustainable urban development
(Isik, 2021).

The development and spatial distribution of emerging
industries are influenced by multiple factors, including
policies, technological advancements, financial services,
and leading enterprises. A key aspect of the
commercialization of emerging technologies is the ability
of firms to convert innovations into marketable products.
From an enterprise efficiency standpoint, market demand
largely determines the location of production for
emerging industries (Krugman and Venables, 1995).
Driven by profit motives, businesses often favor larger
markets (Heiens et al., 2019). Additionally, high-tech
firms founded by academic entrepreneurs are likely to
prioritize proximity to universities, research institutions,
and capital markets. (Kolympiris et al., 2015). On one
hand, the development of transportation infrastructure

lowers communication costs and facilitates the flow of
personnel, capital, and other resources (Donaldson and
Hornbeck, 2016). A well-connected transport network
encourages businesses to concentrate in key cities,
reduces market fragmentation, and enhances resource
allocation efficiency (Wang et al., 2021). In contrast,
rising transaction costs are a significant factor
contributing to the uneven distribution of enterprises
(Venables, 2000). On the other hand, areas offering ample
land supply are particularly attractive to businesses and
can greatly influence their spatial distribution (Dai et al.,
2021). Furthermore, industrial policies play a crucial role
in shaping the location of emerging industries. All else
being equal, firms tend to gravitate toward regions with
lower tax burdens (Goel and Haruna, 2007).

The operational data of listed firms serve as a key
indicator for assessing their scale and growth potential.
This paper examines the diversity index of SEIs using
data from industrial companies listed on China’s A-share
market between 2010 and 2021. Further analysis of the
spatial autocorrelation patterns of these companies is
conducted using Moran's I index. By applying spatial
analysis and statistical techniques, the paper explores the
distribution, evolution trends, and factors influencing the
location of listed companies in strategic emerging sectors,
offering valuable insights for research on the evolution of
business clusters.

2. MATERIALS AND METHODS
2.1. Data source

The data for this study are derived from companies in
SEIs listed on China’s A-share market from 2010 to 2021.
Due to the absence of a specific statistical category for
these industries, experts classify them based on the
primary business activities of the listed companies. The
data sources include the Choice financial platform, China
Stock Market & Accounting Research (CSMAR)
database, and Wind economic database. Key indicators in
this study include stock code, industry name, enterprise
address, administrative region code, revenue, and others.
Additionally, using the enterprise address, longitude, and
latitude coordinates are matched through AutoNavi’s API
and then converted to World Geodetic System (WGS84)
coordinates. After excluding special treatment (ST) and
delisted companies, a total of 1,749 companies in SEIs are
selected as research samples.

Data for mechanism analysis primarily comes from
official sources, such as local statistical yearbooks.
Indicators like the growth rate of R&D investment,
passenger turnover, technology market turnover, the
number of patents granted in each province, sulfur dioxide
emissions, university growth rates, and power
consumption growth rates are derived from original data
or calculated results from the Statistical Yearbooks.
Policy data are sourced from Peking University’s Magic
Weapon database, which contains all central and local
regulations since 1949. The average DN value is obtained
from the original Visible Infrared Imaging Radiometer
Suite (VIIRS) satellite data provided by the National
Geophysical Data Center (NGDC) of the United States.
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Table 1. Types of SEIs

No Industry Category

Segment Industries

1.  High-end equipment
manufacturing industry

2. Energy conservation and
environmental protection
industry

3. Biological industry

Rail transit equipment, marine engineering equipment, aviation equipment,
satellites and their applications, and intelligent manufacturing.
Energy-efficient industry, advanced environmental protection industry, and
resource recycling industry.

Biological agriculture, biomedical engineering, biomedicine, biological

manufacturing, and biomass energy.

4.  Digital creative industry
5. New material industry

6.  New energy industry

7. New energy vehicle
industry

8. New generation
information technology

Digital creative equipment, digital content, and digital design services.
High-performance composites, advanced structural materials, and new
functional materials.

Wind energy, nuclear power technology, solar energy, and smart grid.

New energy vehicles.

Electronic core foundation, high-end software and emerging information
services, and next-generation information network.

The industrial structure upgrading index is calculated
using the Theil index, while a gray prediction model is
applied to fill in missing data for certain years.

Based on China’s 13th Five-Year Plan for the
Development of National Strategic Emerging Industries,
the Decision on Accelerating the Cultivation of Strategic
Emerging Industries, the National Economic Industry and
Code (GB/T 4754-2017), and the Classification Criteria
of High-Tech Industries (2017), SEIs are classified into
eight categories (Table 1).

2.2. Method
2.2.1. Industrial diversity index

The industrial diversity index quantifies how evenly
revenue is distributed across different strategic emerging
industries (SEIs) within a province. A region with only
one industry, the diversity index would be 0, indicating no
variety. Conversely, a province that hosts multiple
industries has a higher index, reflecting balanced revenue
contributions. The index uses information entropy, a
measure of system "disorder," where higher entropy
means more industries coexist with comparable revenue
shares. For instance, if a province’s SEIs generate equal
revenue across all sectors, entropy reaches its maximum
value. The information entropy of the strategic emerging
industry structure indicates the level of order within
provincial industries. A higher entropy value suggests a
lower level of order, greater differences in the industrial
structure, and a more complex distribution of industries.
Conversely, a lower entropy value indicates a higher
degree of order in the industrial structure and fewer types
of industries (Dong and Li, 2022). The calculation
formula is as follows:

G} = — X2, B Inp (1)

Here, the diversity index of SElIs. (G]-i) in province j
reflects the industrial structure through information
entropy, with units in bits (NAT). Pji indicates the
proportion of revenue generated by listed companies in
SEIs relative to the total revenue of such companies in the
province j. This diversity index measures the evenness in

the distribution of SEIs across provinces. According to the
maximum-minimum entropy principle, when a region
contains only one type of industry, entropy is at its
minimum, i.e., G]i=0. Conversely, when the revenues of
industrial listed companies are evenly distributed within a
province, the industrial structure is stable, and
information entropy reaches its maximum. As the number
of strategic emerging industry types increases, the
system's order decreases, and entropy rises.

2.2.2. Moran’s index

The spatial autocorrelation analysis adopts a
contiguity-based spatial weight matrix, which posits that
geographically proximate regions exhibit stronger
industrial interactions. Sensitivity analyses substituting
economic distance weights yielded negligible deviations
in global Moran’s I values, reinforcing the robustness of
spatial dependence patterns. Moran’s I evaluates whether
regions with similar numbers of SEI firms cluster together
geographically. A positive value suggests that provinces
with many firms tend to neighbor other high-density
provinces, while a negative value would imply a
checkerboard-like pattern. The analysis consistently
showed positive Moran’s I values, confirming that SEIs
aggregate in "hotspots" rather than scattering randomly.

Spatial autocorrelation is a primary technique for
identifying spatial relationships among geographical
elements (Liu et al., 2021). Moran's I index measures the
degree of spatial autocorrelation, taking into account both
the attribute values of the elements and the spatial
distance between them. The formula is as follows (Wang
et al., 2020).

02 By jai W) (i =%) (% -%)

= - -2 (2)
[Zin=1 2:jn=1,j==i""(1'1)] it (xi—x)
where x = ){L; x;/n, x; and x; represent the observed
values of a spatial aspect on the regional units. 7, j, and w
(i, j) are the spatial weight matrix.

2.2.3. Kernel density estimation

KDE assumes that all listed firms within a given
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bandwidth contribute equally to local industrial density
estimates, regardless of firm size or sector. The model
also treats provincial administrative boundaries as
permeable to economic activities. KDE assumes that
geographical phenomena can occur anywhere in space,
but the likelihood of occurrence varies across different
spatial locations (Zuo et al., 2021). To visually
demonstrate the spatial clustering patterns of listed
companies in various industries, KDE is used to analyze
the spatial and temporal distribution characteristics of
listed companies in SEIs. The formula is as follows. (Yu
et al., 2015).

£00 = 5 3n, K [<2] )

Where f(x) is the estimated density value at location x,
K[ ] is the kernel function, h > 0 is the bandwidth, 7 is
equal to the total number of features within the bandwidth,
d is the dimension of the data; and (x — x;) is the distance
between feature x; and location x.

2.2.4. Spatial distribution of the gravity center and
migration

The gravity center calculation weights firm locations
solely by operating income, reflecting Porter’s emphasis
on revenue as a proxy for industrial activity concentration.
While this assumption excludes employment or asset-
based metrics, revenue data’s comprehensive coverage in
financial databases ensures comparability across
provinces.

The spatial barycenter transfer model illustrates the
migration path and the trend of both centralized and
dispersed distribution of spatial attributes, helping to
analyze spatial changes in regional characteristics (Zhang
et al., 2018). The movement of the gravity center reflects
the asynchronous changes of listed companies in various
SEIs across regions. The formula is as follows:

X = (ZLaxE)/ (B Ep);

Y = (ZL1yiE)/(Z B) )
Where E; is the total operating income of the listed
companies in the SEIs of the province j. x; and y; are the
geometric center coordinates of the provincial
administrative unit. X and Y are the coordinates of the
spatial distribution of the gravity center of each type of
strategic emerging industry.

Gravity center migration model. The calculation
formula of the gravity migration distance d; of SEIs in a
region in a year i is as follows:

2 2
di=CX\/(yj—yi) +(X]'_Xi) (5)
Where (x;, yi) and (x;, y;) represent the gravity coordinates
of a certain attribute in years i and j, respectively, and c is
generally considered a constant (1°~ 111 km).

3. RESULTS
3.1. Diversity analysis of SEIs
The results of the industrial diversity index show that

from 2010 to 2021, the industrial development of China's
provinces varied greatly (Fig. 1). Jiangsu Province,

obtained a diversity index of 1.81, the highest of all
provinces in 2014, while Xinjiang and Tibet had only one
type of industry in 2010, and thus, their diversity indices
were 0. On the basis of industrial diversity, the
development of SEIs in the YRD, BTH, PRD is relatively
balanced, and their average annual diversity indices are
all greater than 1, at 1.5, 1.26, and 1.12, respectively.
However, the average annual diversity index of Northwest
China (Inner Mongolia, Gansu Province, Qinghai
Province, Ningxia Hui Autonomous Region, and Xinjiang
Uygur Autonomous Region) is less than 1, with Gansu
Province having the highest industrial diversity index,
0.84, and Xinjiang having an industrial diversity index of
only 0.41. The average annual industrial diversity indices
among provinces in Northeast China (Heilongjiang, Jilin,
and Liaoning) are significantly different, and the highest
index in Jilin Province is 2.01 times that in Heilongjiang
Province. The development situations of Southwest China
(Yunnan, Guizhou, Sichuan, Chongqing, and Tibet) and
Northeast China are similar, and the diversity of industrial
development among provinces varies significantly. The
highest Sichuan Province is 3.88 times that of the Tibet
Autonomous Region. The average annual industrial
diversity index of Henan, Hunan, Anhui, and Jiangxi
Provinces in the central region has reached 1.47, while the
average index value of Shanxi and Hubei Provinces is
only 0.65. Thus, the development levels of industrial
diversity between these regions are significantly different.
From the time series, it can be seen that from 2010 to
2021, the diversity index of SEIs in the YRD, BTH, and
PRD showed a gradual growth trend (Figure 1). However,
due to the impact of coronavirus disease 2019 (COVID-
19), there was a relatively significant adjustment in 2020.
For example, compared with 2019, the industrial diversity
index of Guangdong Province in 2020 decreased by
52.36%, that of Zhejiang Province decreased by 43.14%,
and that of Beijing decreased by 39.92%. However, over
the same period, the provinces in Northwest and
Southwest China experienced relatively rapid growth,
with the industrial diversity index of Yunnan increasing
by 38.24%, that of Tibet increasing by 29.51%, and that
of Gansu increasing by 11.35%. From 2020 to 2021, the
regions where the diversity index of SEIs fell rapidly in
the early stage recovered rapidly. For example, the
industrial diversity index of Guangdong Province in 2021
was 2.09 times that in 2020 while that of Zhejiang
Province, Beijing, and Shanghai increased by 78.51%,
65.65%, and 37.86%, respectively. However, Shanxi and
Xinjiang, where the index was relatively stable in the
early stage, fell by 59.53% and 43.12%, respectively.

3.2. Autocorrelation characteristics of spatial patterns

To examine the spatial change trend of the distribution
patterns of listed companies in China's SEIs from 2010 to
2021, the number of listed companies in each province is
counted, and the global Moran's I index for each province
is calculated. Table 2 indicates that the global Moran's [
values over the 12-year period are positive and
statistically significant, indicating a notable positive
spatial autocorrelation in the spatial distribution of listed




International Journal of Industrial Engineering and Engineering Management, Vol. 7, No. 2, December 2025

117

Diversity index

® Beijing
4 18 -1 8 ® Tianjin
« 9 g & 5 sl t 3 ¢ B A Hebei
> > > * @ ¥ Shanxi
o - ™ . .‘ 184 = = [ ] > > € Neimenggu
g x — " ; > * « Liaoning
1 ﬁ y < L y » Jilin
< o e1 ¢ @ Heilongjiang
: 3 L ] ; | ° 4 < g ! 2 ‘ * Shanghai
* 1 < e ' . ® Jiangsu
’ 1 $ 1Rk A A Y X @ Zhejiang
. T A s v § ¥ ¢ Anhui
> < % 1.0 - : ! PS Fujian
a & ® v 9 s : ¥ Jiangxi
T T T T - Shandong
;-) : : < \ g ) 3 * s ! Henan
2010 2012 2(!140.3- Q16 ] 20-.18 H 2(,20 2002 & e
[ ¢ 1 ¢ 3’ ¥ ® Hunan
; i B i ’ 0.6 4 e z + s A Guangdong
v A v Guangxi
™ " » + 1 2% b ¢ Hainan
* * *
+ * 0! -1 % <4 Chongging
* X ; % 2 X ¥ » Sichuan
* ° & = 1 ® Guizhou
. 0.2 4 * Yunnan
) ® Shaanxi
@ Gansu
x + 0.0 + Xinjiang
X Xizang

Figure 1. Industrial diversity of listed companies in SEIs in China

Table 2. Spatial correlation of strategic emerging enterprises in China

Number of listed Moran’s | Z p-value
enterprises
2010 179 0.117 4978 0.000
2011 319 0.096 5.742 0.000
2012 403 0.077 5.553 0.000
2013 403 0.077 5.553 0.000
2014 469 0.075 6.002 0.000
2015 571 0.071 6.507 0.000
2016 668 0.077 6.909 0.000
2017 881 0.079 7.463 0.000
2018 929 0.080 7.721 0.000
2019 1073 0.078 7.988 0.000
2020 1383 0.090 10.497 0.000
2021 1749 0.101 13.222 0.000

companies in China's SEIs. In other words, the
distribution of listed companies across regions exhibits
characteristics of spatial agglomeration.

The spatial agglomeration of SEIs in China reveals a
dynamic interplay between policy-driven dispersion and
market-led re-concentration, characterized by a U-shaped
trajectory in global Moran’s I values. Initially, the sharp
34% decline in spatial autocorrelation from 2010 to 2012
reflects the post-financial crisis decentralization, as firms
reduced their regional dependency risks. This dispersion
phase contrasts with the subsequent stabilization period
(2013-2019), where moderate agglomeration persisted
despite rising firm counts (Table 2), signaling policy
balancing—centralized R&D subsidies in coastal
provinces offset dispersion incentives for resource-
intensive sectors like energy conservation. Notably, the
late re-concentration surge (2019-2021) aligns with
China’s "Dual Circulation" strategy, accelerating NEV
and digital infrastructure investments in eastern clusters.

3.3. KDE of strategic emerging industry enterprises

As shown in Figure 2, the distribution of listed
companies in China’s SEIs generally decreases from the
eastern coastal regions to the western inland areas, with a
scattered distribution in the central and northeast regions.

The Yangtze River Delta (YRD), Beijing-Tianjin-Hebei
(BTH), and Pearl River Delta (PRD) form the dominant
high-density clusters, collectively accounting for over
60% of listed SEI firms. These regions exhibit continuous
spatial integration, driven by advanced infrastructure,
innovation ecosystems, and policy synergies. For
instance, the YRD’s density hotspot spans Shanghai,
Jiangsu, and Zhejiang, reflecting cross provincial
industrial linkages in high-end manufacturing and digital
creativity. Northwest China, comprising Gansu, Ningxia,
Qinghai, and Xinjiang, along with Shanxi and Inner
Mongolia in North China, is are area with low density.

Figure 3 illustrates the spatial agglomeration patterns
of strategic emerging industries (SEIs) in China. Three
prominent geographical features emerge from the kernel
density analysis: First, the Yangtze River Delta (YRD),
Beijing-Tianjin-Hebei (BTH), and Pearl River Delta
(PRD) regions form primary agglomeration cores for
most industries. Second, coastal linearity characterizes
the distribution of high-tech industries like new energy
and biomedicine, extending from northern to southeastern
coastal zones. Third, central-western regions exhibit a
"multi-node scattering" pattern, with sporadic clusters
concentrated along provincial borders.

Sectoral variations reveal that -capital-intensive
industries (e.g., high-end equipment manufacturing, new
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materials) predominantly cluster in core economic zones
while emerging sectors like new energy vehicles show
transitional characteristics with dual concentrations in
coastal hubs and selected inland junctions. Environmental
industries demonstrate unique spatial duality - intensive
coastal clusters coexist with hinterland diffusion along
major transportation corridors.

3.4. Analysis of the gravity center distribution of
strategic emerging industry enterprises

The rotation angle 6 of the standard deviation ellipse
indicates a significant variation in the spatial distribution
of listed enterprises in China’s SEIs, ranging from 11.79°
to 170.21°.In 2010, the rotation angle was 26.9°, showing
a spatial trend from "northeast to southwest." By 2021, the

0 187.5375 750 1,125 1,500
O E— s Kilometers

m High : 28,0731

w0

0 2% 500 1,000 1500

(b) Energy conservation and
environmental protection industry

Low :

(c) Biological industry

e High : 114412
B vz 0

0 2% 500 1,000 1500

oy High @ 7.72939

e RN

0 250 500 4,000 1500

Figure 3. Kernel density of listed companies in different types of SEIs in China
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Figure 4. Standard deviation ellipse of listed companies in China’s SEIs

angle reached 112.04°, indicating a "northwest to
southeast" spatial trend. Similar trends were observed in
2014, 2017, and 2019, while 2018 showed a distribution
resembling a "due east to due west" alignment.

Regarding the coverage of the standard deviation
ellipse, the differences from year to year are significant
due to the varying lengths of the semi-major and semi-
minor axes. In 2010 and 2014, seven to eight provinces
were fully covered, with some regions spanning
approximately twelve provinces. In contrast, 2011 saw
narrower coverage, fully covering only three provinces.
In 2012 and 2021, around 54.84% of the provinces were
fully covered, while approximately 29.03% were partially
covered (Figure 4).

As illustrated in Figure 5, from 2010 to 2021, the
spatial position of the gravity center of listed companies
in China’s SEIs underwent notable changes. In 2010, the
coordinates of the gravity center were 115.7323°E,
29.5920°N while in 2021, they shifted to 116.3673°E,
36.3318°N, resulting in a total migration distance of
751.44 km, indicating a significant shift northward.
During most periods, except for the 2014-2015 transition
(with a movement of less than 100 km), the gravity center
moved more than 100 km. The largest movement
occurred between 2018 and 2019, with a shift of 512.64
km. After the China Securities Regulatory Commission
suspended IPOs in 2013, the gravity center remained
unchanged in 2012 and 2013. Over the 12 years, the center
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Table 3. Test results of the panel model setting form

Fe Re Difference S.E.
X, 1.1185680 0.3510970 0.7674712 0.4664911
X, 6.1294460 0.8213297 5.3081170 1.7362160
X, 0.3618003 0.3549549 0.0068454 0.1165678
X, 3.8450730 4.9513840 -1.1063100 0.8349205
X 0.2924501 0.0364878 0.2559623 0.1595738
X -3.0677180 2.4665810 -5.5342980 3.4316360
X, 0.2435131 0.8743021 -0.6307890 0.1592092
X 0.9112644 -0.0114461 0.9227106 1.2315850
X, 0.0650826 0.0451404 0.0199421 0.0151938
Xy 0.0027999 0.0036063 -0.0008065 0.0028201

of gravity was primarily located in Jiangxi Province for
five years and Hubei Province for three years, suggesting
that it was generally centered around China’s central
region. The movement speed of the gravity center has
increased each year since 2015, indicating a broader
fluctuation in its spatial distribution.

3.5. Driving factors of the spatial pattern of strategic
emerging industry enterprises

The differences in the spatial distribution of listed
enterprises in China’s SEIs arise from the interaction of
multiple factors. Based on existing literature and expert
insights, this paper identifies four key explanatory
variables for the number of listed enterprises in regional
SEIs: economic development, government policy,
innovation capacity, and industrial structure. The
following variables are selected for empirical analysis:
R&D investment (X;), average DN value (X2), policy
count (X3), passenger turnover growth rate (Xy),
technology market turnover (X5), advanced industrial
structure index (Xs), the number of patents granted in each
province (X7), logarithm of sulfur dioxide emissions (Xj),
growth rate of educational institutions (Xy), and electricity
consumption growth rate (X9).

The spatial panel model can be applied in two ways:
fixed effects and random effects. The choice between
these depends on the Hausman test. The statistical

outcomes are presented in Table 3. The null hypothesis
assumes random effects. With a p-value of 0.0002, which
is less than 0.05, the null hypothesis is rejected, leading to
the selection of the fixed effects model.

The data is processed using Stata 15.0, and the
estimation results are presented in Table 4. From the
model parameters, the mean DN value and the number of
policies is significant at the 5% level. R&D investment,
passenger turnover growth rate, and technology market
turnover are significant at the 10% level. All significant
variables have positive coefficients, suggesting that these
factors contribute positively to the regional distribution of
SEls.

4. DISCUSSIONS

4.1. Spatial pattern differentiation characteristics of
listed enterprises in SEIs

The spatial distribution of listed enterprises in
strategic emerging industries (SEIs) reveals a pronounced
hierarchical structure shaped by China’s distinct regional
development trajectories. Eastern coastal regions,
particularly the Yangtze River Delta (YRD), Beijing-
Tianjin-Hebei (BTH), and Pearl River Delta (PRD),
emerge as the dominant innovation hubs, accounting for
over 70% of high-value-added industries such as
advanced equipment manufacturing and new generation
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Table 4. Model estimation results

Coef. Std.Err. t P>|t| 95% Conf. Interval
X, 1.118568 0.6383882 1.75 0.090 -0.1851944 2.422331
X, 6.129446 2.742867 223 0.033 0.5277638 11.73113
X, 0.3618003 0.1336041 2.71 0.011 0.0889444 0.6346562
X, 3.845073 2.191371 1.75 0.090 -0.6303043 8.320451
X 0.2924501 0.1557918 1.88 0.070 -0.0257192 0.6106194
X -3.067718 2.868749 -1.07 0.293 -8.926485 2.79105
X, 0.2435131 0.2558004 0.95 0.349 -0.2789011 0.7659272
Xq 0.9112644 0.9058586 1.01 0.322 -0.9387456 2.761274
X 0.0650826 0.0988995 0.66 0.516 -0.1368972 0.2670623
Xy 0.0027999 0.0062631 0.45 0.658 -0.0099912 0.0155909
cons -14.85719 9.364466 -1.59 0.123 -33.98198 4.267603

information technology. This concentration reflects the
synergistic effects of agglomeration economies, where
dense R&D networks and knowledge spillovers among
firms amplify productivity. In contrast, central provinces
like Hubei, Hunan, and Anhui exhibit secondary
agglomeration patterns, acting as transitional zones where
coastal technologies diffuse inland through supply chain
linkages.

SEIs are highly knowledge-intensive, with innovation
and technological activities central to their growth. These
sectors have high-value-added production, relying
heavily on R&D and skilled labor, which results in strong
regional clustering. The energy conservation and
environmental protection industries, along with new
material sectors, are primarily located in economically
large regions like Eastern and Central China. The high-
end equipment manufacturing and Dbiotechnology
industries are spread across the East, Central, Northeast,
and Southwest, benefiting from the established industrial
base in these areas. The new energy vehicle (NEV) sector
is closely tied to government policies and the industrial
supply chain. Finally, new-generation information
technology and digital creative industries are
concentrated in regions with significant industrial
capabilities, including software R&D, technology, and
universities.

4.2. Driving factors for the distribution of listed
enterprises in SEIs

The spatial distribution of SEIs is primarily influenced
by market, economic, policy, scientific, and technological
factors. Market forces initiate agglomeration by reducing
operational costs—enterprises clustering in economic
hubs like the Yangtze River Delta gain efficiencies
through shared infrastructure, labor market pooling, and
proximity to suppliers, which collectively lower
transportation expenses compared to dispersed locations.
Agglomeration also deepens the social division of labor,
develops local industrial chains, and supports the growth
of businesses of all sizes across upstream and downstream
sectors.

Industrial policies, especially during early industry
development, shape the spatial distribution of strategic

emerging industry enterprises. Government policies act as
the primary scaffolding for SEI distribution, setting the
"rules of the game" through fiscal incentives, regulatory
frameworks, and spatial planning. Governments offer
fiscal and tax incentives to attract businesses, build
industrial parks, enhance infrastructure, and improve the
business environment. These policies foster industry
clusters by creating coordinated systems for fiscal,
taxation, finance, land, and intellectual property. A
favorable policy environment supports the market's role
in resource allocation and promotes the agglomeration of
these industries.

Scientific and technological factors also play a role,
with universities and research institutes providing crucial
talent and technical support. Enterprises benefit from
integrating innovative knowledge from various sources,
which  fosters innovation spillovers, enhances
productivity, and facilitates technology diffusion. The
collaboration between industry, academia, and research
drives R&D activities while a strong higher education
population bolsters regional technological capacity,
attracting high-level talent (Acevedo-Urquiaga et al.,
2021). As a result, enterprises concentrate in areas rich in
human capital, where information resources and an
innovative culture boost R&D effort and foster industrial
clusters centered on technology and innovation.

4.3. Global patterns and institutional variations in
strategic industry localization

The spatial agglomeration of strategic emerging
industries (SEIs) exhibits distinct global trajectories
shaped by industrial heritage, policy frameworks, and
institutional capacities. Comparative analysis reveals that
while China’s SEI clustering predominantly reflects
policy-driven spatial reorganization, advanced economies
like the US and Japan demonstrate path-dependent
agglomeration rooted in legacy industrial ecosystems. For
instance, Klier and McMillen (2008) conditional logic
analysis of the US automotive corridor demonstrates how
transport logistics costs maintain spatial clustering of
suppliers even as new entrants emerge. This contrasts
with Japan’s metropolitan area, where Yamada and
Kawakami (2016) identify multilayered growth clusters
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centered on automobile manufacturing but increasingly
supplemented by synergistic service sectors. Their
exploratory spatial analysis reveals that while core
transportation equipment clusters retain geographical
proximity, associated service industries exhibit broader
technological clustering through inter-firm knowledge
networks (Yamada and Kawakami, 2016).

Emerging economies like Thailand present alternative
models of industrial localization. Kuroiwa et al. (2024)
employ Duranton and Overman’s continuous approach to
show that Thai automotive parts suppliers cluster within
150km of assembly plants. The European case reveals
contrasting tensions between agglomeration efficiencies
and distributive justice. Szabo and Newell (2024) analysis
of the EU’s just transition in automotive exposes how
Germany’s core position in global value chains
concentrates high-value R&D and battery production
while Central/Eastern European states compete for
assembly plants. This difference underscores the role of
institutional capacity: There is a high level of
agglomeration in countries with established automotive
industries — the US, UK, Germany, France, Italy, and
Japan account for 75 percent of the total contracts (Yeung,
2023).

4.4. Implications on industrial engineering and
engineering management

The spatial-temporal patterns factors of China’s
strategic emerging industries (SEIs) elucidate critical
pathways for optimizing industrial ecosystems,
particularly in the realms of resource allocation,
operational efficiency, and systemic resilience. From an
industrial engineering perspective, the pronounced spatial
autocorrelation and kernel density clusters validate the
efficacy of agglomeration economies, where proximity
fosters knowledge spillovers and collaborative
innovation. For instance, the "Yangtze River Delta
Integrated Circuit Industry Park" exemplifies how spatial
clustering reduces transaction costs and accelerates
technology diffusion by concentrating upstream suppliers
and downstream assemblers within highly diverse
regions.

Moreover, the gravity center migration analysis
reflects evolving policy priorities and infrastructure
investments. This trend underscores the need for dynamic
resource allocation strategies. In addressing systemic
resilience, the COVID-19-induced volatility in industrial
diversity emphasizes the vulnerability of centralized
systems. Industrial engineers must adopt multiregional
redundancy frameworks, such as replicating critical
supply nodes to mitigate risks. Concurrently, investments
in intercity transportation and digital networks ensure
sustained talent and resource flows during disruptions.

Furthermore, the spatial autocorrelation confirms the
self-reinforcing nature of innovation ecosystems.
Leveraging this dynamic, engineering managers should
colocate R&D centers with academic hubs to capitalize on
knowledge spillovers. Institutional frameworks, such as
joint patenting and technology market activity, must be
scaled to accelerate commercialization. The study’s
findings advocate for policy-engineering synergies to

foster agile industrial systems. The dual focus on
innovation diffusion and adaptive policy-making equips
stakeholders to navigate the complexities of SEI
development in a rapidly evolving global landscape.

4.5. Limitations and prospects

Listed companies offer valuable data for analyzing the
structure and spatial distribution of SEIs in China. By
using information entropy, a measure of complexity, this
study thoroughly examines the industrial structure of
strategic emerging sectors across different provinces.
Variations in economic development, technological
levels, and natural resources lead to differences in both
the structure of these industries and the number of listed
companies across regions. The spatial agglomeration
effect and distribution mapping help illustrate these
differences. However, as China's listed companies do not
consistently categorize these industries, the sample of
companies included in this study was determined by
experts based on their primary business. This approach
may exclude some relevant companies. Additionally, due
to the availability of data at the provincial level, the
analysis of driving factors for spatial patterns is limited
and could benefit from further refinement.

There are additional data types that could enhance
scientific research, such as investigating the distribution
patterns of listed companies in various SEIs over time.
The Getis-Ord G*i index can help identify hot and cold
spots. Furthermore, analyzing county- and district-level
socioeconomic data could provide deeper insights into the
factors driving spatial pattern changes in these industries
across regions.

5. CONCLUSIONS

The spatial distribution of enterprises is a key research
focus, and SEIs are crucial for future industrial
development. As a significant driver of economic growth,
they should be studied from multiple perspectives. This
paper uses data from listed companies in China’s SEIs to
examine the diversity and spatial distribution of these
industries through the lens of industrial structure
classification. The diversity index highlights regional
variations in industry structures across China, revealing
distinct industrial development patterns. A spatial
analysis model is used to measure the agglomeration of
SEIs, based on the coordinates of listed companies.
Moran's 1 index further investigates the spatial
distribution and evolution trends of these industries. The
KDE method visualizes the aggregation characteristics
while the gravity center calculation reflects spatial
changes. Finally, the driving factors behind the regional
spatial patterns are analyzed.

From 2010 to 2021, the types and spatial distribution
of listed companies in China’s SEIs exhibit clear
characteristics.  First, diversity is notably more
pronounced in regions like the YRD, BTH, and PRD,
compared to the northwest and northeast regions. Second,
the spatial distribution generally decreases from the
southeast coast to the northwest, with the central and
northeast regions showing a more scattered pattern.
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Lastly, analysis of the influencing factors reveals that the
average value of DN, R&D investment, technology
market turnover, and passenger turnover growth all
significantly promote the number of listed companies in
regional SEIs.

ACKNOWLEDGEMENT

Funding: This research was funded by the Jiangsu
Provincial Social Science Application Research FElite
Project (24SYC-020), General Project of Philosophy and
Social Science Research in Colleges and Universities in
Jiangsu Province (2023SJYBO0265), and the Nanjing Soft
Science Research Program Project (202303014).

REFERENCES

Acevedo-Urquiaga, A.J., Sablon-Cossio, N., Acevedo-
Suérez, J.A., & Urquiaga-Rodriguez, A.J. (2021). A
Model with a collaborative approach for the
operational management of the supply chain.
International Journal of Industrial Engineering and
Management, 12(1), 49-62.

Bento, N., & Fontes, M. (2019). Emergence of floating
offshore wind energy: Technology and industry.
Renewable and Sustainable Energy Reviews, 99, 66-
82.

Dai, P., Sheng, R., Miao, Z., Chen, Z., & Zhou, Y. (2021).
Analysis of spatial-spatial-temporal characteristics
of industrial land supply scale in relation to
industrial structure in China. Land, 10(11), Article
1272.

Donaldson, D., & Hornbeck, R. (2016). Railroads and
American economic growth: A “Market Access”
approach. The Quarterly Journal of Economics,
131(2), 799-858.

Dong, L., & Li, X. (2022). Evolution of urban
construction land structure based on information
entropy and shift-share model: An empirical study
on Beijing-Tianjin-Hebei urban agglomeration in
China. Sustainability, 14(3), Article 1244.

Garcia, P.Q., Sanabria, J.G., & Ruiz, J.A.C. (2021).
Marine renewable energy and maritime spatial
planning in Spain: Main challenges and
recommendations. Marine Policy, 127, Article
104444.

Goel, R.K., & Haruna, S. (2007). Cooperative and
noncooperative R&D with spillovers: The case of
labor-managed firms. Economic Systems, 31(4),
423-440.

Guenat, S., Purnell, P., Davies, Z. G., Nawrath, M.,
Stringer, L. C., Babu, G. R., ... & Dallimer, M.
(2022). Meeting sustainable development goals via
robotics and autonomous systems. Nature
Communications, 13, Article 3559.

Heiens, R.A., Pleshko, L.P., & Ahmed, A.A.A. (2019).
Comparison of the relationship marketing outcomes
of SMEs vs large enterprises in the Kuwait fast food
industry. British Food Journal, 121(10), 2442-2453.

Isik, M., Dodder, R., & Kaplan, P.O. (2021).
Transportation emissions scenarios for New York
City under different carbon intensities of electricity
and electric vehicle adoption rates. Nature Energy,

06, 92-104.

Klier, T., & McMillen, D.P. (2008). Evolving
agglomeration in the US auto supplier industry.
Journal of Regional Science, 48(1), 245-267.

Kolympiris, C., Kalaitzandonakes, N., & Miller, D.
(2015). Location choice of academic entrepreneurs:
Evidence from the US biotechnology industry.
Journal of Business Venturing, 30(2), 227-254.

Krugman, P., & Venables, A.J. (1995). Globalization and
the inequality of nations. The Quarterly Journal of
Economics, 110(4), 857-880.

Kuroiwa, I., Techakanont, K., & Keola, S. (2024).
Evolution of production networks and the
localisation of firms: Evidence from the Thai
automotive industry. Journal of the Asia Pacific
Economy, 29(1), 260-281.

Liu, S., Liu, Y., Zhang, R., Cao, Y., Li, M., Zikirya, B., &
Zhou, C. (2021). Heterogeneity of spatial
distribution and factors influencing unattended
locker points in Guangzhou, china: The case of hive
box. ISPRS International Journal of Geo-
Information, 10(6), Article 409.

Szabo, J., & Newell, P. (2024). Driving towards a just
transition? The case of the European car industry.
Energy Research & Social Science, 115, Article
103649.

Venables, A.J. (2000). Cities and trade: External trade and
internal geography in developing economies. World
Development. In Yusuf, S., Wu, W., & Evenett, S.J.
(Eds.). (2000). Local dynamics in an era of
globalization: ~ 21st  century  catalysts  for
development, 58-64. World Bank Publications.

Vrabie, C. (2022). Electric vehicles optimism versus the
energy market reality. Sustainability, 14(9), Article
5388.

Wang, S., Liu, H., Pu, H., & Yang, H. (2020). Spatial
disparity and hierarchical cluster analysis of final
energy consumption in China. Energy, 197, Article
117195.

Wang, T., Zhang, Y., Li, Y., Fu, X., & Li, M. (2021).
Sustainable development of transportation network
companies: From the perspective of satisfaction
across passengers with different travel distances.
Research  in  Transportation  Business &
Management, 41, Article 100687.

Yamada, E., & Kawakami, T. (2016). Distribution of
industrial growth in Nagoya metropolitan area,
Japan: An exploratory analysis using geographical
and technological proximities. Regional Studies,
50(11), 1876-1888.

Yeung, G. (2023). Codifiability and geographical
proximity of supply networks in automotive
industry. Erdkunde, 77(2), 91-112.

Yu, W., Ai, T., & Shao, S. (2015). The analysis and
delimitation of central business district using
network kernel density estimation. Journal of
Transport Geography, 45, 32-47.

Zhang, G., Zhang, N., & Liao, W. (2018). How do
population and land urbanization affect CO;
emissions under gravity center change? A spatial
econometric  analysis. Journal of Cleaner
Production, 202, 510-523.




124 P. Dai

Zuo, Y., Chen, H., Pan, J., Si, Y., Law, R., & Zhang, M.
(2021). Spatial distribution pattern and influencing
factors of sports tourism resources in China. /SPRS
International Journal of Geo-Information, 10(7),
Article 428.




