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ABSTRACT 

In this article, a new method termed the Taguchi-Pareto-Box Behnken design teaching learning-based optimization 

(TPBBD–TLBO) was developed to optimize the boring process, which promotes surface roughness as the output. At 

the same time, the speed, feed, and depth of cut are taken as the inputs. The case examines experimental data from the 

literature on the boring of IS 2062 E250 steel plates. The proposed method draws from a recent idea on the Taguchi-

Pareto-Box Behnken design method that argues for a possible relationship between the Taguchi-Pareto method and the 

Box Behnken design method. This idea was used as a basis for the further argument that teaching learning-based 

optimization has a role in the further optimization of the established TPBBD method. The optimal solutions were 

investigated when the objective function was generated using the Box Behnken design in a case. It was replaced with 

the regression method in the other case, and the python programming codes were used to execute the computations. 

Then the optimal solutions concerning the parameters of speed, feed rate, depth of cut, and nose radius were evaluated. 

With the Box Behnken as the objective function for the TLBO method, convergence was reached at 50 iterations with 

a class population of 5. The optimal parametric solutions are 800 rpm of speed, 0.06 min/min of feed rate, 1 min for 

depth of cut, and 0 min for nose radius. On the use of the regression method for the objective function, while the TLBO 

method was deployed, convergence was experienced after 50 iterations with a class population of 200 students. The 

optimal parametric solution is 1135rpm of speed, 0.06 min/min of feed rate, 1024 min of the depth of cut, and 0.61 min 

of nose radius. The speed, depth of cut, and nose radius showed higher values, indicating the use of more energy 

resources to accomplish the optimal goals using the regression method-based objective function. Therefore, the 

proposed method constitutes a promising route to optimize further the results of the Taguchi-Pareto-Box Behnken 

design for boring operation improvement. 
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1. INTRODUCTION 

Today, boring operation is a principal element in the 

world's machining economy, and its significance is 

growing day by day because of increased manufacturing 

activities (Khan et al., 2022). However, despite intensive 

research activities on boring operations, the 

overwhelming economic challenge has downsized the 

power of local currencies, and trading above the break-

even point has become difficult (Luthra et al., 2019; 

Sharma et al., 2021; Reslan et al., 2022). This economic 

challenge is aided by market forces, poorer skill sets, and 

frequent job turnover for experienced operators resigning 

from the machining industry to the oil and gas sector and 

the dwindling foreign exchange power to purchase inputs 

for manufacturing (Luthra et al., 2019). The market forces, 
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for instance, include socioeconomic, geopolitical, and 

technological factors, which modify everything known 

about manufacturing. 

From the above discussion, there is necessary to 

establish and improve process optimization procedures to 

control the economic challenge to the extent possible 

within the boring industry. Consequently, boring 

optimization research has commenced for some years 

now. It has attracted several scholars worldwide in the 

search for optimization procedures to reduce the external 

influence of certain forces on the prosperity of the boring 

industry (Patel & Deshpande, 2014; Rao & Murthy, 2018; 

Kumar et al., 2019a,b; Abiola & Oke, 2021; Abiola & Oke, 

2022; Hassan et al., 2022). However, with the continuing 

quest for the enhanced economic performance of the 

boring industry, the advent of the Taguchi performance 

optimization method has been noticed (Patel & 

Deshpande, 2014). Before this advent, diverse conditions 

such as downsizing the workforce, retraining of retained 

workforce, stricter work schedules, and performance 

monitoring were specified (Mori et al., 2015; Qu et al., 

2016). But it was soon realized that the economics of 

experimentation and simplicity in applying performance 

measures were essential (Patel & Deshpande, 2014). 

Therefore, process engineers have no option but to 

install Taguchi methodical principles in their systems 

(Patel & Deshpande, 2014). Thus, in the boring industry, 

optimization has been attempted principally using the 

Taguchi method because of its simplicity. Still, its 

shortcoming remains the inability to distinguish among 

the factors which exceed in performance more than the 

others (Patel & Deshpande, 2014). This shortcoming must 

be addressed for a huge benefit to research progress on the 

Taguchi method in the dull area. Also, despite being 

critical in performance enhancement drive, much less 

about the synergic benefits of the Taguchi method with 

other methods are known. Specifically, the literature has 

failed to clearly understand how the Taguchi method's 

weaknesses could be complemented with methods such as 

the Box Behnken design and the teaching-learning-based 

optimization method. Besides, the engineering literature 

has established the usefulness and preference of 

integrating methods for enhanced results instead of 

deploying only one method at a time. Therefore, the 

present article is motivated by this idea by integrating the 

Taguchi-Pareto method, Box Behnken design, and the 

teaching-learning-based optimization (TLBO) method. In 

this article, a novel method named Taguchi-Pareto Box 

Behnken design–Teaching Learning Based Optimisation 

method was tested with the experimental literature data by 

Patel and Deshpande (2014) and used the IS 2062 E250 

steel plates on the CNC machine during the boring 

operation is presented. Using the same data set as a 

previous study, where the Taguchi-Box Behnken design 

method had been validated, the addition in the present 

study is the augmentation of the TLBO procedure to the 

established results in the previous documentation to 

develop the objective function for the new integrated 

method. 

In this article, two performance measures are deployed 

to evaluate the performance of the two variants of the 

proposed method, the TPBDD-TLBO process, which is 

discussed in this work. Estimating the signal-to-noise 

ratios from the python programming codes executed when 

the objective functions are developed from Box Behnken 

design and regression equation is one method adopted in 

the present work. The second method is to observe the 

values of the parameters and choose the lower one since 

it leads to lower energy consumption. Thus, the potential 

to consume energy from the results of the two variants is 

used to evaluate them for a choice of the better alternative. 

The second performance measurement approach, energy 

consumption, is further elaborated in the following 

discussion. Furthermore, the purpose of this article is to 

propose a new method referred to as the TPBBD-TLBO 

method and test it with the IS 2062 E250 steel plate work 

material in the boring operation, using literature data from 

Patel & Deshpande (2014). The used energy as a 

performance measurement criterion of the proposed 

method to judge which routes to optimization are 

preferred has been exercised. The first route is 

formulating the objective function as a Taguchi-Pareto 

box Behnken design, while the second is formulating the 

objective function as a regression method. Each of these 

methods is substituted into the TLBO method for 

performance comparison. It is argued that machine 

utilization is closely tied to time, which is proportional to 

the energy consumption by the machine. Suppose the 

optimal parameters have values in a methodical route 

higher than the other. In that case, it implies that it requires 

a greater amount of energy consumption to attain the 

system's goal using the method than one with a lower 

optimal value since less time and interaction with the 

machine is involved. Consequently, both routes show 

results of which the one with the lower optimal parametric 

values is preferable.  

 

2. LITERATURE REVIEW 

 
It is a common fact that optimization of process 

parameters in machining operations is very important in 

the manufacturing industries for various reasons, 

including the demand for high-quality products at 

affordable cost. The ways and manners involved in 

obtaining these process parameters are also very crucial 

to achieving high accuracy optimized parameters for 

high-quality outputs. While there has been much research 

on various meta-heuristic evolutionary approaches and 

their combination with various other methods for 

optimization of process parameters, very few researchers 

have employed the approach used in the current paper; 

this approach is a combination of Taguchi, Pareto, Box 

Behnken design and TLBO which is a meta-heuristic 

evolutionary approach. 

2.1. Aspects studied 

 The overall material used in the literature under review 

ranges from steel (alloys and grades), titanium (alloys and 

grades), Inconel of different grades, aluminum (alloys and 

composites), and different polymer materials. Patel et al. 

(2018) used AISI D2 steel to determine the optimal input 

parameters, including torch height, gas pressure, and 

cutting speed, using TLBO with a genetic algorithm to 

obtain an optimal surface roughness in a plasma cutting 

machining operation and found out that the predicted and 
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experimental surface roughness shows a percentage error 

of 3.7781% which is low enough to conclude that both 

results are in agreement. 

 Several other authors have also focused on different 

materials as work material for optimization of machining 

input parameters to acquire optimal out parameters; those 

that used steel (alloys and grades) are Dave (2019), Patel 

et al. (2018), Upadhyay (2022), Aouici et al. (2012), Patil 

et al. (2021), Suresh et al. (2002). Some of the authors that 

employed titanium (alloys and grades) are Sharma et al. 

(2020), Singh et al. (2019), Upadhyay et al. (2013), Sahu 

& Andhare (2015), and Zain et al. (2010). Inconel was 

also used by the following authors: Dave (2019), Kumar 

et al. (2020), Gupta et al. (2019), Rao & Kalyankar (2011), 

George et al. (2019), and Bhopale et al. (2015). Pure 

magnesium was used by only one author: Kumari et al. 

(2020). Some others that used aluminum (alloy and 

composites) are Dikshit et al. (2017), Abdallah et al. 

(2014), Rudrapati et al. (2016), Prakash & Gopalakannan 

(2021), Patel et al. (2020), Pare et al. (2015). Lastly, those 

that made use of Polymer materials are Abhishek, Datta, 

& Mahapatra (2017), Natarajan et al. (2018), and 

Abhishek, Kumar, Datta, & Mahapatra (2017). According 

to this review, no research has been done using the E250 

B0 grade of steel as a workpiece material to establish the 

best ideal parameters for the lowest surface roughness by 

any of the authors listed above. Hence it was chosen as 

the material for the current study. 

 The machining operations performed by authors in the 

literature under review on various materials are drilling, 

grinding, turning, and milling; these operations were 

performed either by conventional or unconventional 

machining processes. Conventional machining is a 

human-controlled process where direct interaction of the 

operator and the tool exists. However, as an improvement 

in technology, the non-conventional machining process 

was developed to eliminate the direct interaction of the 

operator/machine tool with the workpiece. To achieve the 

aim of non-conventional machining processes, 

sophisticated tools such as the laser beam, electric arc, 

infra-red beam, electric beam, and plasma cutting have 

replaced machine tools. Nonetheless, machine tools are 

relevant where cost and technological skill availability 

have restricted the use of non-conventional machining. 

Unconventional machining processes like helical path 

orbital EDM process, electrochemical machining (ECM) 

process, electrochemical discharge machining (ECDM) 

process, electric discharge machining (EDM), ultrasonic 

machining (USM), wire electrical discharge machining 

(WEDM) process, abrasive jet machining (AJM), micro 

electrochemical machining (μECM), electrical wire 

discharge turning (WEDT), electric discharge drilling 

(EDD) were widely used for various machining 

operations in the literature under review. Dave (2019) 

used a helical path orbital EDM process for a machining 

operation with material removal rate as its output 

parameter. Rao & Kalyankar (2011) engaged the ECM 

and ECMD for a machining operation with output 

parameters such as material removal rate, radii cutout 

(ROC), and heat-affected zone (HAZ). Kumar et al. (2020) 

and Rao & Kalyankar (2013) used wire electrical 

discharge turning (WEDT) as a machining process in their 

studies. Prakash & Gopalakannan (2021) made use of 

microelectrochemical machining (μECM) for a 

machining operation with material removal rate (MRR), 

radial overcut, tool electrode wear, and surface roughness 

as output parameters. Another author, Sharma et al. 

(2020), used electric discharge drilling (EDD) for drilling 

operation with drilling rate (DR) and electrode wear ratio 

(EWR) as output parameters. 

 Meanwhile, conventional machining processes were 

mostly performed on CNC machines. For instance, 

Abdallah et al. (2014), Rudrapati et al. (2016), Natarajan 

et al. (2018), and Pare et al. (2015) all performed turning 

operations on a CNC turning machine. Furthermore, Patil 

et al. (2021) used a VMC five-axis CNC milling machine 

as a machine tool. Due to availability, convenience, and 

the second machine tool trend in the literature under 

review, the E Batilbio CNC Sprint 20TC was chosen as 

the machine tool for the current work. Because no author 

in the literature under examination chose to bore as a 

machining operation for the various experiments in 

finding the optimal parameters that result in an outmost 

output parameter, the boring operation is chosen as the 

machining operation for the current studies. 

 Material removal rate (MRR), Radii cutout (ROC), heat 

affected zone (HAZ), surface roughness, minimum 

carbon emission, operation time, production cost (cp), 

tool life (T), cutting force, tool wear, length of tool-chip 

contact, wear on tool electrode, roundness, cylindricity, 

drilling rate (DR), electrode wear ratio (EWR), deflection, 

the microhardness of plate, tool-tip temperature, 

cylindricity error and circularity error, are the output 

parameters considered by authors throughout the 

literature under review. 

 In their numerous studies, authors in the literature took 

into account singly or multiple output parameters. Surface 

roughness as a single output parameter was not only 

prevalent throughout the literature under examination. 

Still, it was also present as a parameter in multiple output 

parameters across the literature under review. The authors 

who used surface roughness as their sole output parameter 

are Pare et al. (2015), Suresh et al. (2002), Rudrapati et al. 

(2016), Upadhyay et al. (2013), Kumari et al. (2020), 

Patel et al. (2018), Sahu & Andhare (2015), Dikshit et al. 

(2017), Zain et al. (2010). However, only one author in 

the literature considered a single output parameter other 

than surface roughness; Dave (2019) considered the 

material removal rate a single output parameter. 

 A few authors that considered multiple output 

parameters (multi-objective problems) are Rao & 

Kalyankar (2011), Kumar et al. (2020), and Lin et al. 

(2015). From the above, surface roughness, an output 

parameter that requires an outmost finish in a boring 

operation, is chosen as the only input parameter in the 

current study. Secondly, a single output parameter was 

chosen due to the scope of the methodology used in the 

current study. The input parameters depend on the type of 

machining process being used for various studies in the 

literature; unconventional machining process input 

parameters common in the literature are applied voltage, 

electrolyte flow rate, the volumetric concentration of 

abrasive particles in slurry, orbital radius, inter-electrode 

gap, pulse on time, static feed force, peak current, mass 
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flow rate of abrasive particles, the amplitude of vibration, 

current, a mass flow rate of abrasive particles, electrolyte 

concentration, pulse off time, orbital speed, the mean 

radius of abrasive particles, gap voltage, duty factor, 

frequency of vibration, mean diameter of abrasive grains, 

the velocity of abrasive particles, electrolyte 

concentration, servo feed and the mean radius of abrasive 

particles. Sharma et al. (2020) and Rao & Kalyankar 

(2012) are authors that use pulse on time, pulse off time, 

and current as common output parameters in their studies. 

As for the conventional machining process, nose radius, 

feed rate, depth of cut, and spindle speed are the most 

commonly used input parameters for CNC machining, 

and it is like throughout the literature. Singh et al. (2019), 

Abdallah et al. (2014), and Natarajan et al. (2018) are a 

few authors that used spindle speed, depth of cut, and feed 

rate as input parameters. Input parameters considered in 

the current studies are also spindle speed, depth of cut, and 

feed rate, with the inclusion of the cutting tool nose radius. 

Patel et al. (2020) is the only author who used the exact 

input parameters in the current study. 

 In the literature under evaluation, the authors used 

various methodologies, including the Taguchi method, 

response surface methodology, analysis of variance, grey 

relational analysis, fuzzy inference system (FIS), and 

multi-performance characteristic index (MPCI). These 

methodologies were mostly used in conjunction with 

various meta-heuristic evolutionary approaches like 

TLBO, genetic algorithm (GA), gravitational search 

algorithm, JAYA algorithm, harmony search algorithm, 

particle swarm optimization (PSO), and bacterial foraging 

optimization. TLBO being part of the methodology of the 

current study was widely used throughout the literature to 

find the ideal machining parameter that yields the best 

values for various output parameters; it was used either 

alone or integrated with other methods. Rao & Kalyankar 

(2013), Patel et al. (2018), and Rao & Kalyankar (2013) 

are a few authors who used TLBO alone without 

integration with other methods. A few authors that 

integrated other methods into TLBO are Dikshit et al. 

(2017), Sahu & Andhare (2015), and Gupta et al. (2019). 

 Lastly, there are authors in the literature under review 

that did not use TLBO or integrate it with other methods 

but instead used a different method singly or in 

combination with another method. These are as follows: 

Suresh et al. (2002) used response surface methodology 

(RSM) and GA. Patel et al. (2020) used principal 

component analysis and the JAYA algorithm. The 

methodology used in the current study is the integration 

of four approaches, namely the Taguchi method, Pareto 

principle, Box Behnken design, and TLBO, in short, code-

named TP-BBD-TLBO methodology. 

 Some findings in the literature compared the results 

from TLBO and other evolutionary approaches. The 

comparison was based on the optimized input parameters' 

precision and the methods' convergence rate. Dave (2019) 

found that TLBO converges faster than PSO. Rao & 

Kalyankar (2011) found that when the results of TLBO 

and ABC were compared, it was found that the results in 

both methods were similar, i.e., in agreement but that the 

TLBO algorithm converges to the optimal result using a 

tiny population size and fewer numbers of iteration to 

converge. 

 Finally, the current study has attempted to introduce a 

novel approach to the boring operation literature, which 

offers a promising result that is of high accuracy than 

those obtainable in the boring operation literature. 

2.2. General 

 Dave (2019) claimed that upon a comparison of results 

from TLBO and PSO based on precision and rate of 

convergence, it was found that TLBO gave a higher value 

of material removal rate than PSO and that TLBO also 

converges faster than PSO when the machining process 

performed on Helical path orbital EDM process and work 

material are AISI 304 and Inconel 718. In support of this 

result, it was mentioned that TLBO does not need an 

algorithm-specific parameter for optimization, hence its 

superiority over PSO; the proposed method could be 

applied to other output parameters, such as surface 

roughness. 

 Rao & Kalyankar (2011) claimed that the machining 

process used in the experiment is the electrochemical 

machining (ECM) process and electrochemical discharge 

machining (ECDM) process and the results obtained from 

TLBO and ABC were compared. It was found that the 

results in both methods were similar but that the TLBO 

algorithm converges to the optimal result using a tiny 

population size and fewer numbers of iterations to 

converge. To support this, the claimed result was 

concluded that TLBO is superior over the ABC and other 

new approaches based on population size, number of 

generations, and computational time. Zain et al. (2010) 

claimed that with conditions of the highest speed, lowest 

feed rate, and highest rake angle, the genetic algorithm 

outputted the most desirable optimal surface roughness as 

0.138 micrometers when end milling machining operation 

is performed on titanium alloy work material. It was 

concluded that the GA approach in the present study is 

capable of reducing the minimum surface roughness value 

of experimental sample data by 25%. 

 Lin et al. (2015) claimed that when the analytic 

hierarchy process is used to determine the optimal 

solution, the solutions found were more environmentally 

friendly than those found by the experiment method's 

design. By evaluation, it shows that the proposed method 

can be used to optimize another machining parameter. 

Rao & Kalyankar (2013) claimed that the TLBO is free 

from algorithm parameters like other evolutionary 

approaches and also found that TLBO offers a better 

result in terms of performance and computational time 

when compared to other evolutionary methods; by 

evaluation, It was concluded that the extension of TLBO 

to other conventional and advanced machining process 

used in manufacturing industries could easily be achieved. 

Dikshit et al. (2017) claimed that from the ANOVA result, 

the cutting speed is the most significant parameter, 

followed by the axial depth of the cut. And that the 

optimal parameters from TLBO were found to be 0.06mm, 

0.74 mm, 145.8 m/min, and 0.38 mm for feed per tooth, 

axial depth of cut, cutting speed, radial depth of cut, 

respectively, with a resulting surface roughness of 

1.11micrometer, when Al2014-T6 alloy is milled on a 

high-speed ball-end milling machine, this results is 



International Journal of Industrial Engineering and Engineering Management, Vol. 4, No. 2, December 2022     53 

 

 

 

 

supported by a validation experiment, upon evaluation, it 

was concluded that it could be further applied to the 

optimization of cutting forces and RMS in HSM process. 

 Sahu & Andhare (2015) claimed that from the RSM 

analysis, increases in cutting speed decrease the surface 

roughness and that surface roughness increases with an 

increase in feed rate. Furthermore, the depth of cut is 

found not to affect the surface roughness in the turning 

operation of Ti-6Al-4V material, and the low maximum 

error is computed when comparing the predicted. The 

measured surface roughness shows that the model 

effectively predicts surface roughness. In conclusion, the 

obtained optimal input parameters gave an optimized 

surface roughness of 0.3120 µm. 

 Gupta et al. (2019) claimed that both PSO and TLBO 

were very effective in determining the optimal input 

parameters and that PSO provided a better result than 

TLBO in a turning of Inconel-800 under minimum 

quantity lubrication; furthermore, it was found that the 

minimum quantity of lubrication was a better lubrication 

process than flooded and dry lubrication processes in the 

studies. Patel et al. (2018) claimed that the predicted and 

experimental surface roughness shows a percentage error 

of 3.7781%  in the plasma cutting operation of AISI D2 

steel. In conclusion, the result from the TLBO approach 

was compared to that obtained by the GA approach, and 

it was observed that the TLBO was better after evaluation. 

 Kumari et al. (2020) claimed that the optimal surface 

roughness found with the Taguchi method is 2.4 

micrometer with an optimized set of peak current = 1 amp, 

Ton = 40 µs, Toff = 9 µs, and that pulse on time and pulse 

off time had a significant effect on surface roughness in 

the electric discharge machining process of pure 

magnesium (Mg), and that the optimized parameters from 

both TLBO and Taguchi are very close but that from 

Taguchi was better, this claim was supported by 

comparison of both results. Upon further evaluation, it 

shows that when multimodal is required, TLBO is more 

effective. Rao & Kalyankar (2013) claimed that with 

USM, TLBO has shown an improvement of 12% over GA, 

and also better results than another optimization algorithm, 

using the same model, in the same fashion, with AJM 8% 

and 20% were recorded over GA and simulated annealing 

algorithm for brittle and ductile material respectively, 

furthermore, with WEDM, TLBO showed better result 

than ABC, all in a process where Inconel 601 and alumina 

ceramics is used as work materials. It was concluded that 

TLBO, in the present work, shows superiority over other 

optimization algorithms and that it would be used for the 

optimization of other process parameters like welding 

process parameters. Last it is further evaluated and 

concluded that the TLBO process could be further worked 

upon in the aspect of having different teachers for 

different subjects and further learning by tutorials. 

 Upadhyay et al. (2013) claimed that when the 

acceleration amplitude of tool vibrations in axial, radial, 

and tangential directions was used to develop multiple 

regression models for surface roughness prediction in the 

turning operation of Ti–6Al–4V alloy, both models 

developed were of low prediction accuracy of 24% 

maximum percentage error, but when the regression 

model is built with feed rate, depth of cut and acceleration 

amplitude of vibration in the radial and tangential 

direction. The accuracy of surface roughness prediction 

was high, with a 7.45% maximum percentage error. Singh 

et al. (2019) claimed that RHVT was very effective in 

improving the MQL process by 15% for all responses in 

the turning process of Titanium (Grade 2); upon 

evaluation, it is concluded that TLBO was the best 

optimization method in this regard with a success rate of 

90% and average time of 1.09s. Abdallah et al. (2014) 

claimed that precise knowledge of the optimal cutting 

parameters would lead to a reduction in machining cost 

and improved quality of products. The result from the 

ANOVA shows that the feed rate, depth of cut, and speed 

have a significant influence on the MRR and surface 

roughness in the CNC turning operation of Aluminum 

alloy 6061. It is concluded that the result from Taguchi 

shows a surface roughness of 1.98 micrometers and that 

the final surface roughness obtained using the optimized 

parameter is 0.256 using RSM. 

 Rudrapati et al. (2016) claimed that from the ANOVA 

result, the feed rate and depth of cut, excluding the spindle 

speed, including the squares of all parameters, were 

significant to the surface roughness. It is concluded that 

optimal parameters from the TLBO process are spindle 

speed = 700 rpm, feed rate = 25 mm/min, depth of cut = 

0.2 mm, and the resulting surface roughness is 0.42081 

μm. Abhishek, Kumar, Datta, & Mahapatra (2017) 

claimed that the TLBO was a better method than GA 

when their results were compared to the current study. It 

was further argued that the TLBO approach utilizes less 

computational effort for solving constraints and 

unconstraint problems. Upon evaluation, It is concluded 

that the TLBO approach needs quite a small size of 

population and low maximum iteration to reach optimal 

process parameters. Prakash & Gopalakannan (2021) 

claimed that when the input parameters are increased, the 

MRR, surface roughness, and tool wears. Radial overcut 

increases also when Aluminum alloy (AA) 7075 

reinforced with nano silicon carbide particles (1.5 wt%) 

goes through Micro Electro Chemical Machining (μECM) 

process. It is concluded that when a target surface 

roughness of 0.4micrometer was set, the TLBO approach 

performed better than RSM. However, the result from 

both methods was in close agreement. 

 George et al. (2019) claimed the output parameters 

machined using the WEDT process with Inconel 825 as 

work material obtained from the validation experiment 

and TLBO were in close agreement. Natarajan et al. (2018) 

claimed that EMOTLBO produced a uniformly 

distributed Pareto front, making it better than the 

optimization algorithms in the CNC turning of ACETAL 

homopolymer material (Delrin). It was concluded that 

validation of the simulation result was done 

experimentally with a difference of less than 5%, which 

shows that the simulated and experimental results are in 

agreement. Sharma et al. (2020) declared that the 

proposed model provided an optimal parameter setting of  

Ip: 3A; Ton: 40 ms; Toff: 42 ms for both drilling rate and 

electrode wear rate in the electric discharge drilling of 

Titanium and that the predicted and experimental results 

percentage errors are 8.1 and 7.5% for drilling rate and 

electrode wear rate respectively, In conclusion, the author 
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suggested that instead of using conventional statistical or 

artificial intelligence methods, the proposed methods can 

be used to optimize process parameter of the different 

machining process. Gadekula et al. (2018) maintained that 

the optimal parameters for MRR are 2000, 60, and 0.8 for 

spindle speed, feed rate, and depth of cut, respectively, 

while those obtained for surface roughness are 1500, 40, 

0.8, respectively, for the turning operation of high carbon 

high chromium steel (HCHCR) on a CNC Turning 

machine (dry turning). It is concluded that the Taguchi 

method successfully optimizes the input and output 

parameters by minimizing the surface roughness and 

maximizing the MRR. 

 From the discussion above, the literature has shown that 

(1) several material grades have been used by authors with 

the concern of how they impact performance during 

machining (2) modern-day manufacturing is gradually 

displacing the conventional machining of CNC 

technology like boring with novel and attractive systems 

such as electrochemical discharge machining, abrasive jet 

machining, and electrical discharge machining, which are 

non-conventional, systems nonetheless, not all countries 

and economics have accepted the non-conventional 

machining probably partly because of the investment and 

maintenance cost of such equipment. (3) A broad range of 

parameters and responses have been deployed and tested 

in machining systems, particularly in conventional 

machining, such as boring, turning, and mulling (4) 

diverse optimization methods have been tested in the 

boring area and machining in general. The earlier set of 

optimization methods includes the Taguchi method, grey 

relational analysis, and response surface methodology. 

However, of late non-conventional optimization methods 

have been deployed to improve machine performance. 

These methods include evolutionary algorithms such as 

genetic algorithms and particle optimization, among 

others. 

 Furthermore, viewing the literature closely, several 

studies have established that machining performance 

could be improved through the choice of adequate boring 

parameters. It was also known that responses such as 

surface roughness could be reduced through an efficient 

boring process that ignores intuition and experience but 

depends largely on scientific tools of optimization that are 

appropriately chosen. Consequently, the research gap in 

boring optimization and the wide range of economic 

activities in boring operations for components stimulate 

the need to gain insight into and optimize the critical 

parameters impacting the boring process. This article 

presents a new method referred to as the TPBBD-TLBO 

method, which has been tested to optimize the boring 

parameters of IS 2062 E250 steel plates. The work studies 

diverse boring parameters that influence the operational 

performance of a CNC machine during the boring 

operation. Four parameters were concerned with this 

article, depth of cut, speed, feed rate, and nose radius. This 

article offers a novel method that optimizes and predicts 

the largely impacting boring parameters on the 

accomplishment of the boring system. The regression 

model was developed as an objective function of the 

TLBO method and run on a C++ code using a computer 

system. An alternative to the Taguchi-box Behnken 

method was also deployed as an objective function to 

optimize the TLBO method. Validation of the method was 

conducted using the data from the literature extracted 

from experimental means. The TLBO method was used to 

ascertain the contribution of each parameter to the 

operations performance. The TLBO revealed itself as a 

reliable and straightforward approach suitable for boring 

operations. The outcome of the TLBO method was used 

to establish the superior groups of parameters for 

performance optimization for the boring process. 

 

3. METHODS 

3.1. Teaching-learning process 

Among the several optimization methods, such as 

particle swarm optimization and genetic algorithms, 

which are non-conventional techniques, the TLBO 

method is a newly developed tool with the credit of 

development to Rao & Kalyankar (2011). In this article, 

the TLBO method is adopted for use in the perspective of 

boring the IS 2062 E250 steel plates on the CNC, gaining 

insight into its implementation steps. Next, it avoids 

complexity in its turning process since only two turning 

parameters are involved. However, in other methods, the 

turning parameters are many, bringing complications in 

their implementations and requiring a high level of 

intellectual development in programming to solve and 

utilize the algorithm. Because the TLBO avoids this 

challenge with a low number of turning parameters, it is 

gradually gaining acceptance in various fields of 

engineering, energy, and material science, among other 

areas. 

Furthermore, as demonstrated in the present article, the 

TLBO may be conveniently implemented through 

computer-assisted coding in a python programming 

language. It possesses the attribute of a single 

optimization characteristic such that in a process, if there 

are multiple parameters and multiple outcomes, the 

objective functions are formulated based on individual 

outcomes and introduced into the TLBO method. In a 

boring operation, for instance, where the critical 

parameters are the feed rate, depth of cut, spindle speed, 

and nose radius while machining time and surface 

roughness are the outcomes, the TLBO method will 

consider an objective function formed on machining time 

as the dependent variable (outcome) while the spindle 

speed, feed rate, depth of cut and nose radius will be 

taken as the independent (input) parameters and 

predictions conducted based on this relationship. Next, 

the surface roughness is adopted as the outcome while the 

mentioned four parameters are considered as inputs. 

Since this method adopts only one output at a time about 

the inputs, it follows a single objective function 

development scenario. 

In this article, to solve the surface roughness 

optimization problem while solving the boring operation 

optimization problem, the TLBO method was introduced. 

This work is one of the integration methods to process 

the IS 2062 E250 steel plates. The real-life teaching and 

learning process is imitated to solve the boring process 

optimization problem. The philosophy on which the 

TLBO method is built is such that the teacher evaluates 
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the understanding requirements of the students, 

determines the specific learning objectives in the course 

being taught, and develops strategies to teach the 

students, including memorizing strategies for the 

students. Furthermore, the teacher imposes a work plan 

and evaluates the effectiveness of the instructional 

program. This idea of the teaching-learning model is 

thought to be suitable for analyzing the boring operation 

while processing the IS 2062 E250 steel plates on the 

CNC machine. 

 

3.2 Procedure for Taguchi-Pareto-Box Behnken 

Design-TLBO approach 

Step 1a. Implement step 1a of the work of Abdullahi 

and Oke (2022) for scenarios 1 and 2. 

For scenario 1, where for instance, assuming 

the optimized parameter from the Box 

Behnken design approach were 30 rpm of 

spindle speed, 0.001 mm/min for feed rate, 

0.02 mm for depth of cut, and 0.005 mm for 

nose radius. 
Two scenarios describe the work done in this 

article, scenarios 1 and 2. In scenario 1, the 

regression equation was established based on 

linear programming. This was based on the 

already optimized parameters from the Box 

Behnken equation. This optimized method is 

the Taguchi-Pareto-Box Behnken design 

method. Then the optimized parameters are 

used to create the objective function. 

However, still working with the Taguchi-

Pareto Box Behnken design, there is a part of 

the method in the computer code developed 

that the authors created to include regression 

equation. Scenario 2 uses this regression 

equation to run the TLBO as an objective 

function. At some points in the computations, 

the authors compared the two results, i.e., 

when the regression equation is used and 

when the optimized parameter from Box 

Behnken is used to generate the objective 

function. 

Using the linear programming concept, we 

have the objective function generated as  

F(X) = 30S + 0.001F + 0.02DC  

      + 0.005 NR                  (1) 

Step 1b. Implement step 1b of the work of Abdullahi 

and Oke (2022). Take, for instance, the 

experimental value in three levels for the four 

parameters under consideration, which says 

the speed parameter for the three levels of the 

experiment are 10rpm for level 1, 25rpm for 

level 2, and 70rpm for level 3. Therefore, the 

constraint for the speed parameter would be 

generated as 10 ≤ S ≤ 70. The same process is 

followed to generate constraints for the feed 

rate, depth of cut, and nose radius parameters. 

Assuming the constraint for the feed rate 

parameter is 0.001 ≤ F ≤ 0.003 and that of the 

depth of cut is 0.002 ≤ DC ≤ 0.04, while that 

of nose radius is also assumed to be 0.0 ≤ NR 

≤ 0.005. 

Step 2a.  Set the population size of the class to be 

considered. The maximum number of 

iterations to be performed on the population, 

take, for instance, the population of the class 

to be four, i.e., there would be four students 

in the class. The maximum iteration to be 

performed is five iterations, i.e., the TLBO 

procedure would be performed five times to 

obtain an optimal solution. 

Step 2b. Populate the class based on the population 

size chosen using Equation (2): 

x = L + rand x (U – L)                (2) 

Where L is the lower bound of a parameter, U 

is the upper bound of a parameter, and a rand 

is a random number between 0 and 1. For 

instance, the feed rate parameter having a 

lower bound of 0.001 and upper bound of 

0.003 is populated based on the chosen 

population size by substituting into the above 

expression for the population size chosen 

(i.e., the substitution and computation would 

be done four times), while changing the 

random number each time, resulting to: 

x1 = 0.001 + 0.02 x (0.003 – 0.001) = 0.00104 

x2 = 0.001 + 0.05 x (0.003 – 0.001) = 0.0011 

x3 = 0.001 + 0.04 x (0.003 – 0.001) = 0.00108 

x4 = 0.001 + 0.06 x (0.003 – 0.001) = 0.00112 

This represents the population of the feed rate 

parameter for the chosen population or class 

size. The same computations are done for the 

speed, depth of cut, and nose radius 

parameters. To fully populate the class, a 

fully populated class is composed of all 

computed values of each factor in 

consideration. Therefore a student in the class 

is represented by each computed parameter. 

For instance, [45  0.0011  0.0023  0.045] 

represents a student, where 45, 0.0011, 

0.0023, 0.045, are the computed value of the 

speed, feed rate, depth of cut, and nose radius 

parameters, respectively, so a fully populated 

class in our regard would have four of such 

student.                                                            

Step 3a. Next is the computation of the fitness values 

of each student in the class; this is done by 

substituting each factor in or representing a 

student appropriately into the objective 

function, for example, using the above 

instance of a student, i.e. [45  0.0011  

0.0023  0.045] and substituting accordingly 

into the objective function gives: 

F(X) = 30 x 45 + 0.001 x 0.0011 + 0.02 x 

0.0023 + 0.005 x 0.045 = 1350.0014 

The value 1350.0014 is the fitness value of 

the student [45  0.0011  0.0023  0.045] in 

the class. In the same manner, the fitness 

values of all students in the class are 

computed. Assuming fitness values of student 

in the class was computed as 1350.0014, 

1405.0022, 1503.0450, 1405.7902. 

Step 3b. Select a teacher among the students in the 
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class by choosing the fitness value of the 

student that is the largest or smallest in the 

class, based on your objective of 

maximization or minimization. 

Since our objective is minimization, the 

student with the smallest fitness value is taken 

as the teacher in the class, that is 1350,0014, 

which corresponds to this [45, 0.0011, 

0.0023, 0.045] student in the class and is 

designated as Xbest. 

Step 3c. Compute the mean of each factor in each 

student in the class. For instance, take the 

speed parameter in each student as 45.56, 

50.55, 30.34, and 25.67, i.e., each value 

represents the speed parameter in students 1, 

2, 3, and 4, respectively. Therefore computing 

the mean, we have: 

(45.56 + 50.55 + 30.34 + 25.67)/4 = 30.03 as 

the mean of the speed parameter in each 

student. 

The mean of all other factors in the class is 

computed in the same manner. For instance, 

take the mean of all factors in the class as 

[30.03, 0.0034, 0.022, 0.045], where 30.03, 

0.0034, 0.022, and 0.045 represents the mean 

of the speed, feed rate, depth of cut, and nose 

radius parameters respectively, and 

designated as Xmean = [30.03, 0.0034, 0.022, 

0.045]. 

Step 4. The first iteration in the TLBO starts with 

taking the first student in the class through the 

teaching phase to improve its performance 

using the expression:  

Xnew = X + r(Xbest – Tf  x Xmean), 

where X = current student assumed to be 

[39.45  0.0021  0.0013  0.035] 

r is a random number between 0 and 1 

Therefore, substituting each factor 

represented in Xbest, Xmean, and X into Xnew 

accordingly gives: 

x1 = 39.45 + 0.3(45-1(30.3)) = 43.86 for the 

speed parameter. 

x2 = 0.0021 + 0.32(0.0011-1(0.0021)) = 

0.00178 for the feed rate parameter. 

x3 = 0.0013 + 0.81(0.0023-1(0.022)) = -

0.014657 for the depth of cut parameter. 

x4 = 0.035 + 0.9(0.045-1(0.045)) = 0.035  

for the nose radius parameter. 

Therefore, the resulting  Xnew = [43.86, 

0.00178, -0.014657, 0.035] 

Step 5. The next step is to check if the factors in Xnew 

are within the constraints bound for each 

parameter, that is to say, that if the value of a 

factor in Xnew is less than the value of the 

lower bounds of that particular parameter, 

then that value in Xnew is discarded and 

replaced with the value of the lower bound of 

that particular parameter in Xnew. 

Furthermore, if the value of a factor in Xnew is 

greater than the value of the upper bound of a 

particular parameter, then that value is 

discarded from Xnew and replaced by the value 

of the upper bound of that particular 

parameter. For instance, comparing the value 

of the factors in Xnew with the values of 

bounds of each parameter we have, Xnew = 

[43.86, 0.00178, 0.002, 0.005], representing 

Xnew after checking. 

Step 6. Next is the computation of the fitness value of 

Xnew using the objective function, so we have: 

F(X) = 30 x 43.86 + 0.001 x 0.00178 + 0.02 x 

0.002 + 0.005 x 0.005 = 1315.8001 as the 

fitness value of Xnew. 

Step 7. Perform the greedy selection by checking if 

the fitness value of Xnew is better than the 

fitness value of the current solution. In our 

case of minimization, we would check if the 

fitness value of Xnew, computed as  

1315.8001, is less than the fitness value of the 

current solution, which was 1350.0014. By 

comparing the two values, the fitness value of 

Xnew is smaller and so better for our objective. 

Therefore, the current solution would be 

updated with the new solution that is Xnew, 

including its fitness value, i.e., the current 

solution is now Xnew = [43.86, 0.00178, 0.002, 

0.005], and its fitness value is 1315.8001. 

This process ends the teacher phase of the 

TLBO algorithm. 

Step 8a. The same current solution, i.e., the student 

would then go through the learner phase of 

the TLBO algorithm, where the current 

student would randomly select a reading 

partner in the class to help him improve using 

Equation (3): 

)( pnew XXrXX −+=  if f < pf   

or )( pnew XXrXX −−=  if 
f

> pf     (3) 

as our objective is minimization, 

where X is the current solution/student, 

r is a random number between 0 and 1, 

Xp is the student reading partner, 

f is the fitness value of the current solution, 

fp is the fitness value of the reading partner.                                                                     

Step 8b. Assuming that the third student in the class 

was randomly chosen as the reading partner 

of the current solution/student and 

represented by Xp = [39.86, 0.00154, 0.001, 

0.003] and a fitness value of 1195.8000, using

)( pnew XXrXX −−=  if f > pf  since 

the fitness value of the current 

solution/student is greater than the fitness 

value of the reading partner. 

Step 9. Repeat step 5 to check if the factors in Xnew 

are within the constraints bound of each 

parameter. 

After the check we have Xnew = [43.06, 

0.00185, 0.0028, 0.005]. 

Step 10. Compute the fitness value of Xnew 

F(X) = 30 x 43.06 + 0.001 x 0.00185 + 0.02 x 

0.0028 + 0.005 x 0.005 = 1291.8000 

Step 11. Repeat step 7 above. By doing so, it was 

observed that the fitness value of Xnew, i.e., 

1291.8000 is better than that of the current 
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solution/student, i.e., 1315.8001, since it is 

less than it. Therefore, the current solution 

would be updated with Xnew as the current 

solution, including its fitness value updated 

accordingly. 

This process signifies the end of the learner 

phase and the end of the TLBO process for 

the first student in the class. 

Step 12. The next step is to perform the whole TLBO 

algorithm of teacher and learner phases on the 

rest of the students in the class to complete the 

first iteration, resulting in new solutions and 

fitness values. 

Step 13. The procedure from step 3b to step 12 is 

repeatedly performed on the new solutions 

each time for the chosen maximum number of 

iterations. Assuming the maximum number of 

iterations is 5, the procedure from step 3b to 

step 12 would be repeated five times, each 

time on the new solution to complete the 

whole TLBO algorithm procedure, of which 

at the end of each iteration, the best solution 

and its fitness value is a capture. 

Step 14. Relate the output from the first scenario back 

to the signal-to-noise ratio by inputting its 

optimal parameters into the regression 

equation used for scenario two, as its output 

is not related to the signal-to-noise ratio—

still, some function of the input parameters to 

establish a comparison platform for the two 

scenarios. 

For instance, if the optimized output from the 

first scenario are 10, 0.03, .0.01 and 1.2 for 

the speed, feed, depth of cut, and nose ratio 

respectively, substituting this figures into the 

regression equation which for instance is 

signal to noise ratio = 12.3+10S + 0.0021F + 

0.12DC + 0.003 NR. 

We have, signal to noise ratio = -12.3 + 10*10 

+ 0.0021 * 0.03 + 0.01 * 1.2 + 0.003 * 1.2   

= -12.4157db, with this, the two results of the 

two scenarios can be compared. 

Step 15. The TLBO approach explained above is then 

coded using the python programming 

language. 

Step 16. Report results from the two scenarios 

outputted from the python-coded genetic 

algorithm optimization approach. 

 The reference data used in the present work, obtained 

from Patel and Deshpande (2014), is shown in Table 1. 

  

 

4. RESULTS AND DISCUSSION 

 
In the present reporting, the objective function was 

generated using the Box Behnken design optimized 

parameters and the TLBO method run for optimal 

solutions. Results were recorded after running ten 

iterations each in steps of ten to observe if there is any 

convergence behavior at those iteration points. 

Consequently, the best solution fitness value in the class 

at the end of the 10th iteration was 872728.534. This value 

has been maintained at the ends of the 20th, 30th, and 40th. 

It also remained at the same value of 872728.5336000001 

at the end of the 50th iteration. These results are shown in 

Table 2. 

 The full results at optimal points are [800,0.06,1, 0] 

interpreted as 800 rpm for the spindle speed, 0.06 mm/min 

for the feed rate, 1 for the depth of cut mm, and 0 for the 

nose radius. These optimized values are then substituted 

into the regression equation, as explained in step 14 of the 

procedure for the TP-BBD-TLBO approach. We have the 

optimized input parameter SNR value as -55.6239dB. The 

convergence behavior using the TLBO method, where the 

number of iterations is studied against the objective 

function, is shown in Figure 1.
  

Furthermore, also in the present article, the objective 

function was developed using the regression equations 

optimized parameters and the TLBO approach to obtain 

the best solutions. Following the previous alternative, 

iterations were stopped for observations after ten 

iterations with an increment of 10, subject to a maximum 

of 50 iterations and using the python programming codes 

(Table 3).
 

Consequently, the fitness function was observed at the 

end of the 10th, 20th, 30th, 40th and 50th iterations and 

observed to be the parametric values are 1135.46 rpm 

(speed), 0.06 mm/min feed rate, 1.24mm (depth of cut) 

and 0.16 mm (nose radius) (Table 3). At the 50th iteration, 

the final results containing the optimal feed rate, nose 

radius, speed, and depth of cut are shown to be at 

convergence (Figure 2). 

Table 2 is for the simulation of the objective function 

when linear programming, while Table 3 is for the 

simulation obtained for the objective function when the 

regression equation is used as the objective function. 

Tables 2 and 3 are related in that both are developed from 

the values obtained from different objective functions. 

But for, Table 3’s output is the signal-to-noise ratio (SNR), 

but Table 2's output merely mimics the surface roughness. 

However, it has to be related to the SNRs to compare them. 

So, all the works are linked backed to SNRs to compare 

the two results. Thus, for the method that uses linear 

programming at the end of the computations, the 

optimized parameters are what the present authors are 

Table 1. Original reference data for model and data analysis (Patel and Deshpande (2014) 

 Levels 

Parameters Level 1 Level 2 Level 3 Level 4 

Speed (rpm) 800 1000 1200 1400 

Feed (mm/rev) 0.06 0.08 0.10 0.12 

Depth of cut (mm) 1.00 1.25 1.40 1.50 

Nose radius (mm) 0.8 1.2 - - 
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interested in and not the output because the outputs are 

just figures. Then the optimized parameters are then 

reintroduced into the regression equation to obtain the 

SNRs of the particular optimized parameters. Then the 

outputs of the SNRs are compared from the linear 

programming and that of the regression equation to 

observe which one is bigger.
 

Moreover, Tables 2 and 3 are associated with tolerance 

and accuracy values, which may be determined for 

iterations. However, in this article, the tolerance of the 

whole analysis was based on the maximum number of 

iterations. This is one of the approaches to conducting 

simulation tests using the TLBO method. Besides, the 

authors did not specify any tolerance for the work. 

However, in some literature, a divergent view is specified. 

If the iteration reaches the tolerance value or if a specific 

value reaches the tolerance value, often represented by 

epsilon, ɛ, then the iteration will cut. Thus, the final results 

were obtained in this work based on the maximum 

number of iterations. If the chosen iteration through 

preliminary tests was reached without convergence, then 

the number of iterations is increased until convergence 

happens.  

 

Table 2. TLBO data when the objective function is generated using  

the Box Behnken design optimized parameters [max_iter = 50, class_size = 5] 

Iterations Optimal Solutions 

1 [800, 0.06, 1, 0.3146362103590515] 

2 [800, 0.06, 1, 0.10012624948486523] 

3 [800, 0.06, 1, 0.0543481853418365]  

4 [800, 0.07450965866303144, 1, 0]    

5 [800, 0.06, 1, 0] 

6 [800, 0.06, 1, 0] 

7 [800, 0.06, 1, 0] 

8 [800, 0.06, 1, 0] 

9 [800, 0.06, 1, 0] 

10 [800, 0.06, 1, 0] 

 The best solution fitness value in the class at the end 10th iteration is 872728.5340 

11 [800, 0.06, 1, 0] 

12 [800, 0.06, 1, 0] 

13 [800, 0.06, 1, 0] 

14 [800, 0.06, 1, 0] 

15 [800, 0.06, 1, 0] 

16 [800, 0.06, 1, 0] 

17 [800, 0.06, 1, 0] 

18 [800, 0.06, 1, 0] 

19 [800, 0.06, 1, 0] 

20 [800, 0.06, 1, 0] 

 The best solution fitness value in the class at the end 20th iteration is 872728.5340 

21 [800, 0.06, 1, 0] 

22 [800, 0.06, 1, 0] 

23 [800, 0.06, 1, 0] 

24 [800, 0.06, 1, 0] 

25 [800, 0.06, 1, 0] 

26 [800, 0.06, 1, 0] 

27 [800, 0.06, 1, 0] 

28 [800, 0.06, 1, 0] 

29 [800, 0.06, 1, 0] 

30 [800, 0.06, 1, 0] 

 The best solution fitness value in the class at the end 30th iteration is 872728.5340 

31 [800, 0.06, 1, 0] 

32 [800, 0.06, 1, 0] 

33 [800, 0.06, 1, 0] 

34 [800, 0.06, 1, 0] 

35 [800, 0.06, 1, 0] 

36 [800, 0.06, 1, 0] 

37 [800, 0.06, 1, 0] 

38 [800, 0.06, 1, 0] 

39 [800, 0.06, 1, 0] 

40 [800, 0.06, 1, 0] 

 The best solution fitness value in the class at the end 40th iteration is 872728.5340 
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 Table 2. (Cont.’) 

Iterations Optimal Solutions 

41 [800, 0.06, 1, 0] 

42 [800, 0.06, 1, 0] 

43 [800, 0.06, 1, 0] 

44 [800, 0.06, 1, 0] 

45 [800, 0.06, 1, 0] 

46 [800, 0.06, 1, 0] 

47 [800, 0.06, 1, 0] 

48 [800, 0.06, 1, 0] 

49 [800, 0.06, 1, 0] 

50 [800, 0.06, 1, 0] 

 The best solution fitness value in the class at the end 50th iteration is 872728.5336 

Optimal 

solution 

[800, 0.06, 1, 0] 

 

 
Figure 1. The plot when the objective function is generated using optimized BBD parameters 

 

Table 3. TLBO data regression equation is used as the objective function 

[max_iter = 50, class_size = 200] 

Iterations Optimal Solutions 

1 [1155.7142318863941, 0.06060514517313923, 1.1749776076676919, 0.5391166182509953] 

2 [1155.7142318863941, 0.06060514517313923, 1.1749776076676919, 0.5391166182509953] 

3 [1155.7142318863941, 0.06060514517313923, 1.1749776076676919, 0.5391166182509953] 

4 [1155.7142318863941, 0.06060514517313923, 1.1749776076676919, 0.5391166182509953] 

5 [1177.2328749172084, 0.06, 1.1742777777746425, 0.5555631932916197] 

6 [1178.3005360654347, 0.06, 1.144180892343662, 0.6015570430334648] 

7 [1178.3005360654347, 0.06, 1.144180892343662, 0.6015570430334648] 

8 [1110.3944863509373, 0.06, 1.1112340701431114, 0.608295301782312] 

9 [1110.3944863509373, 0.06, 1.1112340701431114, 0.608295301782312] 

10 [1110.3944863509373, 0.06, 1.1112340701431114, 0.608295301782312] 

 The best solutions fitness value in the class at the end 10th iteration is -51.4520 

11 [1110.3944863509373, 0.06, 1.1112340701431114, 0.608295301782312] 

12 [1110.3944863509373, 0.06, 1.1112340701431114, 0.608295301782312] 

13 [1110.3944863509373, 0.06, 1.1112340701431114, 0.608295301782312] 

14 [1110.3944863509373, 0.06, 1.1112340701431114, 0.608295301782312] 

15 [1146.8652944192565, 0.06, 1.2163985170102332, 0.5735783327630838] 

16 [1146.8652944192565, 0.06, 1.2163985170102332, 0.5735783327630838] 

17 [1146.8652944192565, 0.06, 1.2163985170102332, 0.5735783327630838] 

18 [1127.3018452792455, 0.06, 1.227564208049099, 0.6063413226827501] 

19 [1127.3018452792455, 0.06, 1.227564208049099, 0.6063413226827501] 

20 [1127.3018452792455, 0.06, 1.227564208049099, 0.6063413226827501] 

 The best solutions fitness value in the class at the end 20th iteration is -51.4300 
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 Table 3. (Cont.’) 

Iterations Optimal Solutions 

21 [1127.3018452792455, 0.06, 1.227564208049099, 0.6063413226827501] 

22 [1127.3018452792455, 0.06, 1.227564208049099, 0.6063413226827501] 

23 [1135.4600939755744, 0.06, 1.2407655631447283, 0.6123977479575711] 

24 [1135.4600939755744, 0.06, 1.2407655631447283, 0.6123977479575711] 

25 [1135.4600939755744, 0.06, 1.2407655631447283, 0.6123977479575711] 

26 [1135.4600939755744, 0.06, 1.2407655631447283, 0.6123977479575711] 

27 [1135.4600939755744, 0.06, 1.2407655631447283, 0.6123977479575711] 

28 [1135.4600939755744, 0.06, 1.2407655631447283, 0.6123977479575711] 

29 [1135.4600939755744, 0.06, 1.2407655631447283, 0.6123977479575711] 

30 [1135.4600939755744, 0.06, 1.2407655631447283, 0.6123977479575711] 

 The best solutions fitness value in the class at the end 30th iteration is -51.4290 

31 [1135.4600939755744, 0.06, 1.2407655631447283, 0.6123977479575711] 

32 [1135.4600939755744, 0.06, 1.2407655631447283, 0.6123977479575711] 

33 [1135.4600939755744, 0.06, 1.2407655631447283, 0.6123977479575711] 

34 [1135.4600939755744, 0.06, 1.2407655631447283, 0.6123977479575711] 

35 [1135.4600939755744, 0.06, 1.2407655631447283, 0.6123977479575711] 

36 [1135.4600939755744, 0.06, 1.2407655631447283, 0.6123977479575711] 

37 [1135.4600939755744, 0.06, 1.2407655631447283, 0.6123977479575711] 

38 [1135.4600939755744, 0.06, 1.2407655631447283, 0.6123977479575711] 

39 [1135.4600939755744, 0.06, 1.2407655631447283, 0.6123977479575711] 

40 [1135.4600939755744, 0.06, 1.2407655631447283, 0.6123977479575711] 

 The best solutions fitness value in the class at the end 40th iteration is -51.4290 

41 [1135.4600939755744, 0.06, 1.2407655631447283, 0.6123977479575711] 

42 [1135.4600939755744, 0.06, 1.2407655631447283, 0.6123977479575711] 

43 [1135.4600939755744, 0.06, 1.2407655631447283, 0.6123977479575711] 

44 [1135.4600939755744, 0.06, 1.2407655631447283, 0.6123977479575711] 

45 [1135.4600939755744, 0.06, 1.2407655631447283, 0.6123977479575711] 

46 [1135.4600939755744, 0.06, 1.2407655631447283, 0.6123977479575711] 

47 [1135.4600939755744, 0.06, 1.2407655631447283, 0.6123977479575711] 

48 [1135.4600939755744, 0.06, 1.2407655631447283, 0.6123977479575711] 

49 [1135.4600939755744, 0.06, 1.2407655631447283, 0.6123977479575711] 

50 [1135.4600939755744, 0.06, 1.2407655631447283, 0.6123977479575711] 

 The best solutions fitness value in the class at the end 50th iteration is -51.4291 

Optimal 

solutions 

[1135.4601, 0.06, 1.2408, 0.6124] 

 

 

Figure 2. The plot when regression equation is used as the objective function 
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In some simulations, convergence happens very fast, 

and in others, convergence takes time to happen. It is 

common that in most cases, if the number of iterations is 

too small, convergence will not occur. In this situation, 

the number of iterations increases, and the simulation 

experiment will be rerun. Based on the authors' 

experience, accuracy is the calculation of mean square 

error values. However, the authors did not follow the 

approach in this work.
 

Now, from the above results, it is interesting to know 

the possible advantages of the proposed method as 

follows. Moreover, this article develops a three-phase 

optimization method, TPBDD-TLBO, to take full 

advantage of the computational potentials of the python 

programming language where the quantitative and 

qualitative attribute of the Taguchi-Pareto method is 

combined with the highly interactive quality of the Box 

Behnken design together with the straightforward and less 

complicated tuning capabilities of the TLBO method is 

exploited for further optimization. The optimization is 

done first by the Taguchi-Pareto method and then by the 

Box-Behnken design, and then finalized by the TLBO 

method. The superb advantage of the TLBO method is 

that the number of tuning required is limited to two, which 

is extremely less compared with other evolutionary 

techniques. Furthermore, as the boring activities have a 

defined operational period bounded by the maximum 

working hours per day, the boring process has a limited 

number of operators to manage the large requests for the 

boring operations. Thus, responding to these time-bound 

activities and the limited number of operators, this article 

makes improvements in introducing precision search to 

obtain feature information about the component being a 

bored and timely reference to them and for task 

completion. Thus, the use of the TPBBD-TLBO method 

is better than the TPBBD method.
 

 

5. CONCLUSION 

Upon review of previous studies on the boring operation 

and the degree of perpetration in the machining literature, 

there is an impression that further optimizing the results 

provided by the Taguchi-Box Behnken design method for 

the IS 2062 E250 steel plates with the TLBO is not in 

dispute. Consequently, a new method referred to as the 

TPBBD-TLBO method has been proposed and tested with 

the IS 2062 E250 steel plate work material in a boring 

process, using literature data from Patel and Deshpande 

(2014). From the results of the study, the following 

conclusions are made: 

1. By applying the TPBBD-TLBO method in a case 

situation, the goal of the present study has been 

achieved. 

2. The use of the TPBBD-TLBO method is a feasible 

approach to optimize the results from the TPBBD 

method while engaging in the boring operation using 

the IS 2062 E250 steel plates. 

3. Using the Box Behnken as the objective function for 

the teaching learning-based model, convergence was 

reached at 50 iterations with a class population of 5. 

The optimal parametric solutions are 800 rpm of 

speed, 0.06 min/min of feed rate, 1 min for depth of 

cut, and 0 min for nose radius. 

4. On using the regression method for the objective 

function, while the TLBO is deployed, convergence 

was experienced after 50 iterations with a class 

population of 200 students. The optimal parametric 

solution is 1135rpm of speed, 0.06 min/min of feed 

rate, 1024 min of the depth of cut, and 0.61 min of 

nose radius. 

5. In comparing the two output types, the regression 

method requires higher optimal values in three 

parameters: speed, depth of cut, and nose radius. This 

implies that if the option is adopted, the process 

engineer will require higher energy usage, and hence 

the method is less efficient. On the other hand, the 

method optimized by the TLBO method while the 

objective function is then optimized Box Behnken 

design result is more energy-efficient and should be 

adopted. This is an additional perspective toward the 

analysis of the problem. 

6. By comparing the results from the two scenarios 

based on the SNR values, the second scenario having 

a higher SNR of -51.4291dB is more efficient in this 

regard as compared to the SNR of the first scenario, 

which was computed to be -55.6239dB. 

 In the future, the optimization action methods, such as 

the whale optimization approach, may be tested to expand 

the method's performance. 
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