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ABSTRACT 

In this study, a robust method of Taguchi-Pareto (TP) coupled with particle swarm optimization (PSO) is proposed to 

minimize the thrust force in the drilling of carbon fiber reinforced plastic composites. Taguchi-Pareto is used against 

Taguchi (T) to emphasize the prioritization scheme essential for deploying the resources to parameters. Besides, and 

differently from earlier studies, particle swarm optimization is integrated with the Taguchi-Pareto to optimize the 

structure further. A further result is placed in the fitness function of the PSO to cultivate the velocity and position vectors. 

In the TP-PSO, the Pareto scheme is introduced to prioritize the factors based on the 80-20-rule. The Taguchi method 

yielded a feasible optimal parametric setting. The TPSO and TPPSO attained minimum thrust force in four and seven 

iterations, respectively. Furthermore, the PSO, TPPSO, and TPSO hold the first, second, and third positions, respectively. 

Results suggest that the proposed robust TPPSO offers an important indicator of optimization of the thrust force while 

drilling carbon fiber reinforced plastic composites using existing datasets. The usefulness of this effort is to help drilling 

operators and process engineers undertake energy-saving decisions. 
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1. INTRODUCTION 

 
Thrust force optimization in composite drilling is 

probably a largely essential and distinguished way of 

regulating the integrity of carbon fiber reinforced plastic 

(CFRP) composites (Mercy et al., 2020; Soepangkat et al., 

2020). This force is a mechanical force summarizing the 

actions of velocity, mass changes, and the change in time 

of the particulates for the CFRP composites in the drilling 

process (Kulkarni and Ramachandran, 2018; Shokrani et 

al., 2019; Soepangkat et al., 2020; Tran et al., 2020a,b; Xu 

et al., 2021). The drilling bits work via the supply of 

electrical energy. As the acceleration of the bit is initiated 

to the near part of the holding position of the CFRP 

material, the particles are accelerated in the direction 

opposite to movements, and this triggers a force on the 

material (Mercy et al., 2020). The idea of thrust force is 

commonly applied by process engineers since their 

attention is focused on the timely delivery of drilled 

materials with the highest integrity levels (Gokulkumar et 

al., 2020; Mercy et al., 2020).     

However, research has demonstrated that the traditional 

Taguchi method commonly deployed for thrust force 

optimization has shortcomings. Pinpointing what 

parameters of the multiple inputs for the drilling operation 

or its responses exhibit the highest influence on the thrust 

force is a challenging task to solve using the Taguchi 

method. Therefore, the drilling operation optimization has 

been handled more recently using the particle swarm 

optimization framework in the literature (Soepangkat et 

al., 2020). To the best of the authors' knowledge, past 

studies have fallen short in tackling the area where the 

reprocess engineer should direct attention and resources 
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to attain the utmost drilling efficiency. But, ascertaining 

the areas to invest attention and resources is a significant 

milestone in ensuring unbiased centers and assures a 

healthy relationship among the operators who compete for 

the organizational resources. For instance, operators often 

have conflicts with accepting the number of resources 

distributed to them to persecute work. They complain of 

marginalization and partiality in treatment since the 

process engineer only uses intuition and experience to 

judge the distribution of resources to the operator; 

engineers in the process sparsely apply scientific methods.  

Therefore, to overcome the weaknesses of previous 

studies regarding tackling the area to which the engineer 

should direct attention, this research proposes using a 

robust TP-PSO (Taguchi-Pareto-particle swarm 

optimization) method. It is a foundation to establish the 

optimum thrust force regarding parametric selection that 

develops efficient drilling parameters by eliminating 

variances. It also simultaneously establishes what 

parameter to focus efforts and resources on and 

concurrently improves the solution according to the 

drilling objective. Once the experimental trials are 

established, they are re-arranged in ascending order of the 

cumulative variances and the cut-off determined. To the 

best of the authors' knowledge, this method is applied 

within the ambit of the drilling problem for the first time. 

Taguchi-Pareto uses a two-phase method wherein the first 

phase, planning, conduct, and evaluation of the 

experimental matrix results, are established for the 

superior echelon of control factors. These results are then 

fed into the second phase of the method, where 80% of 

the outputs are asserted, and these yields 20% of all causes 

for the drilling parameters. Briefly, particle swarm 

optimization employs several particles that comprise a 

swarm traveling about, looking for space and the best 

solution to the problem. 

In this research, the authors deployed Taguchi-Pareto 

and not another optimization tool because, distinct from 

other optimization tools, the decision-maker can easily 

establish problems with high-priority parameters and 

eliminate them or correct them instantly. Besides, an 

added advantage of the Taguchi Pareto is that Pareto 

charts, a tool to solve the problem, could easily be 

developed and allow beneficial decisions to be made 

easily while concurrently optimizing the parameters. 

Furthermore, some other advantages of Taguchi-Pareto 

include the ability to establish the root cause of problems 

in parameters. Briefly, the principal advantages of particle 

swarm optimization include its idea of simplicity and the 

easy implementation of the method. Furthermore, certain 

researchers have assumed that the study of drilling 

operations may be solved assuming an analytical solution 

framework. However, considering the complexity of 

integrating the nth order differential equation for the 

drilling problem formed with the 80-20 mile, the 

assumption is invalidated. This confirms that the solution 

to the problem may be judged by introducing the particle 

swarm optimization algorithm. Unfortunately, 

researchers in drilling studies are yet to acknowledge this 

crucial insight and add the viewpoint of particle swarm 

optimization with the existing research tradition on 

Taguchi and its improved variants. Omitting this fact from 

the literature on drilling may show serious erroneous 

assumptions that may be corrected. In this article, the 

authors seek the available evidence from the literature 

review that the omission of prioritization of parameters is 

associated with erroneous conclusions in drilling 

decision-making. 

 

2. LITERATURE REVIEW 

The current research on CFRP composites has amplified 

and positively directed research and practice to some 

important aspects (Odusoro and Oke, 2021). These are 

multi-objective optimization of CFRP drilling outcomes 

(Saravanan et al., 2012; Abhishek et al., 2016; Soepangkat 

et al., 2020, Wang and Jia, 2020), analysis of variance and 

regression models (Baraheni and Amini, 2019), grey 

fuzzy logic incorporating Taguchi method 

(Krishnamoorthy et al., 2012) and multicriteria studies 

(Priti et al., 2021). However, the Taguchi method is a 

principal tool adopted in the composite industry generally 

because of its simplicity (Gowda et al., 2015; Rajendran 

et al., 2021; Kilickap, 2010; Nasir et al., 2015; Prasad and 

Chaitanya, 2020). Besides being motivated by its 

simplicity, straightforward implementation, 

computational efficiency, and robustness in the control of 

parameters, researchers within the CFRP composite 

domain have adopted particle swarm optimization as a 

tool for drilling efficiency attainment (Soepangkat et al., 

2020). But research is still needed regarding the 

amalgamation of the Taguchi method with the particle 

swarm optimization method; such an investigation is 

sparsely treated in the literature, and no study has been 

reported for the carbon fiber reinforced plastic composites. 

The results discussed in the literature by Krishnamoorthy 

et al. (2012) on the Taguchi method and Soepangkat et al. 

(2020) on particle swarm optimization to a large 

magnitude endorse the present research intention in this 

article, providing detailed information on the benefits 

derivable from drilling optimization through combined 

Taguchi and particle swarm optimization methods using 

experimental data. This is a novel aspect of the present 

study. An additional novelty is that the present study is 

implemented by introducing the Taguchi Pareto method 

to replace the Taguchi method, sot a new approach known 

as the Taguchi-Pareto-particle swarm optimization 

method is proposed. 

Furthermore, Caggiano (2018) studied the machining 

behavior of CFRP composites in conventional and 

unconventional machining processes. Furthermore, Xu et 

al. (2021) proposed the wear characteristics of CFRP 

using the step and candlestick drill. Furthermore, Mercy 

et al. (2020) found speed as the most influential parameter 

in drilling pineapple fiber composites. Gokulkumar et al. 

(2020) applied TOPSIS and declared the most appropriate 

optimal drilling parameters for epoxy polymer 

composites. Besides, Agwa and Megahed (2019) 

concluded that feed and drill pre-wear are the most 

influential parameters, while speed has the least influence 

on the response variables of drilling. 

Interestingly, the present authors made an effort to 

provide a selected literature review in a tabular form 

(Table 1).
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Table 1. Literature summary of selected relevant studies in the drilling field 

 

This is believed to provide updated research with 

important details domain of study work material, 

essential input parameters, the methods used in the study, 

the response, and the declared results. Arising from this 

tabulation, the following summaries are made: 

1. Although various studies have discussed extensively 

aspects including metaheuristics, multi-response 

optimization, grey fuzzy logic, coupled non-linear 

regression, and multi-objective and Taguchi 

methods, none has considered the integration of the 

Taguchi method and the particle swarm optimization 

in the drilling of CFRPs according to the authors' best 

knowledge. 

2. The multi-objective optimization methods have the 

largest share of applications in the drilling field, 

particularly the integration of the Taguchi method 

with other approaches that correct the weaknesses of 

the Taguchi method. However, the Taguchi particle 

swarm optimization method is missing in the 

literature. 

3. Multi-criteria selection tools are expected to extend 

the knowledge frontier of the drilling process: 

analytic hierarchy process, best-worst method, 

DEMATEL, CRITIC, and fuzzy analytical hierarchy 

process are useful to expand the knowledge frontier 

in drilling. 

4. The principal work materials studied are the carbon 

fiber reinforced polymer composites (Soepangkat et 

al., 2020; Wang and Jia, 2020, Abhishek et al., 2016; 

Krishnamoorthy et al., 2012, Saravanan et al., 2012; 

Baraheni and Amini, 2019), glass fiber reinforced 

composites (Agwa and Megahed, 2019; Kilickap, 

2010; Bhat et al., 2020). However, very sparse 

investigations have been conducted on aluminum 

matrix-based composites (Gowda et al., 2015). 

Besides, extremely few studies have been 

S/No. 
Author(s) 

and year 

Domain of 

study 

Key input 

parametes 

used 

Adopted 

method(s) 

Output 

(responses) 
Results 

1 
Soepangkat 

et al. (2020) 

Multi-

response 

optimization 

 

Drill 

geometry, 

spindle 

speeds, 

feed 

 

 

Back propagation 

neural network, 

particle swarm 

optimization 

Thrust force, 

torque, hole entry 

delamination, and 

hole exit 

delamination 

Integration of  back 

propagation neural 

network, particle swarm 

optimization substantially 

predicted and enhanced 

the multi-performance 

characteristics accurately 

2. 
Wang and 

Jia (2020) 

Multi-

objective 

optimization 

 

Spindle 

speed, feed 

rate, and 

point angle 

Artificial neural 

network, non-

dominated sorting 

genetic algorithm 

(NSGA-II), 

fuzzy C-means 

clustering 

Thrust force and 

exit-delamination 

The representative 

solutions yielded 

satisfactory performance 

with achieving a trade-off 

among thrust force, exit-

delamination, and 

material removal rate. 

 

3 
Abhishek et 

al. (2016) 

Multi-

objective 

optimization 

 

Drill speed, 

feed, and 

drill 

diameter 

Fuzzy inference 

system, non-linear 

regression model, 

harmony 

search algorithm, 

genetic algorithm 

and Taguchi’s 

robust optimization 

philosophy 

Thrust force, 

torque, surface 

roughness, and 

delamination 

factor (both at 

entry and exit) 

Harmony 

A search algorithm is 

efficient in searching 

optimal process 

parameters are less 

computational effort as 

compared to a  genetic 

algorithm due to diversity 

in the search mechanism. 

4 

Krishnamoor

thy et al. 

(2012) 

Grey fuzzy 

logic 

 

Hole 

drilling 

parameters 

Taguchi’s L27 

orthogonal array, 

grey fuzzy 

optimization 

Thrust force, 

torque, entry 

delamination, exit 

delamination, and 

eccentricity of the 

holes 

Feed rate is the most 

influential factor in the 

drilling of CFRP 

composites 

 

5 
Saravanan et 

al. (2012) 

Multi-

objective 

optimization 

using genetic 

algorithm 

 

Feed rate 

and the 

torque of 

the drilling 

tool 

A genetic 

algorithm 

optimization 

technique 

Hole eccentricity 

and material 

removal rate 

The maximum and 

minimum eccentricity 

limits were calculated 

through finite element 

formation. 

6 

Baraheni and 

Amini 

(2019) 

 

Rotary 

ultrasonic 

drilling 

 

Cutting 

velocity, 

feed rate, 

thickness, 

and 

ultrasonic 

vibration 

Analysis of 

variance, 

regression models 

 

Thrust force 

and 

delamination 

Thickness influence on 

delamination is more than 

other variables. 
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documented on jute fiber composites (Rajendran et 

al., 2021). Consequently, more extensive studies on 

the drilling operations of carbon fiber reinforced 

using the unique approach of the integrated Taguchi 

method and particle swarm optimization would be of 

significant interest to operators, process engineers, 

and engineering managers in the machine shop. 

5. Metaheuristics are gradually being applied in drilling 

(Soepangkat et al., 2020). 

6. In reports obtained from the literature, the thrust 

force surface roughness delamination has been the 

dominant response (Krishnamoorthy al., 2012; 

Soepangkat et al., 2020; Wang and Jia, 2020, 

Baraheni and Amini, 2019; Prasad and Chaitanya, 

2020; Bhat et al., 2020. However, extremely little 

emphasis has been placed on the following responses 

in the literature: drill vibration velocity, hole 

diameter accuracy, residual tensile strength (Nasir et 

al., 2015), hole diameter accuracy, residual tensile 

strength (Nasir et al., 2015), torque (Agwa and 

Megahed, 2019) and hole eccentricity (Saravanan et 

al., 2012). 

7. In optimization methods, economic parameters such 

as lubrication, material, and drilling costs have not 

been discussed (Shokrani et al., 2019; Lopes et al., 

2020). 

8. Investigations have completely ignored economic 

matters in drilling, yet the emphasis of decision-

makers has been to minimize drilling costs. 

Consequently, the present study adopted an innovative 

approach to solving the research gap concerning the 

optimization of thrust force while drilling the CFRP 

composites by addressing the research gap using the 

combined Taguchi and particle swarm optimization 

methods. Furthermore, to further discuss the research 

gap, which this paper is addressing, it is mentioned here 

that previous studies have tackled the particle swarm 

optimization through the use of computer coding that 

may be somehow difficult for the operator to revise due 

to changes in parameters; revisions are left in the hands 

of the program developers. However, a simplified 

approach using the Microsoft Excel spreadsheet is 

adopted to be more realistic. Extensive changes are 

permitted. Thus, the integrated Taguchi-particle swarm 

optimization method presented has not been previously 

discussed and eases the operator's implementation of the 

method in practice. Therefore, there is urgent to adopt 

this method for improved drilling operation efficiency. 

 

3. METHODOLOGY 

 This section presents the methods utilized in the 

present study. The details of the particle swarm 

optimization method are first presented, followed by the 

method for the Taguchi-Pareto particle swarm 

optimization method. 

 

3.1. Particle swarm optimization method (PSO) 

In this article, the classical particle swarm 

optimization method was deployed to establish the least 

thrust force value in the machining of CFRP composite 

by exploiting the population-oriented stochastic 

procedure of the method and its social-psychological 

framework (Firmansyah et al., 2020). Firmansyah et al. 

(2020) asserted that this unique method of evaluating a 

non-linear function was initiated by the scientists named 

James Kennedy and Russell Eberhart in 1995 and shares 

the characteristics of being stimulated by random 

members to obtain a solution, a foundation that particle 

swarm optimization shares with the genetic algorithm 

(Firmansyah et al., 2020). Usually, the PSO works on 

mimicking the behaviors of social animals such as birds, 

and their relationship is such that they depend upon the 

success of one another (Firmansyah et al., 2020). For 

instance, in their search for food, they depend on the 

success of any of their members such that as a member 

of a subgroup of these animals finds food, other 

members follow the same path to achieve the same 

success (Firmansyah et al., 2020). 

  

3.1.1 Procedure for PSO Implementation 

This article adopts the steps for particle swarm 

optimization, PSO, elaborated in the classical study by 

Soepangkat et al. (2020). These are as follows: 

Step 1: Create the starting position for the pre-defined 

number of particles to experiment with and 

define their initial velocities at random using 

digits obtained from the random table. 

Step 2: Establish the particle’s fitness value by 

considering its position. Usually, the fitness 

function is a formulated objective function, 

which may contain a variable that represents 

all other system attributes that are predefined. 

Step 3: Establish the particles having the best fitness 

value, which is the outcome of substituting 

the obtained values of positions and velocities 

of the particles previously determined. The 

gbest is established. For each particle, the 

initial Pbest value is determined and made 

equal to the initial position. 

Step 4: Use the values obtained for the Pbest and 

gbest to revise each particle’s velocity. When 

a new velocity is calculated, each particle’s 

position is also revised. 

Step 5. Determine the fitness value for each particle. 

Step 6. Establish the particle having the best fitness 

value and project it as the gbest. Establish the 

Pbest for each particle by weighing the 

present position with the Pbest from the 

earlier iteration. 

Step 7: Crosscheck if the stopping criteria have been 

met or not. As the stopping criteria are 

attained, where the values of the Pbest and 

gbest in the new iteration are also the same as 

those in the previous iteration, stop the 

counting sequence. Otherwise, if the stopping 

criterion has not been met, continue the 

iterations until this has been achieved. 

 

3.2. Signal-to-noise (S/N) ratio and Taguchi method 

The mechanism of evaluating the proportion of the 

signals to the noise elements for the parameters to be 

evaluated in a process is the cornerstone of the Taguchi 
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method. As commonly found in the literature, 

Mariajayaprakash (2013) and Mahapatra and Chaturvedi 

(2009) established the signal-to-noise ratio to comprise 

three distinct measures called the criteria of the S/N 

ratios: smaller-the-better, nominal-the-best, and the 

higher-the-better. 

The various signal-to-noise criteria are therefore 

expressed as:  

Smaller-the-better: 𝜂 = −10 log10
1

𝑛
∑𝑦𝑖

2

𝑛

𝑖=1

 (1) 

Nominal-the-best: 𝜂 = −10 log10
1

𝑛
∑

𝜇2

𝜎2

𝑛

𝑖=1

 (2) 

Higher-the-better: 𝜂 = −10 log10
1

𝑛
∑

1

𝑦𝑖
2

𝑛

𝑖=1

 (3) 

where 𝑛  is the total number of experimental trials 

conducted at the 𝑖𝑡ℎ  setting, 𝜎  is the standard 

deviation, 𝜇 is the mean, 𝑦𝑖  represents the value of the 

parameter of interest, 𝜂 is the notation for the signal to 

noise. 

Three levels were chosen for each of the parameters in 

the drilling process. Level means the scale of 

measurement. 

 

3.3. The TPSO method interface and implementation 

In the Taguchi-particle swarm optimization method 

interface, the point of amalgamation of the Taguchi 

method with the particle swarm optimization (PSO) 

method is at the Taguchi SN ratio table. This is the 

average of all the signal-to-noise ratios by considering 

the configuration of the orthogonal array by the 

distribution of the entries. Now, having obtained the 

optimal parametric setting by choice of 

SP3PA1FR3TF1/TF3, the delta values are of interest to 

the researchers in obtaining the fitness function, y = f(x). 

Assuming a third-order polynomial to mimic the drilling 

problem's reality, the values of 9.54 for speed, 1.35 for 

point angle, and 1.35 for feed rate need to be fitted into 

the model. Now the S/N ratio interior for the point angle 

and feed rate is the nominal the best, and therefore their 

values of 1.35 each are added to yield 2.70.  

But the criterion for speed is smaller-the-better, and 

the value is 9.54 (delta value), which is considered in 

the fitness function. However, since there are two 

polynomial components of x2 and x3 considered, it is 

believed that the coefficient of x3 should be the larger 

value of 9.54 since it will have the greatest impact on 

the fitness function. Similarly, the sum of 2.70 is 

believed to be more suitable as the coefficient of x2 than 

for x3 since it will have a lesser impact on the overall 

value of the fitness function. Thus, guided by this idea, 

the fitness function to be used for the particle swarm 

optimization problem is defined as 

Minimize  y = f(x) = -2.70 x2 – 9.54x3 

Where  -26.10 ≤ x ≤ -14.19 

The negative values of the coefficients of x2 and x3 in 

the objective (fitness) function were arrived at because 

the thrust force is a minimization problem, and the least 

values are desired. The limit of the function was decided 

based on the values for all the levels within the S/N 

response tale. Here, the lowest value in the table is -26.1, 

takings the lower bound of the fitness function. 

Also, -14.19 is the highest within the table and therefore 

given as the upper bound of the fitness function.  

To implement the particle swarm optimization, it 

should be noted the technique was developed to mimic 

animals such as birds, for instance. In search of food, 

once a member locates the food source, others follow 

the path to achieve the same success. So for both the 

leader and followers, the idea of velocity at which the 

bee moves in search of food and the position it attains at 

each instance are important in the success of catching 

the food. This bears in mind that the food could be 

smaller insects, which also have a velocity of movement 

that changes their positions from time to time. Thus, two 

starting terminologies for the PSO implementation in 

the thrust force minimization problem are the velocity 

vector and the position vector. By starting with the 

velocity vector and considering the number of the flock 

as a particle, the movement of the particles is given by 

Equation (4): 

Velocity:  

𝑣𝑡+1 = 𝑤𝑡𝑣𝑡 + 𝑐1𝑟1(𝑃𝑡
𝑔
− 𝑥𝑡) + 𝑐2𝑟2(𝑃

𝑔 − 𝑥𝑡)   (4) 

and the position vector is given by Equation (5): 

Position: xt+1 = xt + vt+1              (5) 

where, 

t : iteration number 

r1,r2 : random member between 0 and 1 
b

tP  : personal best position at the tth iteration 

vt, xt 
: velocity and position at the tth iteration, 

respectively 

wt : inertia weight 

c1, c2 : correction factor 

Pg : global best position 

PSO : parameter setting for this problem 

 

4. RESULTS AND DISCUSSIONS 

4.1. The TPSO method 

The following requirements are defined to implement 

this thrust force problem's particle swarm optimization 

algorithm. First, the population size is fixed at 5. This 

refers to the total number of birds in the group being 

examined. This means that at each instance of computing 

the velocity vector or position vector for the particles, 

only five members are considered to eliminate 

computational complexity. The second requirement is 

the dimension of the problem, which is given as one. 

This is easily noticeable from the constraint equation that 

follows the fitness function and the fitness function. Here 

the variable considered is x, which is one dimension. 

This is also reflected in the fitness function as the only 

one. However, in other problems, the population may be 

higher. Consider a case where x1, x2, x3, and xz are used 

in the fitness function; the dimension becomes four. 
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The value representing c1 and c2 is 1.5. The 

maximum number of iterations is 20, while the inertia 

weight (w) is 0.9. The values in the velocity vector, 

position vector, the fitness function, and Pbest are put side 

by side for the easy assessment using the method, Table 

2. 

Table 2. Evaluation of the Pbest values
 

Velocity 

(v) 

Position 

(x) 
f(x) 

Pt
b 

(pbest) 

0.83778    

0.53204 
-18.36  -20.09 58132.58 

-18.36    

-20.09 

0.08747    

0.51731 
-23.30  -17.41 119208.90 

-23.30    

-17.41 

0.90184    

0.33978 
-15.30  -16.89 33536.20 

-15.30    

-16.89 

0.23701    

0.80312 
-19.14  -17.29 65902.88 

-19.14    

-17.29 

0.16224    

0.02743 
-21.56  -17.96 94353.04 

-21.56    

-17.96 

 

In the first matrix, velocity (v), two columns of five 

rows exist each. Each of these numbers was generated as 

a randomly chosen velocity between 0 and 1. These 

values are obtained from the random tables and may not 

be the same for two separate calculations by individuals 

from different random tables used. However, they should 

be the same values if the same random table is used by 

two individuals. The reason is that the principle of using 

the random table for the thrust force minimization 

problem should be followed. By taking a look at the 

random table, different authors have devised different 

random numbers. For certain authors, direct extraction 

of the needed numbers from the table is possible since 

the random numbers given are between 0 and 1. 

However, for other authors, direct extraction of the 

number between 0 and 1 is not possible. For instance, the 

first number of the first column for the random number 

table used for the solution of the problem is 83778, 

which is outside the 0 and 1 range desired. So in the 

random table, there may be several columns, with each 

column containing several numbers.  

On reading the values, the researcher should start 

from the first value, i.e., 83778, accept or reject it and 

move to the next value within the same row (without 

jumping any value except on a rejection basis). This is 

done until all the values along the column are used, and 

the next value to use is the first on the second column. 

The procedure continues until the last value of the last 

column on the random table is exhausted. Then, the next 

value to read is the first one on the first column, and the 

process continues until the solution has been completed. 

To generate the random numbers for the first column of 

the velocity (v) vector, the first value is accepted, i.e., 

83778. But values between 0 and 1 are desired. So the 

researcher needs to place a decimal before the first digit 

of the value so that the random number generated is 

0.83778 and is accepted. The second value down the first 

column is 08747 and could be converted to the desired 

value as 0.08747 and therefore acceptable as the value of 

interest to the researcher. The procedure is conducted, 

and the other three values are obtained as 0.90184, 

0.23701, and 0.16224, respectively. The second column 

is obtained by following the procedure for generating 

values for the second column. So the values from 

0.53204 to 0.02743 are obtained. 

Now, the random values for the position (x) vector 

are to be generated. The requirement is to randomly 

initialize positions between -26.10 ≤ x ≤ -14.19. 

This means that the random values generated must be 

between -26.10 and -14.19, inclusive. After using the last 

ten random values for the two columns of the velocity (v) 

vector, the eleventh element (value) is to be considered. 

Suppose it yields 37254; this value is rejected for 

consideration as the first two digits, “37,” are outside the 

range of “26” and “14” considered here. So the next 

value is considered. If, however, we have 18357, for 

instance, this is between “-26” and “-14” as it could be 

interpreted as -18.36, and this value is acceptable. So the 

five values for each of the two columns of the position 

(x) vector is generated in the same way. Here, the highest 

values for each column are searched for, and the values 

-15.30 and -16.89 are obtained for the first and second 

rows, respectively. The next step is to evaluate the value 

of the fitness function, f(x), given as Equation (6): 

Minimize y = f(x) = -2.70 x2 – 9.54 x3     (6) 

However, since this is the first iteration, the Pbest is Pb, 

given as x. The next step is to calculate the global best, 

Pg. But by using the values of 0.90184 and 0.33978 as 

the v1 and v2, respectively, and x1 and x2 as -15.3 

and -16.89, the fitness function f(x) are obtained as 

33536.2. Also, note that 𝑃1
𝑏  and 𝑃2

𝑏  are 

respectively -15.30 and -16.89 since there is no previous 

iteration. This computation terminates iteration 1. 

However, the result details of iterations 2 and 3 are 

excluded here, while that of iteration 4 is included for 

concise reporting. For iteration 4, for the first particle, 

the first component, fitness value is 26714.44 while the 

gbest (Pg) is (-14.19 -16.061). But by noting that the 

present f(x) obtained and the previous one is the same, 

i.e., 26714.14, and their difference is zero, the optimal 

solution has been attained. Therefore, Pg (gbest) is 

(-14.19 – 16.061) (Table 3). This dictates x1 as -14.19 

and x2 as -16.0612 and f(x1, x2) is then 26714.44. By 

comparing these values with the one obtained from the 

Taguchi method alone, the optimal value of -14.19 was 

suggested at levels 1 and 3, which coincide with one of 

the minima of the Pg (gbest) of -14.19. However, the Pg 

(gbest) value of -16.061 was obtained, which is lower 

than -14.19 from the Taguchi method's response table. 

However, -16.061 is not shown directly on the 

factor/response level table from which results values are 

read. This, if proportions are to be followed and the value 

obtained, -16.061, should be interpreted concerning the 

lower value of 84.23N obtained by the experiment. The 

PSO is said to produce a value of 73.12N, which is lower 

than the experimental value of 84.23N. This value of 

73.12N was obtained when the difference 

between -16.061 and -14.19 was first computed as 

13.19%. Then the 13.19% of 84.23N is subtracted from 

84.23N to obtain 73.12N. This result concludes that the 
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Taguchi-particle swarm optimization method reduced 

the thrust force and its effects on tools from 84.23N 

(experimental) to 73.12N. Notice that in Table 3, the 

summary of each particle and each iteration are given 

only for the last iteration of the process for conciseness 

of presentation.  

 

4.2. TP-PSO method to minimize thrust force 

determination
 

The Taguchi method was deployed in the previous 

section to evaluate the optimal parametric setting for the 

thrust force minimization problem while drilling the 

CFRP. However, it is assumed that the influence of the 

signal-to-noise ratio from each experimental trial on the 

optimal parametric setting for all the trials is the same. 

But the signal-to-noise ratio reveals the impact of noise 

on the system, and the experimental trial that experiences 

greater impact will influence the outcome of the drilling 

activity more than others without great impacts. Thus, it 

was decided to rate each experimental trial according to 

the degree of influence it impacts on the minimization of 

the thrust force. This prioritizes the experimental trials 

and brings about the Taguchi-Pareto method, which 

classifies certain experimental trials as extremely 

important and others as unimportant based on the 80-20 

Pareto rule.  

Since there are data on signal-to-noise ratios for the 

parameters and response (thrust force), an association is 

established by evaluating the variance using the analysis 

of variance (ANOVA) technique which indicates the 

degree to which the set of signal-to-noise ratios for the 

parameters is near or far away from that of the response 

(thrust force). Thus, the S/N ratio of all the parameters is 

added and matched against those of the thrust force in an 

ANOVA test. In Table 3, the variance values of the 

experimental trials have been shown, which are 

extracted from the ANOVA table run at 0.05 degrees of 

freedom. In Table 4, the first two columns show the 

variance results and the associated experimental trial 

numbers. 

To apply the Pareto scheme, ordered variance values 

and the associated experimental trial numbers have been 

shown in the third and fourth columns, indicating that 

Experimental trial number 8 has the highest variance 

value of 3037.32. In contrast, the least variance is 

associated with experimental trial number 1 with a 

variance of 1711.71. The cumulative value is then 

obtained in the fifth column, while the percentages are 

shown in the sixth column of Table 3. The seventh 

column shows the cut-off for the Pareto principle 

application at the 8th experimental trial, precisely 

experimental trial 5. A cut-off of 82.23% was chosen 

since it is closer to the 80% cut-off value for the Pareto 

principle's application than the 72.46%, which is the 

value of the experimental trial 9 (Table 5). It then means 

that a revised S/N ratio table will be computed, and a 

revised response table from which the optimal 

parametric settings are determined will also be created. 

Table 6, called the signal-to-noise response table, is 

extracted as the average value of the signal-to-noise ratio 

for the similar entries of the orthogonal array obtained 

from Table 5. There are twelve positions to fill the 

Table 3. Summarised values of pbest and gbest using velocity and position vectors 

for the thrust force minimization problem 

Velocity (v) Position (x) f(x) pbest (pb) gbest (Pg) 

v1 v2 x1 x2  pb
1 pb

2 pg
1 Pg

2 

Iteration 4        

1.453797 1.247493 -14.3784 -16.8174 27800.36 -14.3784 -16.8174 -14.19 -16.0613 

2.556798 0.471697 -17.6558 -15.8893 51664.66 -17.6558 -15.8893   

1.043067 0.2477 -14.19 -16.0613 26714.44* -14.19 -16.0613   

1.425093 0.557452 -15.8679 -15.2705 37435.76 -15.8679 -15.2705   

2.088582 0.423587 -16.8833 -17.0731 45142.03 -16.8833 -17.0731   
*Optimal in each iteration 

 

 

Table 4. Re-arranged experimental trials based on the Pareto scheme 

Initial order Descending order  

Expl. trial Variance 
Expl. 

trial 
Variance Cumulative Percentage 

80% cut-

off 

1 1711.71 8 3037.32 3037.32 14.25  

2 2077.55 7 2845.60 5882.92 27.59  

3 2259.94 4 2682.78 8565.70 40.17  

4 2682.78 6 2483.72 11049.42 51.82  

5 2082.06 3 2259.94 13309.35 62.42  

6 2483.72 9 2141.20 15450.55 72.46  

7 2845.60 5 2082.06 17532.61 82.23 
Cut-off 

point 

8 3037.32 2 2077.55 19610.15 91.97  

9 2141.20 1 1711.71 21321.86 100  
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average value, but eventually, one or more positions may 

not be filled because the responsible signal-to-noise ratio 

has been ignored since it is more than the 80% cut-off 

mark for the Pareto principle to be implemented for the 

Taguchi method. It could also be that all the twelve 

entries would be filled, but the averages of some 

positions will be less than what was conducted for the 

Taguchi response table earlier created for the work. 

Meanwhile, the first computation will be for the speed 

parameter. To achieve this, Table 5 is revisited, and the 

column for the speed parameter is observed to establish 

all the entries with the code "1", which means level 1 for 

the speed parameter. The entire code "1" for the column 

"S" is only one, representing level 1. The corresponding 

S/N ratio for experimental trial three, which bears level 

1, is -32.45, and since only an item is found, its average 

is -32.45. For the speed parameter, level 2, three 

experimental trials are attached to this, including 

experimental trials 4, 6, and 5. They have the 

corresponding S/N ratios of -26.43, -21.32, and -12.49, 

respectively, and an average of -20.08. For the third level 

of speed, by following the procedure, the average is -

16.56, obtained from the S/N ratios corresponding to 

experimental trials 8, 7, and 9 as -21.74, -16.36, and -

11.58, respectively.  

For the first level of point angle, the average S/N ratio 

is -21.40, obtained from the S/N ratios corresponding to 

experimental trials 7 and 4 with the respective values of 

-16.36 and 26.43. Likewise, the averages of the second 

and third levels of point angle from the signal-to-noise 

ratio perspective are -17.12 and -21.78, respectively. For 

the feed rate, the averages of the S/N ratios for levels 1, 

2, and 3 are -21.53, -19.01, and -20.43, respectively. For 

the thrust force, the S/N ratios for the first, second, and 

third levels are -12.04, -18.84, and -26.87, respectively. 

The data is obtained as the difference between the 

highest and lowest values for each parameter or response, 

ranging from -40.54 to -38.90, which is used to attach 

positions parameter and response. The point angle 

emerged as the first, thrust force as the second, speed as 

the third, and feed rate as the fourth position. The delta 

values were used to obtain the fitness function for the 

particle swarm optimization method to be combined with 

the Taguchi method. To obtain the fitness function, the 

signal-to-noise classification needs to be considered. The 

fitness function is according to three categories of signal-

to-noise criteria for larger-the-better for the speed 

parameter, smaller-the-better for each of the point angle 

parameters, and thrust force response. 

The third category, normal-is-the-best, has no values 

under the feed rate and is therefore ignored. Thus, the 

coefficients of -49.01 representing speed for larger-the-

better will be used in one part of the equation. In the other 

part of the equation, -38.90 representing the smaller-

than-better point angle, will be used. However, the data 

coefficient for thrust force is not considered since the 

fitness function was developed for the thrust force. 

Therefore, by fitting the coefficient into a polynomial of 

powers 2 and 3, the fitness function becomes y = f(x) -

49.01 x² -38.90 x³. The coefficient of x² is determined as 

-49.01 since the speed parameter is the weaker in ranks 

between itself and the points angle. It means that when 

the fitness function is computed, it will have less 

influence on increasing the fitness function values than 

the point angle parameter. 

Now, commencing the problem evaluation using the 

Taguchi-Pareto method, the fitness function y = f(x) -

49.01 x² -38.90 x³ is used. The computation is 

commenced by the first iteration. Since this is the first 

iteration, the Pbest is Pb, given as x. The next step is to 

calculate the global best, Pg. But by using the values of 

0.08747 and 0.51731 as the v1 and v2, respectively, and 

Table 5. Taguchi-Pareto's Orthogonal arrays, factors, and signal-to-noise ratios for the drilling problem 

   S/N ratio type  

 Orthogonal array Factors LTB STB NB STB  

Expt. 

No. 

S PA F

R 

TF S PA FR TF S PA FR TF S/N 

ratios 

8 3 2 1 3 3000 118 100 310.47 69.54 -41.44 0 -49.84 -21.74 

7 3 1 3 2 3000 100 500 197.35 69.54 -40.00 0 -45.90 -16.36 

4 2 1 2 3 2000 135 300 310.47 66.02 -42.61 0 -49.84 -26.43 

6 2 3 1 2 2000 118 100 197.35 66.02 -41.44 0 -45.90 -21.32 

3 1 3 3 3 1000 135 500 310.47 60.00 -42.61 0 -49.84 -32.45 

9 3 3 2 1 3000 135 300 84.23 69.54 -42.61 0 -38.51 -11.58 

5 2 2 3 1 2000 100 500 84.23 66.02 -40.00 0 -38.51 -12.49 
Key: Speed – S; point angle – PA; feed rate – FR; thrust force – TF; Smaller-the-better – STB; Larger-the-better – LTB; Nominal-

the-best – NB 

 

Table 6. Taguchi-Pareto SN ratio 
r
esponse table

 

Level SP PA FR TF 

1 -32.45 -21.40 -21.53 -12.04* 

2 -20.08 -17.12* -19.01* -18.84 

3 -16.56* -21.78 -20.43 -26.87 

Delta -49.01 -38.90 -40.54 -38.91 

Rank 3 1 4 2 
*Optimum value 

 

 

 

 



International Journal of Industrial Engineering and Engineering Management, Vol. 4, No. 1, June 2022       45 

 

 

 

 

x1 and x2 as -19.14 and -27.93, the fitness function f(x) 

are obtained as 254802.4. Also, note that and are 

respectively -19.14 and -27.93 since there is no previous 

iteration. Thus, following the procedure for the 

implementation of TPSO here, the summarised table of 

iterations is obtained as follows (Table 7). 

In Table 7, the result details of each particle at each 

iteration are summarized in a form, with only the first 

and last iterations shown for conciseness. 

 

4.3. PSO method to minimize thrust force 

determination
 

The TPSO and TP-PSO methods were deployed in the 

previous sub-sections to evaluate the optimal thrust force. 

However, this sub-section attempts to evaluate the 

optimal thrust force without the influence of the Taguchi 

method as the PSO method. For the computation, the 

summary is presented as follows (Table 8). Table 8 is a 

summary of the result detail of each particle at each 

iteration. Here, for conciseness, the first and last 

iterations are shown. 

 

 

4.4. Comparison of TPSO with literature and other 

results
 

At iteration 4, the 𝑃1
𝑔

 and 𝑃2
𝑔

, which represent two 

values of the gbest (Pg) obtained, are -14.19 and -

16.0613, respectively. These values are optimal because 

they slightly differ from their corresponding values of -

14.19 (𝑃1
𝑔

) and -16.309 (𝑃2
𝑔

) in iteration 3, indicating 

that the optimal values have been obtained. At this point, 

the attention is directed to the value of the fitness 

function, f(x), which is 26714.44. This is the predicted 

value based on the computational experiments aided by 

particle swarm optimization. However, this needs to be 

compared with the value after the first iteration, which 

can be taken as the original experimental value of f(x), 

which is 33536.2. The difference in this assumed 

experimental value when optimization commenced, and 

the optimal value is 20.34%. It is, therefore, safe to 

assume that the experimental value of thrust force has 

been optimized by the combined Taguchi method and 

particle swarm optimization with a value reduction of 

20.34%. It is interesting to compare this result with the 

work of Saravanan et al. (2012).  

Table 7.Summarised values of pbest and gbest using velocity and position vectors  

for the thrust force minimization problem (TP-PSO method) 

Velocity (v) Position (x) f(x) pbest (pb) Gbest (Pg) 

v
 
1 v

 
2 x1 x2   pb

1 pb
2 pg

1 p
g
2 

Iteration 1               

0.83778 0.53204 -23.3 -17.41 465452.2 -23.3 -17.41 -19.14 -27.93 

0.08747 0.51731 -19.14 -27.93 254802.4* -19.14 -27.93     

0.90184 0.33978 -21.56 -16.88 367067 -21.56 -16.88     

0.23701 0.80312 -20.09 -32.24 295639.3 -20.09 -32.24     

0.16224 0.02743 -30.77 -30.11 1086864 -30.77 -30.11     

Iteration 7             

1.251871 -1.74435 -16.56 -29.2312 163216.7* -14.6982 -29.2312 -16.56 -24.2948 

0.551808 0.6118 -17.8701 -24.51 206337.9 -17.7506 -24.51   

0.802803 -1.78551 -16.56 -29.7717 163216.7* -15.3824 -29.7717   

0.703962 1.459848 -17.2072 -22.1181 183679 -17.0877 -22.1181   

3.239517 1.295646 -16.56 -24.2948 163216.7* -12.3884 -24.2948   
*Optimal in each iteration 

 

 

Table 8. Summarised values of pbest and gbest using velocity and position vectors  

for the thrust force minimization problem (PSO method) 

Velocity (v) Position (x) f(x) pbest (pb) Gbest (Pg) 

v1 v2 x1 x2  pb1 pb2 pg1 Pg2 

Iteration 1        

0.83778 0.53204 0.04 0.848 0.001536 0.04 0.848 0.03 0.739 

0.08747 0.51731 0.045 0.784 0.001934 0.045 0.784   

0.90184 0.33978 0.038 0.824 0.001389 0.038 0.824   

0.23701 0.80312 0.034 0.702 0.001117 0.034 0.702   

0.16224 0.02743 0.03 0.739 0.000873* 0.03 0.739   

Iteration 4        

-0.0701 -0.06234 0.649281 1.18364 0.147851 0.719386 1.245982 0.177142 0.763877 

0.006187 -0.05455 0.135527 1.1312 0.015878 0.12934 1.18575   

-0.07646 -0.04031 0.692104 1.035291 0.147485 0.692104 1.035291   

-0.00804 -0.07575 0.231311 1.273976 0.041128 0.231311 1.273976   

8.55E-06 1.44E-06 0.177142 0.763877 0.025821* 0.177133 0.763876   
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While the present work optimized the thrust force 

based on the combined action of the Taguchi method and 

the particle swarm optimization, the focus of Saravanan 

et al. (2012) was on the use of genetic algorithms alone. 

But genetic algorithm and particle swarm optimization 

are members of the evolutionary algorithms’ family; 

hence, the two studies qualify for comparison. 

Interestingly, Saravanan et al. (2012) reported that when 

the genetic algorithm optimized the material removal 

rate and eccentricity, a gain of 10% was included, but the 

growth of 20.34% experienced in the present work is 

appreciable relative to the genetic algorithm methods 

results. This result validates the usefulness of the 

proposed TPSO method in accomplishing the 

optimization of thrust force. It should be noted that the 

computational experiments performed by Saravanan et 

al. (2012) are also on the drilling of CFRP composites, 

which makes the results obtained robust and reliable. 

Thus, the present study projects an idea about an accurate 

choice of speed, feed rate, and point angle to yield 

minimum thrust force in the drilling of CFRP 

composites. 

To compare the results of the Taguchi method and 

TPSO, it was noticed that the experimental thrust force 

value was 310.47N, and this was optimized by the 

Taguchi method, reduced to 84.23N, which is a 72.78% 

reduction. But by implementing the TPSO, a further 

20.34 % reduction is shown to mean that of the 84.23N 

obtained, 20.34% of it has been reduced, which brings 

the optimized thrust force by the TPSO method to (84.23 

- (0.2034 x 84.23))N, which is 67.1N. 

 

4.5. Advantages of Taguchi-Particle swarm 

optimization method and rationale for the method
 

In the pursuit of optimization using the combined 

Taguchi-particle swarm optimization (TPSO) method, 

the process engineer obtains unique benefits from its 

application to the drilling problem. Given that the thrust 

force is to be minimized while machining the CFRP 

composites, the TPSO method helps to lessen the 

influence of rising experimental costs as constantly 

quantitative information could be obtained from less 

experimental testing. Furthermore, the TPSO method is 

uniquely developed to optimize the six responses in 

drilling, namely the delamination at entry, delamination 

at exist, surface roughness, eccentricity, torque, and 

thrust force concurrently, which is a feature absent in 

many other competing models. Besides, the TPSO is 

robust in controlling the mentioned responses and 

exhibits a vigorous computational efficiency weighed 

against other mathematical procedures and heuristic 

approaches to problem-solving in the drilling domain. 

Thus, considering the mentioned advantages of this 

novel method, it was decided to implement the model 

using the experimental data of Krishnamoorthy (2011). 

 

5. CONCLUSION 

In this article, a new method named the Taguchi-

particle swarm optimization method has been proposed 

for the first time in the CFRP composite literature to 

solve the thrust force problem responsible for load 

compression on the drill bits during the drilling process 

of the CFRP composites. Based on the literature data by 

Krishnamoorthy (2011), the method was tested, and the 

following conclusions were reached: 

• The Taguchi method yielded a signal-to-noise ratio 

with the optimal parametric setting declared as 

SP3PA1FR3TF1/TF3, which is -16.56 (SP3), -20.43 

(PA), -20.43 (FR3), 14.19 (TF1)/14.19 (TF3). This is 

interpreted as 3000rpm (speed), 1000 (point angle), 

500mm/min (feed rate) and 84.23N (thrust force).  

• From the experiments conducted by Krishnamoorthy 

(2011), the minimum thrust force obtained was 

84.23N. This is the least load compression 

experienced by the drill. However, the thrust force 

was further reduced to 73.12N by implementing the 

combined Taguchi-particle swarm optimization, 

which indicates an 11.11% reduction in the 

experimental values.  

• The Taguchi-particle swarm optimization method is 

feasible to reduce the thrust force during CFRP 

composites’ drilling exercise. A useful predictive 

method of thrust force has been developed and tested 

with experimental data. 

Future studies may introduce control measures such as 

the variable control X bar and R bar charts as a step 

towards establishing possible outliers in the 

experimental results, and assignable causes of poor 

performance may be studied. 

 

REFERENCES 

Abhishek, K., Datta, S., & Mahapatra, S.S. (2016). 

Multi-objective optimization in the drilling of CFRP 

(polyester) composites: Application of a fuzzy 

embedded harmony search (HS) algorithm. 

Measurement, 77, 222-239.  

 

Agwa, M.A., & Megahed, A.A. (2019). New nonlinear 

regression modeling and multi-objective 

optimization of cutting parameters in drilling of 

GFRE composites to minimize delamination. 

Polymer Testing, 75, 92-204.  

 

Baraheni, M., & Amini, S. (2019). Comprehensive 

optimization of process parameters in rotary 

ultrasonic drilling of CFRP aimed at minimizing 

delamination. International Journal of Lightweight 

Materials and Manufacture, 2(4), 379-387. 

 

Bhat, R., Mohan, N., Rohit, S.S., Agarwal, A., Kamal, 

A.R., & Subudhi, A. (2019). Multi-response 

optimization of the thrust force, torque and surface 

roughness in drilling of glass fiber reinforced 

polyester composite using GRA-RSM. Materials 

Today: Proceedings, 19(2), 333-338.  

 

Caggiano, A. (2018). Machining of fiber reinforced 

plastic composite materials. Materials (Based), 11(3), 

442.  

 

Firmansyah, M.G., Mulyadi, Y., Hasbullah, H., & 

Saripudin A. (2020). Optimal distributed generation 

placement to reduce power loss using particle swarm 



International Journal of Industrial Engineering and Engineering Management, Vol. 4, No. 1, June 2022       47 

 

 

 

 

optimization method. IOP. Conference Series: 

Materials Science and Engineering, 850, Article 

012010.  

 

Gokulkumar, S., Thyla, P.R., Ramnath, R.A., & Karthi, 

N. (2020). Acoustical analysis and drilling process 

optimization of camellia sinensis/ananascomosus/ 

GFRP/epoxy composites by TOPSIS for indoor 

applications. Journal of Natural Fibers, 18(2), 1-18.  

 

Gowda, B.M.U., Ravindra, H.V., Prakash, G.V.N., 

Nishanth, P., & Ugrasen G. (2015). Optimization of 

process parameters in drilling of epoxy Si3N4 

composite material. Materials Today: Proceedings, 

2(4-5), 2852-2861.  

 

Krishnamoorthy, A. (2011). Some studies on modeling 

and optimization in drilling carbon fiber reinforced 

plastic composites. Ph.D. thesis, Faculty of 

Mechanical Engineering, Anna University, Chennai, 

India 

 

Krishnamoorthy, A., Boopathy, S.R., Palanikumar, K., 

& Davim, J.P. (2012). Application of grey fuzzy 

logic for the optimization of drilling parameters for 

CFRP composites with multiple performance 

characteristics. Measurement, 45(5), 1286-1296.  

 

Kilickap, E. (2010). Optimization of cutting parameters 

on delamination based on Taguchi method during 

drilling of GFRP composite. Expert Systems with 

Applications, 37(8), 6116-6122.  

 

Kulkarni, S., & Ramachandran, M. (2018). Multicriteria 

selection of optimal CFRP composites drilling 

process parameters REST. Journal on Emerging 

Trends in Modelling and Manufacturing, 4(4), 102-

106. 

 

Lopes, R., Silva, F.J.G., Godina, R., Campilho, R., 

Dieguez, T., Ferreira, L.P., & Baptista, A. (2020). 

Reducing scrap and improving an air conditioning 

pipe production line. Procedia Manufacturing, 51, 

1410-1415. 

 

Mahapatra, S.S., & Chaturvedi, V. (2009). Modeling and 

analysis of abrasive wear performance of composites 

using Taguchi approach. International Journal of 

Engineering, Science and Technology, 1(1), 123-135. 

 

Mariajayaprakash, A., Senthivelan, J., & Vivekananthan, 

K.P. (2013). Optimization of shock absorber process 

parameters using failure mode and effect analysis 

and genetic algorithm. Journal of Industrial 

Engineering International, 9(18), 1-10.  

 

Mercy, J.L., Siva Shankari, P., Sangeetha, M., Kavitha, 

K.R., & Prakash, S. (2020). Genetic optimization of 

machining parameters affecting thrust force during 

drilling of pineapple fiber composite plates – An 

experimental approach. Journal of Natural Fibres, 

19, 1-12.  

 

Nasir, A.A.A., Azmi, A.I., & Khalil, A.N.M. (2015). 

Measurement and optimization of residual tensile 

strength and delamination damage of drilled flax 

fiber reinforced composites. Measurement, 75, 298-

307.  

 

Odusoro, S.I., & Oke, S.A. (2021). Factor selection in 

drilling fiber reinforced plastic composites with the 

HSS drill bit using analytic hierarchy process. 

International Journal of Industrial Engineering and 

Engineering Management, 3(1), 1-15. 

 

Prasad, K.S., & Chaitany, G. (2021). Optimization of 

process parameters on surface roughness during 

drilling of GFRP composites using Taguchi 

technique. Materials Today: Proceedings, 39(4), 

1553-1558.  

 

Priti, Singh, M., & Singh, S. (2021). Micro machining of 

CFRP composites using electrochemical; discharge 

machining and process optimization by entropy-

VIKOR method. Materials Today: Proceedings, 

44(1), 260-265.  

 

Rajendran, A., Paul, B., & Shunmugesh, K. (2021). 

Optimization of milling parameters in jute fiber 

reinforced epoxy composite using GRA. Materials 

Today: Proceedings, 43(6), 3951-3955.  

 

Saravanan, M., Ramalingam, D., Manikandan, G., & 

Kaarthikeyen, R.R. (2012). Multi-objective 

optimization of drilling parameters using genetic 

algorithm. Procedia Engineering, 38, 197-207.  

 

Shokrani, A., Leafe, H., & Newman, S.T. (2019). 

Cryogenic drilling of carbon fiber reinforced plastic 

with tool consideration. Procedia CIRP, 85, 55-60.  

 

Soepangkat, B.O.P., Norcahyo, R., Effendi, M.K., & 

Pramujati, B. (2020). Multi-response optimization of 

carbon fiber reinforced polymer (CFRP) drilling 

using back propagation neural network-particle 

swarm optimization (BPNN-PSO). Engineering 

Science and Technology: an International Journal, 

23(3), 700-713.  

 

Tran, Q.P., Diem-My. T., & Huang S.C. (2020a). 

Optimization of CFRP drilling process with multi-

criteria using TGRA, 2020 IEEE Eurasia Conference 

on IoT, Communication an Engineering, 23-25 Oct. 

2020. 

 

Tran, Q.P., Nguyen, V.N., & Huang, S.C. (2020b). 

Drilling process on CFRP: Multicriteria decision 

making with entropy weight using grey-TOPSIS 

method. Applied Science, 10(20), Article 7207. 

 

Wang, Q., & Jia, X. (2020). Multi-objective optimization 

of CFRP drilling parameters with a hybrid method 

integrating the ANN, NSGA-II and fuzzy C-means. 

Composite Structures, 235, Article 111803.  



E.O. Taiwo & S.A. Oke 

 

 

 

48 

 

Xu, J., Lin, T., Davim, P., Chen, M., & El-Mansori, M. 

(2021). Wear behavior of special tools in the drilling 

of CFRP composite laminates. Wear, 476, Article 

203738.  

 

 


