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ABSTRACT 

The multi-dimensional knapsack problem (MKP) is a generalization of the classical knapsack problem, a problem for 

allocating a resource/subset of objects that maximize profit while not violating the capacity of the knapsack. The MKP 

has many practical applications in different areas and is classified as an NP-hard problem. An analytic method like a 

branch and bound and dynamic programming can yield the optimum solution, but its computational time growth is 

exponentially proportional to the problem's size. Some heuristics/metaheuristics procedure has been developed to 

obtain a near-optimal solution within reasonable computational times. In this paper, a pigeon-inspired optimization 

(PIO) is proposed for solving MKP. PIO is one of the metaheuristic algorithms that is classified in population-based 

swarm intelligence that is developed based on the behavior of the pigeon to find its home. However, it had gone far 

away from its home. In this paper, PIO implementation to solve MKP is applied to two different characteristic cases 

in a total of 10 cases. The result of implementing the two-best combination of parameter values for 10 cases compared 

to particle swarm optimization, intelligent water drop algorithm, and the genetic algorithm give satisfactory results. 
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1. INTRODUCTION 

The multi-dimensional knapsack problem (MKP) is a 

generalization of the knapsack problem, a problem for 

allocating a resource/subset of objects that maximize 

profit while not violating the capacity of knapsack 

(Martello and Toth, 1990). It explained the classical 

knapsack problem as suppose a hitch-hiker has to fill up 

his knapsack by selecting from among various possible 

objects that will give him maximum comfort. Another 

example, the knapsack problem will provide the optimal 

solution related to investment. Suppose that someone is 

going to invest a number of dollars and consider some 

possible alternative investments. Using this method, he 

can calculate profit gained from investment and how 

much money is required to invest. 

Recently, knapsack problems are an interesting topic 

in research. Examples of industrial knapsack problems 

are capital budgeting, cargo loading, and cutting stock 

(Martello and Toth, 1990). Since MKP is a 

generalization of the classical knapsack problem, it is 

more practical, and it can model all of the problems that 

can be modeled by the knapsack problem. According to 

Haddar et al. (2016), MKP has been used as a model for 

many real applications such as cutting stock problems, 

project selection, cargo loading problems, capital 

budgeting, allocating processors and databases in a 

distributed computer system, and daily management of 

a satellite. 

Since MKP is an NP-hard problem, numerous 

methods have been developed by the researchers that are 

classified into exact and approximation methods. Exact 

method, such as branch and bound algorithm (Shih, 

1979; Vimont et al., 2008; Manzini and Speranza, 

2012); dynamic programming (Gilmore and Gomory, 

1966; Weingartner and Ness, 1967); hybrid dynamic 

programming methods (Bertsimas and Demir, 2002; 

Balev et al., 2008) could generate the optimal solution, 
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but they can solve only instances of very limited size in 

an acceptable computation time. 

Heuristics/metaheuristics procedure could obtain a near-

optimal solution within reasonable computational times 

compared to the analytic method. There are two 

classifications of approximation methods, heuristics, 

and metaheuristics. Heuristics and metaheuristics have 

recently become a focus of researchers for solving MKP 

(Haddar et al., 2016). The heuristic approach has been 

developed by Battiti and Vecchiolli (1994) and Freville 

and Plateau (1986). Heuristics are problem-dependent 

that are designed and applicable to a problem. The 

research on the application of metaheuristic method to 

solve MKP are tabu search (Vasquez and Hao, 2001; 

Dammeyer and Voss, 1993, Glover and Kochenberger, 

1996; Vasquest and Vimont, 2005, Lai et al., 2018); 

genetic algorithm (Khuri et al., 1994; Chu and Beasley, 

1998; Berberler et al., 2013; Martins et al., 2014); 

simulated annealing (Leung et al., 2012; Rezoug et al., 

2015); ant colony optimization (Kong et al., 2008; Ke 

et al., 2010; Fingler et al., 2014); particle swarm 

optimization (Kong et al., 2006; Hembecker et al., 2007; 

Wan and Nolle, 2009; Chen et al., 2010; Ktari and 

Chabchoub, 2013); Tisna, 2013, Chih, 2015, Haddar et 

al., 2016); intelligent water drops (Shah-Hosseini, 

2009), binary artificial algae algorithm (Zhang et al., 

2016), binary multi-verse optimizer (Baseet et al., 

2019), modified flower pollination (Basset et al., 2018). 

This paper will propound a new evolutionary 

computation technique, Pigeon Inspired Optimization 

(PIO) (Duan and Qiao, 2014), to answer MKP. PIO is a 

novel bio-inspired computation algorithm, which was 

inspired by the homing characteristics of pigeons (Duan 

and Li, 2014). PIO has been used to solve continuous air 

robot path planning problems (Duan and Qiao, 2014), 

target detection task for Unmanned Aerial Vehicles 

(UAVs) at low attitude (Duan and Li, 2014), control 

parameter design for automatic carrier landing system 

(Duan and Deng, 2016), prediction control for 

unmanned air vehicles (Dou and Duan, 2016). 

Studies about the application of PIO for solving MKP 

have been done by Bolaji et al., 2017 and Bolaji et al., 

2020. Bolaji et al. (2017) proposed a binary PIO for 

solving MKP. They used n-bit binary string 

representation to represent the MKP solution and used 

the penalty function method to tackle the MKP’s 

constraints. Bolaji et al. (2020) developed a modified 

binary PIO for solving MKP, which integrated a 

crossover procedure of evolutionary algorithm in order 

to improve the solution. The crossover procedure is 

embedded in the landmark operator in the PIO. The 

result was that the modified binary PIO was 

outperformed the binary PIO. 

This research is the same as what is proposed by 

Bolaji et al. (2017). In this paper, we propose another 

way to represent the MKP solution and to handling the 

MKP’s constraints. We do not use the special ‘binary’ 

term of the PIO; however, we use the random value and 

use the sigmoid function to convert the random value to 

0-1 (binary). We use the drop/add item procedure and 

local heuristic method, namely Heuristic Undesirability 

(HUD), to handle the MKP’s constraints instead of the 

penalty function. Another difference is that we use ten 

instances from Senyu and Toyada (1967) and 

Weingartner and Ness (1967) and compare the PIO 

performance from particle swarm optimization (PSO), 

intelligent water drops (IWD), and genetic algorithm 

(GA). 

 

2. LITERATURE REVIEW 

 In this section, we describe multi-dimensional 

knapsack problem (MKP), pigeon-inspired 

optimization, and methods used in this research. 

2.1. Multi-dimensional knapsack problem 

The multi-dimensional knapsack problem (MKP) is 

a problem for allocating a resource/subset of objects to 

maximize profit without violating the capacity of 

knapsack (Martello and Toth, 1990). There are a set of 

n items which each item has m weight. Every item has a 

profit/a benefit pi (i = 1,….,n), various weight Wji for 

every single knapsack j, and there is a knapsack of m 

dimensions with a capacity of each c1,…., cm.  The 

objective function is to choose a subset of items that 

assures the capacity of the knapsack is not exceed and 

yields maximum profit. The decision variable xi 

represents whether the item i will be selected or not. It 

will value 1 if item i is selected and 0 if item i is not 

selected. MKP can be formulated as follow: 

Maximize 
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2.2. Pigeon inspired optimization 

Pigeon Inspired Optimization (PIO) is a population-

based swarm intelligence metaheuristic that is inspired 

by pigeon’s behavior. Inspired by these, in the PIO, the 

map and compass operator model is based on magnetic 

field and sun, whereas the landmark operator model is 

based upon landmarks (Duan and Qiao, 2014). 

 

2.2.1. Map and compass operator 
In map and compass operator, every tth iteration will 

update positions, Xi, and velocities, Vi, of pigeon i in a 

D dimension search space (Duan and Qiao, 2014). The 

equations: 

  1)1()(   tXXrandetVtV ig
Rt

ii            
 4

 

     tVtXtX iii  1
               

 5
 

R  = the map and compass factor. 

rand  = random numbers from 0 to 1. 

Xg  = the most recent global best position 

compared with other positions among all pigeons. 

 

2.2.2. Landmark operator 

According to Duan and Qiao (2014), in landmark 
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operator, 50% Np diminishes the number of pigeons for 

every iteration. Nevertheless, the pigeons are not close 

enough to the destination and not familiar with the 

landmarks. Xc(t) is a midpoint pigeon’s position at tth 

iteration. These equations show their update position for 

every iteration: 
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where Np is the number of pigeons that is diminished at 

every generation, t is the tth iteration, and Xc is the center 

of some pigeon’s position at the tth iteration, Xi is the 

position of ith pigeon. 

The fitness value in equation 7 can be altered based 

on the problem that will be solved. If the objective 

function is maximizing, then equation 9 will be used to 

calculate the fitness value; otherwise, equation 10 will 

be used. Equation 9 and 10 are given below: 
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The details of PIO can be referred to by Duan and 

Qiao (2014). 

 

3. METHODOLOGY 

3.1. Encoding and decoding 

Encoding and decoding is a process that is needed in 

applying PIO algorithm to solve MKP. Encoding is a 

process to translate the MKP problem to the PIO, and 

decoding is a process to translate the PIO inner 

modification process to the MKP problem solution. This 

PIO algorithm analogizes the position of pigeons in each 

dimension as a representation of the solution so that each 

pigeon is represented as a potential solution. The 

dimension of the pigeon in this study is items. The 

position of the pigeon will then be converted into binary 

numbers to determine whether that item is taken into the 

knapsack. 

To find out more clearly how the encoding and 

decoding process in the application of PIO for MKP is 

explained through a simple example problem. Suppose 

company X will choose a project that will be done by 

company X in the next three years; each project has its 

own annual cost (the annual cost is analogous to the 

weight of each item). Each project also has its own profit 

that is obtained by the investment (the profit is 

analogous to the benefit of each item). Every year there 

is a maximum budget that is budgeted by company X to 

run the chosen project. The maximum budget is 

analogous to the capacity of knapsack (year 1 budget is 

capacity of knapsack 1, year 2 budget is capacity of 

knapsack 2, etc.). The maximum budget every year 

respectively is $25.000, $15.000 and $20.000. The 

budget and profit for each project per year can be seen 

in Table 1.  

The encoding process is done by determining the 

position of the pigeon in each dimension in the 0th 

iteration. In this 0th iteration, the position will be 

obtained from a random value between 0-1 since there 

is no previous position (for the next iteration, it is 

adjusted with the position calculation formula in PIO). 

Table 2 shows the result of the random value that has 

been obtained for each dimension. 

After the random value is obtained, then the decoding 

process is carried out. The decoding process is done by 

changing the random value into a binary number, where 

if it has a value of 1 then the decision of goods is taken 

and vice versa. Changing this binary number is done 

through the calculation of the sigmoid function. The 

sigmoid function is one method of converting 

continuous values into binary numbers in the application 

of metaheuristics (Banati and Bajaj, 2011 and Palit et al., 

2011). The sigmoid function calculation formula is as 

follows: 



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                          11  

Table 3 below shows the binary results using the 

sigmoid function equation for each pigeon position or 

the decision of which item is taken in each dimension. 

 

3.2. Drop/add item 

The decoding process then continues with the 

drop/add item procedure. This procedure is used to 

handle the constraints in MKP. The way to handle these 

Table 1: Budget for each project per year 

Project Cost in year 1 

(thousand $) 

Cost in year 2 

(thousand $) 

Cost in year 3 

(thousand $) 

Profit 

(thousand $) 

A 12 10 10 2000 

B 8 5 5 1200 

C 7 3 5 1000 

D 10 7 10 1500 

 

Table 2: Random value of the position of the pigeon in the 0th position 

Dimension D1 D2 D3 D4 

Position 0,543 0,672 0,347 0,958 
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constraints in this paper is by dropping (drop procedure) 

or adding (add procedure) the items. If there is excess 

capacity, the procedure that will be done is dropping the 

item. Otherwise, if there is remaining capacity, the 

procedure that will be done is adding the items as much 

as possible. The local heuristic method is used for 

handling this constraint. The local heuristic method used 

is Heuristic Undesirability (HUD). Based on Shah-

Hosseini (2008), HUD is one of the simple local 

heuristic methods that show how big the item is 

undesirable in a solution. The formula for calculating the 

HUD for each item is as follow:  

  


m

k
jk

j

r
mb

jHUD
1

1
            12  

with bj is the profit of item j, rjk is the weight from item 

j at knapsack k, and m is the number of knapsacks. Based 

on equation 12 above, it is obtained the HUD value for 

each project/item. The procedure to handling the 

constraint in MKP can be done based on this value. The 

drop/add item procedure can be seen in the following 

flowchart in figure 1. Based on the flowchart, from the 

simple example about the choice of project in company 

X, the total weight of all items chosen exceeds the 

capacity/maximum budget. All three projects/items 

chosen (projects 1, 2 and 4) will be dropped one by one 

until the total weight of projects/items does not exceed 

the maximum budget/capacity from the item with the 

biggest HUD value. Table 4 shows the value of HUD for 

each project/item that is chosen for the drop item. 

From table 4, it is known that the first project/item 

dropped is item 4 (has the biggest HUD value). After 

item 4 is dropped, it will be recalculated whether the 

project/item chosen exceeds the capacity/maximum 

budget. Capacity has been fulfilled when the 

project/item 4 is dropped, so the drop procedure process 

stops there. The procedure of drop/add item procedure 

can be seen in Figure 1. 

 

3.3. Pigeon inspired optimization solving MKP 
After generating the encoding and decoding process 

for applying pigeon inspired optimization to the multi-

dimensional knapsack problem, the all step for applying 

the PIO in MKP that we proposed is explained in 

pseudocode shown in Figure 2. 

 

4. RESULTS AND DISCUSSIONS 

4.1. Numerical experiment instances 

The MKP cases that will be solved using PIO are 

benchmark instances that are often used in other studies. 

The MKP instances have also been implemented using 

Particle Swarm Algorithm (PSO) (Hembecker et al., 

2007), Intelligent Water Drops Algorithm (IWD) (Shah-

Hosseini, 2009), and Genetic Algorithm (GA) (Khuri et 

al., 1994), and the result of these three of researches will 

be compared with the result from this research using 

PIO.  
There are 10 instances to be implemented in this 

chapter. In these 10 instances, 2 instances were taken 

from Senyu & Toyada (1967) (it will be called as 

SENTO instances), and 8 instances were taken from 

Weingartner & Ness (1967) (it will be called as WEING 

instances). Table 5 shows the problem characteristics for 

all instances to be implemented.  
 

 

 

Table 3: Decoding using the sigmoid function 

Dimension D1 D2 D3 D4 

Position 0,543 0,672 0,347 0,958 

Binary 1 1 0 1 

 
Table 4: HUD value of each project 

Dimension D1 D2 D3 D4 

Position 0,543 0,672 0,347 0,958 

Binary 1 1 0 1 

HUD 0.0053 0.0050 0.0050 0.0060 

 

Table 5: Problem characteristics for 10 cases 

No Instances Number of Knapsack Number of Item 

1 SENTO1 30 60 

2 SENTO2 30 60 

3 WEING1 2 28 

4 WEING2 2 28 

5 WEING3 2 28 

6 WEING4 2 28 

7 WEING5 2 28 

8 WEING6 2 28 

9 WEING7 2 105 

10 WEING8 2 105 
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Figure 1. Drop/add items procedure 

1. Input the data of MKP problem: the number of knapsacks, the number of items, the 

weight of each item, capacity of each knapsack, benefits of each item. 

2. Input the value of parameters that are used in PIO: the number of iterations for map and 

compass operator (Nc1max), the number of iterations for landmark operator (Nc2max), 

the number of pigeons (Np), the number of dimensions (D), the value of map and 

compass operator factor (R). 

3. Calculate HUDi using equation (12). 

4. Initialize Vpd0 by generating the random number between 0 and 1. 

5. Initialize Xpd0 by generating the random number between 0 and 1. 

6. Do drop/add item procedure. 

7. Calculate the fitness value, fitnessB, fitnessg, and update XB and Xg. 

8. Do map and compass operator calculation. 

9. If the number of iterations has not yet reached Nc1max or other predetermined 

condition, back to step 8; otherwise, go to step 10. 

10. Do landmark operator calculation. 

11. If the number of iterations has not yet reached Nc2max or other predetermined 

condition, back to step 10, otherwise is finished. 

Figure 2. Pseudocode of PIO for MKP 



50 

F. Setiawan, A. Sadiyoko, and C. Setiardjo 

 

 
 

 

 

4.2. Parameter setting of PIO 
Before implementing PIO on the instances, we 

determine the best parameter value of PIO to be used in 

this research. The determination of the PIO parameter 

will be done using one factor at a time (OFAT). The 

initial value used in this research is taken from the 

parameter value from the initial paper on PIO by Duan 

and Qiao in 2014). The initial value of these parameters 

are Nc1max = 150, Nc2max = 8, Np = 150 and R = 0.2. 

The application of OFAT in this paper is done by five 

replications. There are only two cases that will be 

experimented with to get the best parameter, namely 

SENTO1 and WEING7 cases, because those two cases 

are the most complex than others. The first parameter to 

be tested is NC1max. In the experiment, the value of 

Nc1max will be subtracted and added by a multiple of 

100. In running the program, there are 21 levels or 

treatments for changing the value of the Nc1max 

parameter. Table 6 and 7 below shows the combination 

of parameters for changing the value of the Nc1max 

parameter in the SENTO1 case and the result from this 

parameter combination.  

Based on table 11 above, the Nc1max parameter of 

1450 yields the highest performance, so the best value 

of the Nc1max parameter is 1450 for SENTO 1 case. 

This NC1max best value then will be used on the 

determination of the remaining other parameters. After 

the best value of the Nc1max parameter is obtained, then 

the best parameter value for the other PIO parameter will 

be determined using the same fashion. Np parameter 

value will also be subtracted and added by a multiple of 

100. Nc2max values in this experiment are in the range 

of 1 to 9. R parameter values in this experiment are in 

the range of 0.1 to 1, with an increase of 0.1 in every 

treatment. 

Based on these experiments, we get that the best 

parameter combination value of the PIO parameter for 

SENTO1 case are Nc1max = 1450, Nc2max = 6, Np = 

450 and R = 0.3. After the best parameter combination 

value of the PIO parameter for SENTO 1 has been 

determined, we determine the best parameter 

combination value of the PIO parameter for WEING 7 

in the same way that we have done in SENTO 1. The 

best parameter combination value of the PIO parameter 

for WEING7 case are Nc1max = 1150, Nc2max = 4, Np 

= 300 and R = 0.8.  

 

4.3. Numerical experiment 
Based on the parameter setting above, it is obtained 

two combinations of a parameter that yield the best 

performance of PIO. The first combination is Nc1max = 

1450, Nc2max = 6, Np = 450 and R = 0.3 and the second 

combination is Nc1max = 1150, Nc2max = 4, Np = 300 

and R = 0.8. Both combinations will be applied to all 10 

cases in this research. The result of PIO implementation 

for all ten instances using the first parameter 

combination is shown in Table 8 below. 

Table 9 below shows the result of PIO 

implementation for all ten instances using the second 

parameter combination. 

After both parameters, combinations are used in PIO 

implementation for all ten instances, and the result is 

obtained, we will choose the best value from one of two 

parameter combinations. Table 10 below shows the 

summary of the implementation of two-parameter 

combinations and the best value from one of the two-

parameter combinations. 

Performance comparison is made by comparing the 

best objective function on all ten instances with the 

result obtained by other metaheuristics. As stated before, 

the other metaheuristic that will be compared with PIO 

are particle swarm optimization (PSO), intelligent water 

drops (IWD), and genetic algorithm (GA). Table 11 and 

12 below shows the performance comparison of PIO, 

PSO, IWD, and GA in all ten instances. 

As we see in Table 11, the best known is the best 

value that has ever known to date. IWD is not applied to 

SENTO1 and SENTO2 instances, while GA is not 

applied to WEING1, WEING2, WEING3, WEING4, 

WEING5, and WEING6 instances. PSO is applied to all 

ten instances. From the result above, it can be shown that 

the performance of PIO is a satisfactory result compared 

to all the compared metaheuristics.  

 

5. CONCLUSIONS   

Pigeon-inspired optimization (PIO) can be applied to 

Multidimensional Knapsack Problem (MKP) using a 

random number coding method for initialization and 

binary number from sigmoid functions for the decoding 

process. In this encoding and decoding process, HUD is 

used, which is one of the simplest local heuristic 

methods to manage the constraints of the MKP. From 

the coding method and the decode is then translated into 

the position of the pigeon on the map and the compass 

operator and the landmark operator, from which the 

position value will be calculated the objective function 

value of fitness as well as the global position of the 

global pigeon which determines which items will be 

chosen into a knapsack. 

In the implementation of the PIO algorithm to the ten 

instances, it is known that overall the performance of the 

PIO algorithm is better than the performance of the PSO 

algorithm and the performance of the GA algorithm in 

its application to MKP. However, this PIO algorithm 

gets slightly worse results than the IWD algorithm in its 

application to MKP. For further research, it is possible 

to apply the PIO algorithm to solve other discrete 

problems and combinatorial problems. 



International Journal of Industrial Engineering and Engineering Management, Vol. 2, No. 1, July 2020 

 

 

 
 

 

 

51 

 

 

 

 

Table 6: Parameter combination by changing NC1max parameter on SENTO1 case 

Parameter combination Nc1max Nc2max Np R 

1 50 8 150 0,2 

2 150 8 150 0,2 

3 250 8 150 0,2 

4 350 8 150 0,2 

5 450 8 150 0,2 

6 550 8 150 0,2 

7 650 8 150 0,2 

8 750 8 150 0,2 

9 850 8 150 0,2 

10 950 8 150 0,2 

11 1050 8 150 0,2 

12 1150 8 150 0,2 

13 1250 8 150 0,2 

14 1350 8 150 0,2 

15 1450 8 150 0,2 

16 1550 8 150 0,2 

17 1650 8 150 0,2 

18 1750 8 150 0,2 

19 1850 8 150 0,2 

20 1950 8 150 0,2 

21 2050 8 150 0,2 

 

 
Table 7: The result of parameter combination by changing NC1max parameter on SENTO1 case 

Parameter 

combination 

Replication Best Average STDEV 

1 2 3 4 5 

1 7566 7586 7598 7586 7588 7598 7584.8 11.63 

2 7617 7622 7642 7641 7576 7642 7619.6 26.80 

3 7623 7643 7598 7598 7598 7643 7612 20.43 

4 7654 7622 7632 7643 7637 7654 7637.6 11.97 

5 7598 7639 7598 7622 7625 7639 7616.4 17.98 

6 7654 7598 7598 7615 7599 7654 7612.8 24.14 

7 7654 7641 7598 7635 7643 7654 7634.2 21.37 

8 7598 7654 7636 7632 7642 7654 7632.4 20.95 

9 7664 7599 7598 7674 7625 7674 7632 35.64 

10 7624 7637 7626 7625 7625 7637 7627.4 5.41 

11 7637 7660 7642 7651 7654 7660 7648.8 9.26 

12 7636 7632 7598 7635 7692 7692 7638.6 33.78 

13 7598 7598 7625 7679 7679 7679 7635.8 40.95 

14 7636 7626 7606 7679 7692 7692 7647.8 36.36 

15 7642 7642 7636 7625 7719 7719 7652.8 37.65 

16 7637 7622 7679 7636 7654 7679 7645.6 21.85 

17 7632 7637 7664 7632 7635 7664 7640 13.58 

18 7654 7637 7636 7634 7598 7654 7631.8 20.52 

19 7643 7599 7625 7637 7635 7643 7627.8 17.36 

20 7598 7651 7684 7642 7609 7684 7636.8 34.40 

21 7692 7632 7692 7598 7654 7692 7653.6 40.33 
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Table 8: PIO Implementation using first parameter combination 

Instances Replication  

1 2 3 4 5 Best 

SENTO1 7679 7679 7719 7679 7679 7719 

SENTO2 8619 8653 8645 8637 8613 8653 

WEING1 141148 141278 141148 141148 141258 141278 

WEING2 130103 130723 130723 130123 130163 130723 

WEING3 95677 95007 95007 95467 95137 95677 

WEING4 119337 119337 119337 119337 119337 119337 

WEING5 98396 98396 98495 98396 98396 98495 

WEING6 130123 130113 130113 130113 130113 130123 

WEING7 1094452 1094417 1094356 1094547 1095007 1095007 

WEING8 612430 614706 611555 612737 615315 615315 

 

Table 9. PIO Implementation using second parameter combination 

Instances Replication  

1 2 3 4 5 Best 

SENTO1 7719 7679 7679 7679 7679 7719 

SENTO2 8649 8619 8618 8599 8665 8665 

WEING1 141148 141258 141148 141148 141148 141258 

WEING2 130103 130712 130103 130883 130103 130883 

WEING3 95007 95007 95007 95007 95007 95007 

WEING4 119337 119337 119337 119337 119337 119337 

WEING5 98495 98396 98396 98396 98396 98495 

WEING6 130623 130202 130123 130113 130123 130623 

WEING7 1094262 1094811 1094467 1094111 1094356 1094811 

WEING8 612880 611100 617901 614553 613751 617901 

 

Table 10: PIO Implementation using both parameter combination 

Instances Best value of two-parameter combinations Best 

1 2 

SENTO1 7719 7719 7719 

SENTO2 8653 8665 8665 

WEING1 141278 141258 141278 

WEING2 130723 130883 130883 

WEING3 95677 95007 95677 

WEING4 119337 119337 119337 

WEING5 98495 98495 98495 

WEING6 130123 130623 130623 

WEING7 1095007 1094811 1095007 

WEING8 615315 617901 617901 

 



International Journal of Industrial Engineering and Engineering Management, Vol. 2, No. 1, July 2020 

 

 

 
 

 

 

53 

REFERENCES 

Balev, S., Yanev, N., Freville, A., Andonov, R. (2008). 

A Dynamic Programming Based Reduction Procedure 

for the Multidimensional 0-1 Knapsack Problem. 

European Journal of Operational Research, 186 (1), 

63-76. 

 

Banati, H. & Bajaj, M. (2011). Firefly Based Feature 

Selection Approach. International Journal of 

Computer Science Issues, 8(4), 473-480.  

Basset, M.A., Doaa, E.-S., Faris, H., Mirjalili, S. (2019). 

A Binary Multi-Verse Optimizer for 0-1 Multi-

dimensional Knapsack Problems with Application in 

Interactive Multimedia Systems. Computers & 

Industrial Engineering, 132, 187-206. 

Basset, M.A., El-Shahat, D., El-Henawy, I., Sangaiah, 

A.K. (2018). A Modified Flower Pollination 

Algorithm for the Multi-dimensional Knapsack 

Problem: Human-Centric Decision Making. Soft 

Computing, 22, 4221-4239. 

Battiti, R. & Tecchiolli, G. (1994). The reactive tabu 

search. ORSA Journal on Computing, 6, 126-140. 

Berberler, M.E., Guler, A., Nuriyev, U.G. (2013). A 

Genetic Algorithm to Solve the Multi-dimensional 

Knapsack Problem. Mathematical and Computational 

Applications, 18(3), 486-494. 

Bertsimas, D. & Demir, R. (2002). An Approximate 

Dynamic Programming Approach to 

Multidimensional Knapsack Problem. Management 

Science, 48, 550-565. 

Bolaji, A.L., Babatunde, B.S., Shola, P.B. (2017). 

Adaptation of Binary Pigeon-Inspired Algorithm for 

Solving Multidimensional Knapsack Problem. Soft 

Computing: Theories and Applications, 743-751.  

Bolaji, A.L., Okwonu, F.Z., Shola, P.B., Balogun, B.S., 

Adubisi, O.D. (2020). A Modified Binary Pigeon-

Inspired Algorithm for Solving the Multi-dimensional 

Knapsack Problem. Journal of Intelligent Systems, 

30(1), 90-103.  

 

Chen, W.-N., Zhang, J., Chung, H.S.H., Zhong, W.-L., 

Wu, W.-G., Shi, Y.-H. (2010). A Novel Set-Based 

Particle Swarm Optimization Method for Discrete 

Optimization Problems. IEEE Transactions on 

Evolutionary Computation, 14(2), 278-300. 

Table 11: Performance comparison of PIO, PSO, IWD, GA in all ten instances 

Instances PSO IWD GA PIO Best Known 

SENTO1 7,725 - 7,626 7,719 7,772 

SENTO2 8,716 - 8,685 8,665 8,722 

WEING1 138,927 141,278 - 141,278 141,278 

WEING2 125,453 130,883 - 130,883 130,883 

WEING3 92,297 95,677 - 95,677 95,677 

WEING4 116,622 119,337 - 119,337 119,337 

WEING5 93,678 98,796 - 98,495 98,796 

WEING6 128,093 130,623 - 130,623 130,623 

WEING7 1,059,560 1,094,736 1,093,987 1,095,007 1,095,445 

WEING8 492,347 620,872 613,383 617,901 624,319 

 

Table 12: Performance comparison of PIO, PSO, IWD, GA in percentage to best known 

Instances PSO IWD GA PIO 

SENTO1 99.40% - 98.12% 99.32% 

SENTO2 99.93% - 99.58% 99.35% 

WEING1 98.34% 100.00% - 100.00% 

WEING2 95.85% 100.00% - 100.00% 

WEING3 96.47% 100.00% - 100.00% 

WEING4 97.72% 100.00% - 100.00% 

WEING5 94.82% 100.00% - 99.70% 

WEING6 98.06% 100.00% - 100.00% 

WEING7 96.72% 99.94% 99.87% 99.96% 

WEING8 78.86% 99.45% 98.25% 98.97% 

 



54 

F. Setiawan, A. Sadiyoko, and C. Setiardjo 

 

 
 

 

 

 

Chih, M. (2015). Self-Adaptive Check and Repair 

Operator-Based Particle Swarm Optimization for the 

Multidimensional Knapsack Problem. Applied Soft 

Computing, 26, 378-389. 

 

Chu, P.C. & Beasley, J.E. (1998). A Genetic Algorithm 

for the Multidimensional Knapsack Problem. Journal 

of Heuristics, 4, 63-86. 

 

Dammeyer, F. & Voβ, S. (1993). Dynamic Tabu List 

Management Using the Reverse Elimination Method. 

Annals of Operations Research, 41(2), 29-46. 

 

Deng, Y. & Duan H. (2016). Control Parameter Design 

for Automatic Carrier Landing System via Pigeon-

Inspired Optimization. Nonlinear Dynamics, 85, 97-

106. 

 

Dou, R. & Duan, H. (2016). Pigeon Inspired 

Optimization Approach to Model Prediction Control 

for Unmanned Air Vehicles. Aircraft Engineering and 

Aerospace Technology: An International Journal, 88 

(1), 108-116. 

 

Duan, H. & Li, C. (2014). Target Detection Approach 

for UAVs via Improved Pigeon-Inspired Optimization 

and Edge Potential Function. Aerospace Science and 

Technology, 39, 352-360. 

 

Duan, H. & Qiao, P. (2014). Pigeon Inspired 

Optimization: A New Swarm Intelligence Optimizer 

for Air Robot Planning. International Journal of 

Intelligent Computing and Cybernetics, 7, 24-37. 

 

Fingler, H., Caceres, E.N., Mongelli, H., Song, S.W. 

(2014). A Cuda Based Solution to the 

Multidimensional Knapsack Problem Using the Ant 

Colony Optimization. Procedia Computer Science, 

29, 84-94. 

 

Freville, A. & Plateau, G. (1986). Heuristics and 

Reduction Methods for Multiple Constraints 0-1 

Linear Programming Problems. European Journal of 

Operational Research, 24, 206-215. 

 

Gilmore, P.C. & Gomory, R. (1966). The Theory and 

Computation of Knapsack Functions. Operations 

Research, 14(6), 1045-1074.  

 

Glover, F. & Kochenberger, G.A. (1996). Critical Event 

Tabu Search for Multidimensional Knapsack Problem. 

Meta-heuristics, Springer, 407-202. 

 

Haddar, B., Khemakhem, M., Hanafi, S., Wilbaut, C. 

(2016). A Hybrid Quantum Particle Swarm 

Optimization for the Multidimensional Knapsack 

Problem. Engineering Applications of Artificial 

Intelligence, 55, 1-13. 

 

Hembecker, F., Lopes, H.S., & Godoy Jr., W. (2007). 

Particle Swarm Optimization for the 

Multidimensional Knapsack Problem. Proceedings of 

the Eighth International Conference on Adaptive and 

Natural Computing Algorithms, 4431, 358-365.  

 

Ke, L., Feng, Z., Ren, Z., Wei, X. (2010). An Ant Colony 

Optimization Approach for the Multidimensional 

Knapsack Problem. Journal of Heuristics, 16(1), 65-

83.  

 

Khuri, S., Back, T., & Heitkotter, J. (1994). The 

Zero/One Multiple Knapsack Problem and Genetic 

Algorithms. Proceedings of the ACM Symposium on 

Applied Computing (SAC’94).  

 

Kong, M., & Tian, P. (2006). Apply the Particle Swarm 

Optimization to the Multi-dimensional Knapsack 

Problem, In: Rutkowski, L., Tadeusiewicz, R., Zadeh, 

L., Zurada, J. (Eds.), Artificial Intelligence and Soft 

Computing–ICAISC 2006, Vol 4029 of Lecture Notes 

in Computer Science, Springer Berlin Heidelberg, 

1140-1149.  

 

Kong, M., Tian, P., Kao, Y. (2008). A New Ant Colony 

Optimization Algorithm for the Multidimensional 

Knapsack Problem. International Journal of Applied 

Metaheuristic Computing, 3(4), 43-63. 

 

Ktari, R. & Chabchoub, H. (2013). Essential Particle 

Swarm Optimization Queen with Tabu Search for 

MKP Resolution. Computing, 95(9), 897-921. 

 

Lai, X., Hao, J.-K., Glover, F., Lu, Z. (2018). A Two 

Phase Tabu Evolutionary Algorithm for the 0-1 Multi-

dimensional Knapsack Problem. Information 

Sciences, 436-437. 

 

Leung, S.C., Zhang, D., Zhou, C., Wu, T. (2012). A 

Hybrid Simulated Annealing Meta-heuristic algorithm 

for the Two-Dimensional Knapsack Packing Problem. 

Computer and Operations Research, 39(1), 64-73. 

 

Manzini, R., Speranza, M.G. (2012). Coral: An Exact 

Algorithm for the Multi-dimensional Knapsack 

Problem. INFORMS Journal of Computing, 24(3), 

399-415. 

 

Martello, S. & Toth, P. (1990). Knapsack Problems: 

Algorithms and Computer Implementations. 

Chicester: John Wiley & Sons Ltd. 

 

Martins, J.P., Longo, H., Delbern, A.C. (2014). On the 

Effectiveness of Generic Algorithms for the 

Multidimensional Knapsack Problem. Proceedings of 

the 2014 conference companion on Genetic and 

evolutionary computation companion, ACM, 73-74. 

 

Palit, S., Sinha, S.N., Molla, M.A., Khanra, A., Kule, M. 

(2011). A Cryptanalytic Attack on the Knapsack 

Cryptosystem using Binary Firefly Algorithm. Second 

International Conference on Computer and 



International Journal of Industrial Engineering and Engineering Management, Vol. 2, No. 1, July 2020 

 

 

 
 

 

 

55 

Communication Technology, 428-432. 

 

Rezoug, A., Boughaci, D., Rezoug, A. (2015). 

Stochastic Local Search Combined with Simulated 

Annealing for the 0=1 Multi-dimensional Knapsack 

Problem. Symposium on Complex Systems and 

Intelligent Computing (CompSIC). 

 

Senyu, S. & Toyada, Y. (1967). An Approach to Linear 

Programming With 0-1 Variables. Management 

Science, 15(4), 196-207. 

 

Shah-Hosseini, H. (2009). The Intelligent Water Drops 

Algorithm: A Nature-inspired Swarm-based 

Optimization Algorithm. International Journal of Bio-

Inspired Computation, 1, 71-79. 

 

Shih, W. (1979). A Branch and Bound Method for the 

Multiconstraint Zero-one Knapsack Problem.  Journal 

of the Operational Research Society, 15, 196-207. 

 

Tisna, A., F.D., Abusini, S., Andar, A. (2013). Hybrid 

Greedy-Particle Swarm Optimization-Genetic 

Algorithm and Its Convergence to Solve 

Multidimensional Knapsack Problem 0-1. Journal of 

Theoritical and Applied Information Technology, 

58(3), 522-528. 

 

Vasquez, M. & Hao, J.-K. (2001). Une Approche 

hybride pur le sac a dos multi-dimensionnel en 

variales 0-1. Operations Research, 35(4), 415-438. 

 

Vasquez, M. & Vimont, Y. (2005) Improved Results on 

the 0-1 Multi-dimensional Knapsack Problem. 

European Journal of Operational Research, 165(1), 

70-81. 

 

Vimont, Y., Boussier, S., Vasquez, M. (2008). Reduced 

Cost Propagation in an Efficient Impicit Enumeration 

for the 0-1 Multi-dimensional Knapsack Problem. 

Journal of Combinatorial Optimization, 15(2), 165-

178. 

 

Wan, N.F. & Nolle, L. (2009). Solving a Multi-

dimensional Knapsack Problem Using a Hybrid 

Particle Swarm Optimization Algorithm. Proceedings 

of the 23rd European Conference on Modelling and 

Simulation, ECMS 2009.  

 

Weingartner, H.M., & Ness, D.N. (1967). Methods for 

the Solution of the Multi-dimensional 0/1 Knapsack 

Problem. Operation Research, 15(1), 83-103. 

 

Zhang, X., Wu, C., Li, J., Wang, X., Yang, Z., Lee, J.-

M., Jung K.-H. (2016). Binary Artificial Algae 

Algorithm for Multidimensional Knapsack Problem. 

Applied Soft Computing, 43, 583-595. 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 



 

 

 

 

 

 

 

 

This page is intentionally left blank 


