

International Journal of Industrial Engineering and Engineering Management (IJIEEM), Vol. 2, No.1, July 2020

http://ojs.uajy.ac.id/index.php/IJIEEM

ABSTRACT

The multi-dimensional knapsack problem (MKP) is a generalization of the classical knapsack problem, a problem for

allocating a resource/subset of objects that maximize profit while not violating the capacity of the knapsack. The MKP

has many practical applications in different areas and is classified as an NP-hard problem. An analytic method like a

branch and bound and dynamic programming can yield the optimum solution, but its computational time growth is

exponentially proportional to the problem's size. Some heuristics/metaheuristics procedure has been developed to

obtain a near-optimal solution within reasonable computational times. In this paper, a pigeon-inspired optimization

(PIO) is proposed for solving MKP. PIO is one of the metaheuristic algorithms that is classified in population-based

swarm intelligence that is developed based on the behavior of the pigeon to find its home. However, it had gone far

away from its home. In this paper, PIO implementation to solve MKP is applied to two different characteristic cases

in a total of 10 cases. The result of implementing the two-best combination of parameter values for 10 cases compared

to particle swarm optimization, intelligent water drop algorithm, and the genetic algorithm give satisfactory results.

Keywords: metaheuristics, multi-dimensional knapsack problem, pigeon inspired optimization, swarm intelligence.

Article Info: Received November 20, 2020; Revised March 17, 2021; Accepted June 7, 2021.

1. INTRODUCTION

The multi-dimensional knapsack problem (MKP) is a

generalization of the knapsack problem, a problem for

allocating a resource/subset of objects that maximize

profit while not violating the capacity of knapsack

(Martello and Toth, 1990). It explained the classical

knapsack problem as suppose a hitch-hiker has to fill up

his knapsack by selecting from among various possible

objects that will give him maximum comfort. Another

example, the knapsack problem will provide the optimal

solution related to investment. Suppose that someone is

going to invest a number of dollars and consider some

possible alternative investments. Using this method, he

can calculate profit gained from investment and how

much money is required to invest.

Recently, knapsack problems are an interesting topic

in research. Examples of industrial knapsack problems

are capital budgeting, cargo loading, and cutting stock

(Martello and Toth, 1990). Since MKP is a

generalization of the classical knapsack problem, it is

more practical, and it can model all of the problems that

can be modeled by the knapsack problem. According to

Haddar et al. (2016), MKP has been used as a model for

many real applications such as cutting stock problems,

project selection, cargo loading problems, capital

budgeting, allocating processors and databases in a

distributed computer system, and daily management of

a satellite.

Since MKP is an NP-hard problem, numerous

methods have been developed by the researchers that are

classified into exact and approximation methods. Exact

method, such as branch and bound algorithm (Shih,

1979; Vimont et al., 2008; Manzini and Speranza,

2012); dynamic programming (Gilmore and Gomory,

1966; Weingartner and Ness, 1967); hybrid dynamic

programming methods (Bertsimas and Demir, 2002;

Balev et al., 2008) could generate the optimal solution,

Application of Pigeon Inspired Optimization for

Multi-dimensional Knapsack Problem

F. Setiawan*, A. Sadiyoko, and C. Setiardjo

F. Setiawan* is with the Department of Industrial Engineering, Universitas Katolik Parahyangan, Indonesia (email:

fransetiawan@unpar.ac.id).

* Corresponding author

mailto:fransetiawan@unpar.ac.id

46

F. Setiawan, A. Sadiyoko, and C. Setiardjo

but they can solve only instances of very limited size in

an acceptable computation time.

Heuristics/metaheuristics procedure could obtain a near-

optimal solution within reasonable computational times

compared to the analytic method. There are two

classifications of approximation methods, heuristics,

and metaheuristics. Heuristics and metaheuristics have

recently become a focus of researchers for solving MKP

(Haddar et al., 2016). The heuristic approach has been

developed by Battiti and Vecchiolli (1994) and Freville

and Plateau (1986). Heuristics are problem-dependent

that are designed and applicable to a problem. The

research on the application of metaheuristic method to

solve MKP are tabu search (Vasquez and Hao, 2001;

Dammeyer and Voss, 1993, Glover and Kochenberger,

1996; Vasquest and Vimont, 2005, Lai et al., 2018);

genetic algorithm (Khuri et al., 1994; Chu and Beasley,

1998; Berberler et al., 2013; Martins et al., 2014);

simulated annealing (Leung et al., 2012; Rezoug et al.,

2015); ant colony optimization (Kong et al., 2008; Ke

et al., 2010; Fingler et al., 2014); particle swarm

optimization (Kong et al., 2006; Hembecker et al., 2007;

Wan and Nolle, 2009; Chen et al., 2010; Ktari and

Chabchoub, 2013); Tisna, 2013, Chih, 2015, Haddar et

al., 2016); intelligent water drops (Shah-Hosseini,

2009), binary artificial algae algorithm (Zhang et al.,

2016), binary multi-verse optimizer (Baseet et al.,

2019), modified flower pollination (Basset et al., 2018).

This paper will propound a new evolutionary

computation technique, Pigeon Inspired Optimization

(PIO) (Duan and Qiao, 2014), to answer MKP. PIO is a

novel bio-inspired computation algorithm, which was

inspired by the homing characteristics of pigeons (Duan

and Li, 2014). PIO has been used to solve continuous air

robot path planning problems (Duan and Qiao, 2014),

target detection task for Unmanned Aerial Vehicles

(UAVs) at low attitude (Duan and Li, 2014), control

parameter design for automatic carrier landing system

(Duan and Deng, 2016), prediction control for

unmanned air vehicles (Dou and Duan, 2016).

Studies about the application of PIO for solving MKP

have been done by Bolaji et al., 2017 and Bolaji et al.,

2020. Bolaji et al. (2017) proposed a binary PIO for

solving MKP. They used n-bit binary string

representation to represent the MKP solution and used

the penalty function method to tackle the MKP’s

constraints. Bolaji et al. (2020) developed a modified

binary PIO for solving MKP, which integrated a

crossover procedure of evolutionary algorithm in order

to improve the solution. The crossover procedure is

embedded in the landmark operator in the PIO. The

result was that the modified binary PIO was

outperformed the binary PIO.

This research is the same as what is proposed by

Bolaji et al. (2017). In this paper, we propose another

way to represent the MKP solution and to handling the

MKP’s constraints. We do not use the special ‘binary’

term of the PIO; however, we use the random value and

use the sigmoid function to convert the random value to

0-1 (binary). We use the drop/add item procedure and

local heuristic method, namely Heuristic Undesirability

(HUD), to handle the MKP’s constraints instead of the

penalty function. Another difference is that we use ten

instances from Senyu and Toyada (1967) and

Weingartner and Ness (1967) and compare the PIO

performance from particle swarm optimization (PSO),

intelligent water drops (IWD), and genetic algorithm

(GA).

2. LITERATURE REVIEW

 In this section, we describe multi-dimensional

knapsack problem (MKP), pigeon-inspired

optimization, and methods used in this research.

2.1. Multi-dimensional knapsack problem

The multi-dimensional knapsack problem (MKP) is

a problem for allocating a resource/subset of objects to

maximize profit without violating the capacity of

knapsack (Martello and Toth, 1990). There are a set of

n items which each item has m weight. Every item has a

profit/a benefit pi (i = 1,….,n), various weight Wji for

every single knapsack j, and there is a knapsack of m

dimensions with a capacity of each c1,…., cm. The

objective function is to choose a subset of items that

assures the capacity of the knapsack is not exceed and

yields maximum profit. The decision variable xi

represents whether the item i will be selected or not. It

will value 1 if item i is selected and 0 if item i is not

selected. MKP can be formulated as follow:

Maximize 




n

i
ii xp

1

 1

Subject to

,
1

 


n

j
jiji cxw

mj ,...,1

 2

),1,0(xi
ni ,...,1

 3

2.2. Pigeon inspired optimization

Pigeon Inspired Optimization (PIO) is a population-

based swarm intelligence metaheuristic that is inspired

by pigeon’s behavior. Inspired by these, in the PIO, the

map and compass operator model is based on magnetic

field and sun, whereas the landmark operator model is

based upon landmarks (Duan and Qiao, 2014).

2.2.1. Map and compass operator
In map and compass operator, every tth iteration will

update positions, Xi, and velocities, Vi, of pigeon i in a

D dimension search space (Duan and Qiao, 2014). The

equations:

  1)1()(  tXXrandetVtV ig
Rt

ii
 4

     tVtXtX iii  1

 5

R = the map and compass factor.

rand = random numbers from 0 to 1.

Xg = the most recent global best position

compared with other positions among all pigeons.

2.2.2. Landmark operator

According to Duan and Qiao (2014), in landmark

International Journal of Industrial Engineering and Engineering Management, Vol. 2, No. 1, July 2020

47

operator, 50% Np diminishes the number of pigeons for

every iteration. Nevertheless, the pigeons are not close

enough to the destination and not familiar with the

landmarks. Xc(t) is a midpoint pigeon’s position at tth

iteration. These equations show their update position for

every iteration:

 
 

2

1


tN
tN

p
p

 6

 
    

  




tXfitnessN

tXfitnesstX
tX

ip

ii
c

.

 7

        1.1  tXtXrandtXtX icii
 8

where Np is the number of pigeons that is diminished at

every generation, t is the tth iteration, and Xc is the center

of some pigeon’s position at the tth iteration, Xi is the

position of ith pigeon.

The fitness value in equation 7 can be altered based

on the problem that will be solved. If the objective

function is maximizing, then equation 9 will be used to

calculate the fitness value; otherwise, equation 10 will

be used. Equation 9 and 10 are given below:

  
   *min

1




tXf
tXfitness

i

i
 9

     tXftXfitness ii max

 10

The details of PIO can be referred to by Duan and

Qiao (2014).

3. METHODOLOGY

3.1. Encoding and decoding

Encoding and decoding is a process that is needed in

applying PIO algorithm to solve MKP. Encoding is a

process to translate the MKP problem to the PIO, and

decoding is a process to translate the PIO inner

modification process to the MKP problem solution. This

PIO algorithm analogizes the position of pigeons in each

dimension as a representation of the solution so that each

pigeon is represented as a potential solution. The

dimension of the pigeon in this study is items. The

position of the pigeon will then be converted into binary

numbers to determine whether that item is taken into the

knapsack.

To find out more clearly how the encoding and

decoding process in the application of PIO for MKP is

explained through a simple example problem. Suppose

company X will choose a project that will be done by

company X in the next three years; each project has its

own annual cost (the annual cost is analogous to the

weight of each item). Each project also has its own profit

that is obtained by the investment (the profit is

analogous to the benefit of each item). Every year there

is a maximum budget that is budgeted by company X to

run the chosen project. The maximum budget is

analogous to the capacity of knapsack (year 1 budget is

capacity of knapsack 1, year 2 budget is capacity of

knapsack 2, etc.). The maximum budget every year

respectively is $25.000, $15.000 and $20.000. The

budget and profit for each project per year can be seen

in Table 1.

The encoding process is done by determining the

position of the pigeon in each dimension in the 0th

iteration. In this 0th iteration, the position will be

obtained from a random value between 0-1 since there

is no previous position (for the next iteration, it is

adjusted with the position calculation formula in PIO).

Table 2 shows the result of the random value that has

been obtained for each dimension.

After the random value is obtained, then the decoding

process is carried out. The decoding process is done by

changing the random value into a binary number, where

if it has a value of 1 then the decision of goods is taken

and vice versa. Changing this binary number is done

through the calculation of the sigmoid function. The

sigmoid function is one method of converting

continuous values into binary numbers in the application

of metaheuristics (Banati and Bajaj, 2011 and Palit et al.,

2011). The sigmoid function calculation formula is as

follows:














otherwise,0

exp1

1
 if,1

)X(
rand()

X ijij

  11

Table 3 below shows the binary results using the

sigmoid function equation for each pigeon position or

the decision of which item is taken in each dimension.

3.2. Drop/add item

The decoding process then continues with the

drop/add item procedure. This procedure is used to

handle the constraints in MKP. The way to handle these

Table 1: Budget for each project per year

Project Cost in year 1

(thousand $)

Cost in year 2

(thousand $)

Cost in year 3

(thousand $)

Profit

(thousand $)

A 12 10 10 2000

B 8 5 5 1200

C 7 3 5 1000

D 10 7 10 1500

Table 2: Random value of the position of the pigeon in the 0th position

Dimension D1 D2 D3 D4

Position 0,543 0,672 0,347 0,958

48

F. Setiawan, A. Sadiyoko, and C. Setiardjo

constraints in this paper is by dropping (drop procedure)

or adding (add procedure) the items. If there is excess

capacity, the procedure that will be done is dropping the

item. Otherwise, if there is remaining capacity, the

procedure that will be done is adding the items as much

as possible. The local heuristic method is used for

handling this constraint. The local heuristic method used

is Heuristic Undesirability (HUD). Based on Shah-

Hosseini (2008), HUD is one of the simple local

heuristic methods that show how big the item is

undesirable in a solution. The formula for calculating the

HUD for each item is as follow:

  


m

k
jk

j

r
mb

jHUD
1

1
  12

with bj is the profit of item j, rjk is the weight from item

j at knapsack k, and m is the number of knapsacks. Based

on equation 12 above, it is obtained the HUD value for

each project/item. The procedure to handling the

constraint in MKP can be done based on this value. The

drop/add item procedure can be seen in the following

flowchart in figure 1. Based on the flowchart, from the

simple example about the choice of project in company

X, the total weight of all items chosen exceeds the

capacity/maximum budget. All three projects/items

chosen (projects 1, 2 and 4) will be dropped one by one

until the total weight of projects/items does not exceed

the maximum budget/capacity from the item with the

biggest HUD value. Table 4 shows the value of HUD for

each project/item that is chosen for the drop item.

From table 4, it is known that the first project/item

dropped is item 4 (has the biggest HUD value). After

item 4 is dropped, it will be recalculated whether the

project/item chosen exceeds the capacity/maximum

budget. Capacity has been fulfilled when the

project/item 4 is dropped, so the drop procedure process

stops there. The procedure of drop/add item procedure

can be seen in Figure 1.

3.3. Pigeon inspired optimization solving MKP
After generating the encoding and decoding process

for applying pigeon inspired optimization to the multi-

dimensional knapsack problem, the all step for applying

the PIO in MKP that we proposed is explained in

pseudocode shown in Figure 2.

4. RESULTS AND DISCUSSIONS

4.1. Numerical experiment instances

The MKP cases that will be solved using PIO are

benchmark instances that are often used in other studies.

The MKP instances have also been implemented using

Particle Swarm Algorithm (PSO) (Hembecker et al.,

2007), Intelligent Water Drops Algorithm (IWD) (Shah-

Hosseini, 2009), and Genetic Algorithm (GA) (Khuri et

al., 1994), and the result of these three of researches will

be compared with the result from this research using

PIO.
There are 10 instances to be implemented in this

chapter. In these 10 instances, 2 instances were taken

from Senyu & Toyada (1967) (it will be called as

SENTO instances), and 8 instances were taken from

Weingartner & Ness (1967) (it will be called as WEING

instances). Table 5 shows the problem characteristics for

all instances to be implemented.

Table 3: Decoding using the sigmoid function

Dimension D1 D2 D3 D4

Position 0,543 0,672 0,347 0,958

Binary 1 1 0 1

Table 4: HUD value of each project

Dimension D1 D2 D3 D4

Position 0,543 0,672 0,347 0,958

Binary 1 1 0 1

HUD 0.0053 0.0050 0.0050 0.0060

Table 5: Problem characteristics for 10 cases

No Instances Number of Knapsack Number of Item

1 SENTO1 30 60

2 SENTO2 30 60

3 WEING1 2 28

4 WEING2 2 28

5 WEING3 2 28

6 WEING4 2 28

7 WEING5 2 28

8 WEING6 2 28

9 WEING7 2 105

10 WEING8 2 105

International Journal of Industrial Engineering and Engineering Management, Vol. 2, No. 1, July 2020

49

Figure 1. Drop/add items procedure

1. Input the data of MKP problem: the number of knapsacks, the number of items, the

weight of each item, capacity of each knapsack, benefits of each item.

2. Input the value of parameters that are used in PIO: the number of iterations for map and

compass operator (Nc1max), the number of iterations for landmark operator (Nc2max),

the number of pigeons (Np), the number of dimensions (D), the value of map and

compass operator factor (R).

3. Calculate HUDi using equation (12).

4. Initialize Vpd0 by generating the random number between 0 and 1.

5. Initialize Xpd0 by generating the random number between 0 and 1.

6. Do drop/add item procedure.

7. Calculate the fitness value, fitnessB, fitnessg, and update XB and Xg.

8. Do map and compass operator calculation.

9. If the number of iterations has not yet reached Nc1max or other predetermined

condition, back to step 8; otherwise, go to step 10.

10. Do landmark operator calculation.

11. If the number of iterations has not yet reached Nc2max or other predetermined

condition, back to step 10, otherwise is finished.

Figure 2. Pseudocode of PIO for MKP

50

F. Setiawan, A. Sadiyoko, and C. Setiardjo

4.2. Parameter setting of PIO
Before implementing PIO on the instances, we

determine the best parameter value of PIO to be used in

this research. The determination of the PIO parameter

will be done using one factor at a time (OFAT). The

initial value used in this research is taken from the

parameter value from the initial paper on PIO by Duan

and Qiao in 2014). The initial value of these parameters

are Nc1max = 150, Nc2max = 8, Np = 150 and R = 0.2.

The application of OFAT in this paper is done by five

replications. There are only two cases that will be

experimented with to get the best parameter, namely

SENTO1 and WEING7 cases, because those two cases

are the most complex than others. The first parameter to

be tested is NC1max. In the experiment, the value of

Nc1max will be subtracted and added by a multiple of

100. In running the program, there are 21 levels or

treatments for changing the value of the Nc1max

parameter. Table 6 and 7 below shows the combination

of parameters for changing the value of the Nc1max

parameter in the SENTO1 case and the result from this

parameter combination.

Based on table 11 above, the Nc1max parameter of

1450 yields the highest performance, so the best value

of the Nc1max parameter is 1450 for SENTO 1 case.

This NC1max best value then will be used on the

determination of the remaining other parameters. After

the best value of the Nc1max parameter is obtained, then

the best parameter value for the other PIO parameter will

be determined using the same fashion. Np parameter

value will also be subtracted and added by a multiple of

100. Nc2max values in this experiment are in the range

of 1 to 9. R parameter values in this experiment are in

the range of 0.1 to 1, with an increase of 0.1 in every

treatment.

Based on these experiments, we get that the best

parameter combination value of the PIO parameter for

SENTO1 case are Nc1max = 1450, Nc2max = 6, Np =

450 and R = 0.3. After the best parameter combination

value of the PIO parameter for SENTO 1 has been

determined, we determine the best parameter

combination value of the PIO parameter for WEING 7

in the same way that we have done in SENTO 1. The

best parameter combination value of the PIO parameter

for WEING7 case are Nc1max = 1150, Nc2max = 4, Np

= 300 and R = 0.8.

4.3. Numerical experiment
Based on the parameter setting above, it is obtained

two combinations of a parameter that yield the best

performance of PIO. The first combination is Nc1max =

1450, Nc2max = 6, Np = 450 and R = 0.3 and the second

combination is Nc1max = 1150, Nc2max = 4, Np = 300

and R = 0.8. Both combinations will be applied to all 10

cases in this research. The result of PIO implementation

for all ten instances using the first parameter

combination is shown in Table 8 below.

Table 9 below shows the result of PIO

implementation for all ten instances using the second

parameter combination.

After both parameters, combinations are used in PIO

implementation for all ten instances, and the result is

obtained, we will choose the best value from one of two

parameter combinations. Table 10 below shows the

summary of the implementation of two-parameter

combinations and the best value from one of the two-

parameter combinations.

Performance comparison is made by comparing the

best objective function on all ten instances with the

result obtained by other metaheuristics. As stated before,

the other metaheuristic that will be compared with PIO

are particle swarm optimization (PSO), intelligent water

drops (IWD), and genetic algorithm (GA). Table 11 and

12 below shows the performance comparison of PIO,

PSO, IWD, and GA in all ten instances.

As we see in Table 11, the best known is the best

value that has ever known to date. IWD is not applied to

SENTO1 and SENTO2 instances, while GA is not

applied to WEING1, WEING2, WEING3, WEING4,

WEING5, and WEING6 instances. PSO is applied to all

ten instances. From the result above, it can be shown that

the performance of PIO is a satisfactory result compared

to all the compared metaheuristics.

5. CONCLUSIONS

Pigeon-inspired optimization (PIO) can be applied to

Multidimensional Knapsack Problem (MKP) using a

random number coding method for initialization and

binary number from sigmoid functions for the decoding

process. In this encoding and decoding process, HUD is

used, which is one of the simplest local heuristic

methods to manage the constraints of the MKP. From

the coding method and the decode is then translated into

the position of the pigeon on the map and the compass

operator and the landmark operator, from which the

position value will be calculated the objective function

value of fitness as well as the global position of the

global pigeon which determines which items will be

chosen into a knapsack.

In the implementation of the PIO algorithm to the ten

instances, it is known that overall the performance of the

PIO algorithm is better than the performance of the PSO

algorithm and the performance of the GA algorithm in

its application to MKP. However, this PIO algorithm

gets slightly worse results than the IWD algorithm in its

application to MKP. For further research, it is possible

to apply the PIO algorithm to solve other discrete

problems and combinatorial problems.

International Journal of Industrial Engineering and Engineering Management, Vol. 2, No. 1, July 2020

51

Table 6: Parameter combination by changing NC1max parameter on SENTO1 case

Parameter combination Nc1max Nc2max Np R

1 50 8 150 0,2

2 150 8 150 0,2

3 250 8 150 0,2

4 350 8 150 0,2

5 450 8 150 0,2

6 550 8 150 0,2

7 650 8 150 0,2

8 750 8 150 0,2

9 850 8 150 0,2

10 950 8 150 0,2

11 1050 8 150 0,2

12 1150 8 150 0,2

13 1250 8 150 0,2

14 1350 8 150 0,2

15 1450 8 150 0,2

16 1550 8 150 0,2

17 1650 8 150 0,2

18 1750 8 150 0,2

19 1850 8 150 0,2

20 1950 8 150 0,2

21 2050 8 150 0,2

Table 7: The result of parameter combination by changing NC1max parameter on SENTO1 case

Parameter

combination

Replication Best Average STDEV

1 2 3 4 5

1 7566 7586 7598 7586 7588 7598 7584.8 11.63

2 7617 7622 7642 7641 7576 7642 7619.6 26.80

3 7623 7643 7598 7598 7598 7643 7612 20.43

4 7654 7622 7632 7643 7637 7654 7637.6 11.97

5 7598 7639 7598 7622 7625 7639 7616.4 17.98

6 7654 7598 7598 7615 7599 7654 7612.8 24.14

7 7654 7641 7598 7635 7643 7654 7634.2 21.37

8 7598 7654 7636 7632 7642 7654 7632.4 20.95

9 7664 7599 7598 7674 7625 7674 7632 35.64

10 7624 7637 7626 7625 7625 7637 7627.4 5.41

11 7637 7660 7642 7651 7654 7660 7648.8 9.26

12 7636 7632 7598 7635 7692 7692 7638.6 33.78

13 7598 7598 7625 7679 7679 7679 7635.8 40.95

14 7636 7626 7606 7679 7692 7692 7647.8 36.36

15 7642 7642 7636 7625 7719 7719 7652.8 37.65

16 7637 7622 7679 7636 7654 7679 7645.6 21.85

17 7632 7637 7664 7632 7635 7664 7640 13.58

18 7654 7637 7636 7634 7598 7654 7631.8 20.52

19 7643 7599 7625 7637 7635 7643 7627.8 17.36

20 7598 7651 7684 7642 7609 7684 7636.8 34.40

21 7692 7632 7692 7598 7654 7692 7653.6 40.33

52

F. Setiawan, A. Sadiyoko, and C. Setiardjo

Table 8: PIO Implementation using first parameter combination

Instances Replication

1 2 3 4 5 Best

SENTO1 7679 7679 7719 7679 7679 7719

SENTO2 8619 8653 8645 8637 8613 8653

WEING1 141148 141278 141148 141148 141258 141278

WEING2 130103 130723 130723 130123 130163 130723

WEING3 95677 95007 95007 95467 95137 95677

WEING4 119337 119337 119337 119337 119337 119337

WEING5 98396 98396 98495 98396 98396 98495

WEING6 130123 130113 130113 130113 130113 130123

WEING7 1094452 1094417 1094356 1094547 1095007 1095007

WEING8 612430 614706 611555 612737 615315 615315

Table 9. PIO Implementation using second parameter combination

Instances Replication

1 2 3 4 5 Best

SENTO1 7719 7679 7679 7679 7679 7719

SENTO2 8649 8619 8618 8599 8665 8665

WEING1 141148 141258 141148 141148 141148 141258

WEING2 130103 130712 130103 130883 130103 130883

WEING3 95007 95007 95007 95007 95007 95007

WEING4 119337 119337 119337 119337 119337 119337

WEING5 98495 98396 98396 98396 98396 98495

WEING6 130623 130202 130123 130113 130123 130623

WEING7 1094262 1094811 1094467 1094111 1094356 1094811

WEING8 612880 611100 617901 614553 613751 617901

Table 10: PIO Implementation using both parameter combination

Instances Best value of two-parameter combinations Best

1 2

SENTO1 7719 7719 7719

SENTO2 8653 8665 8665

WEING1 141278 141258 141278

WEING2 130723 130883 130883

WEING3 95677 95007 95677

WEING4 119337 119337 119337

WEING5 98495 98495 98495

WEING6 130123 130623 130623

WEING7 1095007 1094811 1095007

WEING8 615315 617901 617901

International Journal of Industrial Engineering and Engineering Management, Vol. 2, No. 1, July 2020

53

REFERENCES

Balev, S., Yanev, N., Freville, A., Andonov, R. (2008).

A Dynamic Programming Based Reduction Procedure

for the Multidimensional 0-1 Knapsack Problem.

European Journal of Operational Research, 186 (1),

63-76.

Banati, H. & Bajaj, M. (2011). Firefly Based Feature

Selection Approach. International Journal of

Computer Science Issues, 8(4), 473-480.

Basset, M.A., Doaa, E.-S., Faris, H., Mirjalili, S. (2019).

A Binary Multi-Verse Optimizer for 0-1 Multi-

dimensional Knapsack Problems with Application in

Interactive Multimedia Systems. Computers &

Industrial Engineering, 132, 187-206.

Basset, M.A., El-Shahat, D., El-Henawy, I., Sangaiah,

A.K. (2018). A Modified Flower Pollination

Algorithm for the Multi-dimensional Knapsack

Problem: Human-Centric Decision Making. Soft

Computing, 22, 4221-4239.

Battiti, R. & Tecchiolli, G. (1994). The reactive tabu

search. ORSA Journal on Computing, 6, 126-140.

Berberler, M.E., Guler, A., Nuriyev, U.G. (2013). A

Genetic Algorithm to Solve the Multi-dimensional

Knapsack Problem. Mathematical and Computational

Applications, 18(3), 486-494.

Bertsimas, D. & Demir, R. (2002). An Approximate

Dynamic Programming Approach to

Multidimensional Knapsack Problem. Management

Science, 48, 550-565.

Bolaji, A.L., Babatunde, B.S., Shola, P.B. (2017).

Adaptation of Binary Pigeon-Inspired Algorithm for

Solving Multidimensional Knapsack Problem. Soft

Computing: Theories and Applications, 743-751.

Bolaji, A.L., Okwonu, F.Z., Shola, P.B., Balogun, B.S.,

Adubisi, O.D. (2020). A Modified Binary Pigeon-

Inspired Algorithm for Solving the Multi-dimensional

Knapsack Problem. Journal of Intelligent Systems,

30(1), 90-103.

Chen, W.-N., Zhang, J., Chung, H.S.H., Zhong, W.-L.,

Wu, W.-G., Shi, Y.-H. (2010). A Novel Set-Based

Particle Swarm Optimization Method for Discrete

Optimization Problems. IEEE Transactions on

Evolutionary Computation, 14(2), 278-300.

Table 11: Performance comparison of PIO, PSO, IWD, GA in all ten instances

Instances PSO IWD GA PIO Best Known

SENTO1 7,725 - 7,626 7,719 7,772

SENTO2 8,716 - 8,685 8,665 8,722

WEING1 138,927 141,278 - 141,278 141,278

WEING2 125,453 130,883 - 130,883 130,883

WEING3 92,297 95,677 - 95,677 95,677

WEING4 116,622 119,337 - 119,337 119,337

WEING5 93,678 98,796 - 98,495 98,796

WEING6 128,093 130,623 - 130,623 130,623

WEING7 1,059,560 1,094,736 1,093,987 1,095,007 1,095,445

WEING8 492,347 620,872 613,383 617,901 624,319

Table 12: Performance comparison of PIO, PSO, IWD, GA in percentage to best known

Instances PSO IWD GA PIO

SENTO1 99.40% - 98.12% 99.32%

SENTO2 99.93% - 99.58% 99.35%

WEING1 98.34% 100.00% - 100.00%

WEING2 95.85% 100.00% - 100.00%

WEING3 96.47% 100.00% - 100.00%

WEING4 97.72% 100.00% - 100.00%

WEING5 94.82% 100.00% - 99.70%

WEING6 98.06% 100.00% - 100.00%

WEING7 96.72% 99.94% 99.87% 99.96%

WEING8 78.86% 99.45% 98.25% 98.97%

54

F. Setiawan, A. Sadiyoko, and C. Setiardjo

Chih, M. (2015). Self-Adaptive Check and Repair

Operator-Based Particle Swarm Optimization for the

Multidimensional Knapsack Problem. Applied Soft

Computing, 26, 378-389.

Chu, P.C. & Beasley, J.E. (1998). A Genetic Algorithm

for the Multidimensional Knapsack Problem. Journal

of Heuristics, 4, 63-86.

Dammeyer, F. & Voβ, S. (1993). Dynamic Tabu List

Management Using the Reverse Elimination Method.

Annals of Operations Research, 41(2), 29-46.

Deng, Y. & Duan H. (2016). Control Parameter Design

for Automatic Carrier Landing System via Pigeon-

Inspired Optimization. Nonlinear Dynamics, 85, 97-

106.

Dou, R. & Duan, H. (2016). Pigeon Inspired

Optimization Approach to Model Prediction Control

for Unmanned Air Vehicles. Aircraft Engineering and

Aerospace Technology: An International Journal, 88

(1), 108-116.

Duan, H. & Li, C. (2014). Target Detection Approach

for UAVs via Improved Pigeon-Inspired Optimization

and Edge Potential Function. Aerospace Science and

Technology, 39, 352-360.

Duan, H. & Qiao, P. (2014). Pigeon Inspired

Optimization: A New Swarm Intelligence Optimizer

for Air Robot Planning. International Journal of

Intelligent Computing and Cybernetics, 7, 24-37.

Fingler, H., Caceres, E.N., Mongelli, H., Song, S.W.

(2014). A Cuda Based Solution to the

Multidimensional Knapsack Problem Using the Ant

Colony Optimization. Procedia Computer Science,

29, 84-94.

Freville, A. & Plateau, G. (1986). Heuristics and

Reduction Methods for Multiple Constraints 0-1

Linear Programming Problems. European Journal of

Operational Research, 24, 206-215.

Gilmore, P.C. & Gomory, R. (1966). The Theory and

Computation of Knapsack Functions. Operations

Research, 14(6), 1045-1074.

Glover, F. & Kochenberger, G.A. (1996). Critical Event

Tabu Search for Multidimensional Knapsack Problem.

Meta-heuristics, Springer, 407-202.

Haddar, B., Khemakhem, M., Hanafi, S., Wilbaut, C.

(2016). A Hybrid Quantum Particle Swarm

Optimization for the Multidimensional Knapsack

Problem. Engineering Applications of Artificial

Intelligence, 55, 1-13.

Hembecker, F., Lopes, H.S., & Godoy Jr., W. (2007).

Particle Swarm Optimization for the

Multidimensional Knapsack Problem. Proceedings of

the Eighth International Conference on Adaptive and

Natural Computing Algorithms, 4431, 358-365.

Ke, L., Feng, Z., Ren, Z., Wei, X. (2010). An Ant Colony

Optimization Approach for the Multidimensional

Knapsack Problem. Journal of Heuristics, 16(1), 65-

83.

Khuri, S., Back, T., & Heitkotter, J. (1994). The

Zero/One Multiple Knapsack Problem and Genetic

Algorithms. Proceedings of the ACM Symposium on

Applied Computing (SAC’94).

Kong, M., & Tian, P. (2006). Apply the Particle Swarm

Optimization to the Multi-dimensional Knapsack

Problem, In: Rutkowski, L., Tadeusiewicz, R., Zadeh,

L., Zurada, J. (Eds.), Artificial Intelligence and Soft

Computing–ICAISC 2006, Vol 4029 of Lecture Notes

in Computer Science, Springer Berlin Heidelberg,

1140-1149.

Kong, M., Tian, P., Kao, Y. (2008). A New Ant Colony

Optimization Algorithm for the Multidimensional

Knapsack Problem. International Journal of Applied

Metaheuristic Computing, 3(4), 43-63.

Ktari, R. & Chabchoub, H. (2013). Essential Particle

Swarm Optimization Queen with Tabu Search for

MKP Resolution. Computing, 95(9), 897-921.

Lai, X., Hao, J.-K., Glover, F., Lu, Z. (2018). A Two

Phase Tabu Evolutionary Algorithm for the 0-1 Multi-

dimensional Knapsack Problem. Information

Sciences, 436-437.

Leung, S.C., Zhang, D., Zhou, C., Wu, T. (2012). A

Hybrid Simulated Annealing Meta-heuristic algorithm

for the Two-Dimensional Knapsack Packing Problem.

Computer and Operations Research, 39(1), 64-73.

Manzini, R., Speranza, M.G. (2012). Coral: An Exact

Algorithm for the Multi-dimensional Knapsack

Problem. INFORMS Journal of Computing, 24(3),

399-415.

Martello, S. & Toth, P. (1990). Knapsack Problems:

Algorithms and Computer Implementations.

Chicester: John Wiley & Sons Ltd.

Martins, J.P., Longo, H., Delbern, A.C. (2014). On the

Effectiveness of Generic Algorithms for the

Multidimensional Knapsack Problem. Proceedings of

the 2014 conference companion on Genetic and

evolutionary computation companion, ACM, 73-74.

Palit, S., Sinha, S.N., Molla, M.A., Khanra, A., Kule, M.

(2011). A Cryptanalytic Attack on the Knapsack

Cryptosystem using Binary Firefly Algorithm. Second

International Conference on Computer and

International Journal of Industrial Engineering and Engineering Management, Vol. 2, No. 1, July 2020

55

Communication Technology, 428-432.

Rezoug, A., Boughaci, D., Rezoug, A. (2015).

Stochastic Local Search Combined with Simulated

Annealing for the 0=1 Multi-dimensional Knapsack

Problem. Symposium on Complex Systems and

Intelligent Computing (CompSIC).

Senyu, S. & Toyada, Y. (1967). An Approach to Linear

Programming With 0-1 Variables. Management

Science, 15(4), 196-207.

Shah-Hosseini, H. (2009). The Intelligent Water Drops

Algorithm: A Nature-inspired Swarm-based

Optimization Algorithm. International Journal of Bio-

Inspired Computation, 1, 71-79.

Shih, W. (1979). A Branch and Bound Method for the

Multiconstraint Zero-one Knapsack Problem. Journal

of the Operational Research Society, 15, 196-207.

Tisna, A., F.D., Abusini, S., Andar, A. (2013). Hybrid

Greedy-Particle Swarm Optimization-Genetic

Algorithm and Its Convergence to Solve

Multidimensional Knapsack Problem 0-1. Journal of

Theoritical and Applied Information Technology,

58(3), 522-528.

Vasquez, M. & Hao, J.-K. (2001). Une Approche

hybride pur le sac a dos multi-dimensionnel en

variales 0-1. Operations Research, 35(4), 415-438.

Vasquez, M. & Vimont, Y. (2005) Improved Results on

the 0-1 Multi-dimensional Knapsack Problem.

European Journal of Operational Research, 165(1),

70-81.

Vimont, Y., Boussier, S., Vasquez, M. (2008). Reduced

Cost Propagation in an Efficient Impicit Enumeration

for the 0-1 Multi-dimensional Knapsack Problem.

Journal of Combinatorial Optimization, 15(2), 165-

178.

Wan, N.F. & Nolle, L. (2009). Solving a Multi-

dimensional Knapsack Problem Using a Hybrid

Particle Swarm Optimization Algorithm. Proceedings

of the 23rd European Conference on Modelling and

Simulation, ECMS 2009.

Weingartner, H.M., & Ness, D.N. (1967). Methods for

the Solution of the Multi-dimensional 0/1 Knapsack

Problem. Operation Research, 15(1), 83-103.

Zhang, X., Wu, C., Li, J., Wang, X., Yang, Z., Lee, J.-

M., Jung K.-H. (2016). Binary Artificial Algae

Algorithm for Multidimensional Knapsack Problem.

Applied Soft Computing, 43, 583-595.

This page is intentionally left blank

