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ABSTRACT 

This study aims to develop an optimization scheme that contributes to the production of carbon fiber-

reinforced plastics using the grey wolf optimization approach. Different from other optimization schemes 

such as the Taguchi method, which takes some time to compute and use, this grey wolf optimization approach 

introduced a fast convergence scheme to reduce computation time thereby making its implementation in the 

factory very interesting. Data used for the analysis was obtained from a doctoral thesis via an experimental 

approach. Four responses were considered in this work, namely the torque, delamination at entry and exit, 

eccentricity and thrust force. A spreadsheet was used to implement the computational procedure of the grey 

wolf optimization algorithm. In using the wolves, at the initial level, the starting point was a zero where 

hunting had not begun and the prey had just entered the park, which is within the territory of the grey wolves. 

With this in mind, real life is mimicked and such data gathered would aid precise decision-making. The 

results revealed the feasibility of the approach and convergence was obtained at the tenth iteration with the 

best fitness value at 9020785071. It is expected that the findings from this work will be useful as a method 

for planning in production planning and policy development for the carbon fiber-reinforced plastic industry. 

This study is a noteworthy contribution to the production development of CFRPs where the grey wolf 

algorithm is used to analyze the problem. In addition, evidence of the responses determining the quality of 

drilled products is provided. 
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1. INTRODUCTION 

 

 Carbon fibre-reinforced plastics (CFRPs) are a special 

class of composites often reinforced with carbon fibre for 

high-strength attainment (Cetin et al., 2023; Xu et al., 

2023). However, of great concern to CFRP manufacturers 

is the quality of the products. There have been serious 

challenges in obtaining high-quality products to 

confrontation issues such as high and unacceptable thrust 

force, and delaminating both at the entry and exit parts of 

the composites, among others (Kumar et al., 2020; 

Tamilarasan and Renugambal, 2023; Ahuja et al., 2023). 

It is understood that if acceptable quality CFRPs are to be 

delivered to the customers, models need to be built to 

achieve this for CFRP manufacturers. Then the quality of 

outputs needs to be measured for each production batch 

of the CFRP material. Unfortunately, the cost of 

conducting it is enormous and may negatively influence 

the profit made by the CFRP manufacturer. While this 

option is unattractive, a potentially useful option is the use 

of surrogates, the responses produced by the system, in 

terms of the measured thrust force, delamination at entry 

and exit, torque and eccentricity. In this context, a 

metaheuristic optimization procedure may be used to 

obtain the optimal responses which will maximize the 

quality of the manufactured CFRPs (Bhushi et al., 2020; 

Niranjan et al., 2022) 

 In the metaheuristic literature, several methods have 

been successfully applied to manufacturing problems. In 

some detail, authors have classified these methods into 

two district groups namely local searches, which describe 

metaheuristics as having sole solution. The second group 

is the random searches which depend on population. 

Notwithstanding, the group of previous literature 

applications common in the metaheuristic literature 

include genetic algorithms, krill herd algorithm, firefly 

algorithm, ant colony optimization, salp-swarm algorithm, 

parasitism-predation algorithm, harmony search 

algorithm, genetic algorithm, Taguchi-whale 

optimization algorithm, ant-lion optimization, ant colony 

algorithm,  particle swarm optimization and grey wolf 

optimization (Eremin et al., 2015; Abhishek et al. 2017; 

Alcántar et al., 2017; Ravisankar and Umamaheswarrao, 

2018; Gautam and Mishra, 2019; Boga and Koroglu, 2021; 

Yu et al., 2021; Balaji et al., 2021; Elsheikh et al., 2021; 

Kesarwani and Verma, 2022; Guru Mahesh and 

Kandasamy, 2023). From this list, grey wolf optimization 

(GWO) is one of the most promising and recent 

metaheuristic methods. It has its strength in obtaining the 

optimal solution as the superior solution falls under the 

domain of the optimal solution but it is fast to attain 

convergence. Moreover, the use of the grey wolf 

optimization procedure has been supported by several 

literature sources. These include fuel cell applications 

(Hao and Sobhani, 2021), air quality index (Li et al., 2022) 

image segmentation (Yu and Wu, 2022) and traffic flow 

(Sivakumar et al., 2022). Notwithstanding, their practical 

implementation in the context of optimizing drilling 

responses for the carbon fiber-reinforced plastic has not 

been readily achieved. Notice that the success and 

sustainability of the drilling process are hugely reliant on 

optimized thresholds usage of resources and the 

management of the drilling process without compromise 

for performance (Yarar and Karabay, 2020; Kumaran et 

al., 2018). Also, the continuous adoption of sub-optimal 

values of responses for decision-making indirectly leads 

to wastage and expensive maintenance of the drilling 

process. Optimal results guarantee the lowest cost of 

drilling and improved accuracy in drilling decision-

making. Therefore, it is desirable to use the grey wolf 

optimization algorithm, which is agreeable with the 

present gap in the drilling literature and the requirement 

for faster optimization algorithms. Consequently, from 

the compatibility outlook, the use of the grey wolf 

optimization algorithm for drilling response optimization 

is promising. The grey wolf algorithm could be easily 

implemented in the drilling arena as it possesses fewer 

parameters. It could be implemented easily also. In this 

work, we use the grey wolf optimization and not another 

multicriteria approach because the GWO obtains a 

solution by applying the cooperative behavior of the grey 

wolves as they hunt those who fall into their territory. 

With this attribute in place, decision-makers can obtain 

solutions faster than many other methods and the quality 

of the solution is high and acceptable. 

 Furthermore, the orthogonal arrays, signal-to-noise 

ratios and delta values are important factors in enhancing 

optimization performance in Taguchi-motivated schemes 

(Okanminiwei and Oke, 2020; Francis et al., 2022; Taiwo 

and Oke, 2022). To further enhance optimization, aspect 

ratios of parameters and Pareto schemes have been 

introduced by earlier researchers. Based on 

Krishnamurthy's (2011), and Taguchi's factors and levels, 

a function was developed as the framework for the grey 

wolf algorithm. Several iterations based on the 

representative wolves of alpha, gamma and omega were 

simulated and the parameters, namely, speed, point angle 

and feed rate were optimized by exploiting the 

cooperative and social hierarchy attributes of the grey 

wolves. Also, by considering the gaps in knowledge 

within the area of CFRP development, this study proposes 

a grey wolf optimization method used to optimize the 

thrust force of the dulling process during the manufacture 

of the CFRP compared with the Taguchi-Pareto method 

already established in the literature, the innovation of the 

present study is reflected in the following issues (Taiwo 

and Oke, 2022): (1) Mathematical and empirical 

expressions are introduced to establish how the behavior 

of grey values can be used to optimize the thrust force 

While drilling the CFRP composite (2) An analysis of 

how each response parameters affect the quality of the 

CFRP composite produced (3) Based on analysis, the 

fusion of Taguchi-Pareto with the grey wolf optimization 

scheme is proposed to obtain superior optimal results. The 

attainment of this innovation was aided by the following 

definitions: (a) The lower and upper bounds of the fitness 

function are established from the Taguchi-Pareto table 

(Pratap Singh et al., 2022) (b) Position searches for the 

values using random numbers were introduced (c) 

Utilization of the optimal parametric setting from the 

Taguchi Pareto calculation to draw the fitness function 

was made (d) Determination of the delta for the optimal 

parametric setting. (e) Establishment of iteration to 

minimize the thrust force. 
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2. LITERATURE REVIEW 

 

 For the drilling process, responses in directing the 

thrust force, torque, declamation at entry and exit and 

eccentricity play a dominant role since they directly and 

substantially affect the quality of the drilled workpieces 

and products from the carbon fiber-reinforced plastic. 

Therefore, the accurate quality of drilled workpieces for 

the drilling process is essential. However, having 

demonstrated extraordinary strength, high fatigue 

resistance, good conduct of electricity, poor conduct of 

heat and high weight, carbon fiber-reinforced plastic has 

been widely used as a material in the drilling process for 

various applications. In a review, Lawal et al. (2023) 

established and evaluated diverse areas of nanofluid 

preparation and their applications in carbon fiber-

reinforced plastics. The prominent conclusions of the 

work are (1) The overriding factors on surface finish are 

the cutting force and cutting temperature. (2) The focus of 

machining scientists is to control tool wear using adequate 

cutting fluids. (3) There is less attention given to 

uncertainties, but it is important in machining research. In 

another work, the deployment of carbon fibre-reinforced 

plastic for antibacterial activity against diseases in 

medical applications was established by Kim et al. (2023) 

proposed a vitrimer-based carbon fibre-reinforced plastics 

composite and tested its mechanical and impact strengths. 

It was concluded that the composite is potentially useful 

for medical devices. In an automobile application, 

Muflikhun and Yokozeki (2021) assessed the curing 

influence on a hybrid material consisting of carbon fibre-

reinforced plastics. It was concluded that the energy 

release rate and fracture toughness of the laminate 

developed were influenced substantially by the curing 

circumstances while producing the laminate. Yet in 

another study, Severson et al. (2022) proposed a new 

choice chart aimed at establishing the number of plies, 

core density, stacking sequence and core thickness of a 

sandwich composite containing carbon fibre-reinforced 

plastics for surface mining applications. It was concluded 

that there is the feasibility of analyzing sandwich 

composite factsheets using standard 3D elements rather 

than using the support layer elements method. In Bhushi 

et al., (202) several metaheuristic methods were deployed 

to optimize the parameters of the drilling process. The 

methods include genetic algorithm, particle swarm 

optimization and simulated annealing while the 

parameters of interest are the helix angle of the drilling 

tool, feed rate and spindle speed. The most important 

result is that the helix angle of tools and feed rate are 

critical to influencing the drilling quality (delamination) 

of the carbon fibre-reinforced plastic studied. Montaginer 

and Hochard (2013) deployed a genetic algorithm to 

optimize the hybrid composite drive shaft for a carbon 

fibre-reinforced plastic.  It relates to shear influences on 

flexural vibrations. The important outcome of the study is 

that some general rules concerning the design of shafts 

with optimal values were obtained. Ravisankar and 

Umamaheswarrao (2018) used the metaheuristic named 

ant colony optimization to optimize the carbon fibre-

reinforced plastic during the drilling process. The most 

important result of the study is that useful result within an 

acceptable computational time was obtained in a near-

optimal solution by the ant colony optimization. Abhishek 

et al. (2017) assessed the process accomplishment of the 

turning process for the carbon fibre reinforced plastic 

composite. To optimize responses, the fuzzy inference 

system was introduced and coupled with the multi-

performance characteristics index as well as a non-linear 

regression method. Furthermore, the teaching-learning-

based optimization and harmony search algorithm were 

also used in the modelling effort to solve the optimization 

problem. The algorithm presented showed robustness and 

was effective. Liu et al. (2003) assessed the degradation 

of the carbon fiber-reinforced plastic composite in 

mechanical characterization during drilling. The change 

in functional performance stimulated by the progressive 

damage was evaluated. The most important result is that 

the proposed 3-dimensional model was effective in 

optimizing the carbon fiber-reinforced plastic during the 

drilling process. 

 Jeyaprakash et al. (2022) evaluate the effect of drilling 

parameters on the responses of the system. The principal 

parameters are identified as the feed rate and cutting speed 

while the responses are entrance circularity, entrance 

diameter, entrance circularity, entrance diameter, taper 

angle, and exit diameter. The Taguchi method was used 

for the analysis. The principal result is that the feed rate 

outperforms the cutting speed. Mahdi et al. (2023) 

examined the drilling quality of carbon fiber-reinforced 

plastic from two perspectives: the use of tool geometric 

parameters and cutting parameters. An important result is 

that independent of the used tool, the feed rate value 

dictates the thrust force, entrance delamination and torque 

evolution. Qiu et al. (2022) established the optimal feed 

rate during the drilling pipe. The important result is that 

for a feed rate of 0.04mml/r, there exists a hole exit 

delamination during the phase of secondary drilling. 

Upputuri et al. (2020) conducted drilling experiments on 

carbon fibre-reinforced plastics and applied the Taguchi 

scheme to optimize responses including the delamination 

factor, thrust force and torque. The important result is that 

the medium speed of 2000rpm combined with a medium 

feed of 100mm/min yielded outputs of 138N, 1.027Nm 

and 1.015 as the thrust force, torque and delamination 

factor, respectively. Moreover, a summary of literature is 

presented in Table 1. 

 From the above review, it has been established that 

CFRPs are good applications in automobiles, medicine, 

surface mining and applications requiring nanofluids. 

Notwithstanding, the grey wolf algorithm is a novel 

scheme and a growingly acceptable method in 

engineering practice. However, it has not been proposed 

in any paper on the production or experimentation with 

carbon fibre-reinforced plastics: This ascertains that the 

application is novel. The population-oriented grey wolf 

optimisation scheme is founded on the social 

characteristics of grey wolves, where the members of the 

park work cooperatively by taking instructions from their 

superiors and each carries out its assigned responsibility 

in terms of guarding the park, chasing the prey, taking 

care of the elderly and more duties as may be assigned to 

them. This method's mechanism of operation follows the 

flow of three leaders. 
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Table 1. Literature summary on the drilling process 

 

S/No. Author(s) and 

year 

Domain of study Key input 

parameters used 

Adopted method Output (responses) Results 

1 Bhushi et al. 

(2020) 

Optimization, 

metaheuristics  

feed rate, spindle 

speed,  

and tool helix 

angle. 

Response surface 

Methodology, 

regression equation, 

Particle Swarm 

Optimization,  Genetic 

Algorithm, ANOVA 

and Simulated 

Annealing 

Delamination at exit and 

entry 

The tool helix angle and 

feed rate are the most 

important influencing 

factors having an impact 

on the CFRP composite 

drilling quality  

2 Montagnier & 

Hochard (2013) 

Optimization of 

Driveshaft material 

and operating speed 

supercritical 

speeds,  

weight, vibration 

Genetic algorithm Shaft count and driveline 

weight in subcritical 

situations. 

Under subcritical 

circumstances, the number 

of shafts and driveline 

weight substantially 

reduced 

3 Ravisankar & 

Umamaheswarrao 

(2018) 

Optimization( Multi-

objective) 

point angle, depth 

of cut,  

feed rate  and 

cutting speed 

Ant Colony Algorithm  surface roughness, thrust 

force,  and delamination 

factor.  

Cutting speed possesses 

the greatest impact on the 

output response  

4 Abhishek et al. 

(2017) 

machining process 

Optimization 

feed rate, depth of 

cut  

and spindle speed 

Fuzzy Inference 

System, Multi-

Performance 

Characteristic Index 

and non-linear 

regression model,  

Teaching learning 

based Optimization 

and Harmony Search 

algorithm 

Material Removal Rate,  

tool-tip temperature and 

surface roughness 

Utilising the optimization 

model results in improved  

tool tip temperature, MRR 

and  surface roughness 

5 Liu et al. (2023) Optimization cutting forces, 

torques  

and delamination 

3D numerical model mechanical qualities of the 

hole surfaces deteriorate 

The degree of damage that 

occurs in plies causes the 

rigidity of the hole 

surfaces to deteriorate. 

 

 

https://www.sciencedirect.com/topics/materials-science/delamination
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Table 1. (cont’) 

 

S/No. Author(s) and 

year 

Domain of study Key input 

parameters used 

Adopted method Output (responses) Results 

6 Mahdi et al. 

(2023) 

Analysis and 

optimization 

tools geometry 

feed rate  

and spindle speed   

response surface 

methodology, artificial 

neural network and 

analysis of variance 

thrust force, 

entrance delamination and 

torque evolution  

The feed rate value is very 

important for thrust force, 

entry delamination and 

torque evolution. For 

optimum drilling 

performance, the study 

suggests spur drill will be 

suitable.  

7 Qiu et al. (2022) Validation of 

optimal value 

feed rate, spindle 

speed,  

step ratio 

Theoretical analysis tear, delamination, hole exit 

damage   

As the feeding rate 

increases, the delamination 

range narrows. The 

primary cutting phase is 

the step that causes tear 

once the feeding rate is 

above 0.06 mm/r. 

8 Upputuri et al. 

(2020) 

Optimization feed rate, 

spindle speed,  

depth of cut 

fuzzy logic, ANOVA 

analysis, Taguchi 

L9 orthogonal array 

de-lamination factor, thrust 

force, torque  

The experimental values 

and the fuzzy findings 

show good agreement. 

9 Jeyaprakash et al. 

(2020) 

Analysis and 

optimization 

feed rate  and 

cutting speed  

Taguchi array and  

Grey relational 

analysis 

exit diameter,  entry 

diameter,  taper angle, 

entrance circularity 

Feed rate showed more 

influence than cutting 

speed 
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They are known as the delta, beta and alpha wolves and 

while they produce the solution other wolves in each 

group follow. The alpha, for instance, is the strongest and 

is sometimes only two, which may be a female and a male. 

The beta group are next in strength, experience and 

responsibility to the alpha group. Then the delta group is 

the least in strength, experience and responsibility in the 

pack. Therefore, the grey wolf algorithm has been 

increasingly favored in the following applications: Yu et 

al. (2022) deployed the grey wolf optimization (GWO) to 

image segmentation within the computer vision and 

digital image processing domain. Here, using the simplest 

approach, the threshold method, it is possible to compare 

the pixel's intensity with a particular value. Li et al (2022) 

innovated the sustainable city and society drive by 

applying the optimization scheme of the grey wolf to 

predict the air quality in an urban area. Uniquely, Hao and 

Sobhani (2021) deployed the optimization scheme of the 

grey wolf in solid oxide fuel cells. This is a device that 

converts electrochemical substances to electricity through 

an oxidation process. 

 

3. METHODOLOGY 

  

3.1. An overview of Grey Wolf optimization 

Grey wolf optimization, shortened as GWO, is a class 

of population-based and swarm optimization algorithms 

that emulate the social behavioral pattern in grey wolves. 

Swarm intelligence optimization was started by Beni and 

Wang in 1989 in the framework for global optimization 

as a set of algorithms for controlling robotic swarms. They 

are concerned with the setting up of intelligent multi-

agent systems by adopting the social character of different 

animal societies (Abd El-Aziz, 2018). GWO has been 

confirmed by different research to have far-reaching 

applications in solving optimization problems. It is a 

technique proven to be appropriate for addressing meta-

heuristic algorithm optimization problems recently 

introduced by Mirjalili et al. (2014) who was fascinated 

by how wolves hunt their prey. This inspiration led to a 

renowned algorithm that has now become a tool for many 

research works.  It possesses excellent strength in research 

for unimodal problems and multimodal solutions and its 

useful varying applications avoid local minimal. 

Although the method has become popular in recent times, 

it has assisted researchers in accomplishing their goals of 

comparing different results and producing better 

outcomes. Several engineering challenges including 

mechanical design, time series forecasting, cluster 

analysis and structural design typically employ the GWO 

method, a high-performance swarm intelligent 

optimization technique to achieve better engineering 

solutions (Qin et al., 2022). GWO method leverages 

monitoring the hunting pattern of the wolf. The 

population size of the wolves plays a major role in the 

whole process of searching for and attacking the prey. It 

is evident that the more the number of wolves the faster 

they will be able to achieve a successful hunting activity. 

They move with an average population of 5 to 12, and 

they all follow unique social behaviour in an orderly 

pattern which makes it easy to identify the rulers and the 

followers. Alpha wolf, Xα (highest fitness value of f(x)) 

leads the population and has the ultimate rank when 

compared with others, Beta wolf, Xβ, also called 2nd best 

fitness value, signals are sent to other wolves while 

supporting the leading wolf in the prey hunting. The delta, 

Xδ, is a wolf that functions as an assistant, playing a key 

role as a caretaker, pathfinder, killer, and elder. Omega is 

used to depict the other wolves (Kishor and Singh, 2016). 

Tracking, encircling, and eventually striking the steps in 

the hunting process for grey wolves. They are trained to 

act in this manner to survive. The social behavior of these 

animals is termed as hierarchical and it's a unique factor 

that made the patterns of their movement useful for 

research purposes. The primary fittest agents, Alpha, 

Beta, and Delta are selected using GWO as an 

evolutionary technique while the omega takes the others 

(Sivakumar et al., 2022). The prey is attacked by grey 

wolves to end the hunt when it halts moving. The wolves 

first begin to move randomly as they approach the prey, 

getting closer to it with time. The randomization then 

decreases, causing all other wolves to begin concentrating 

on Alpha, Beta, and Delta. We have the Xα (highest 

fitness value of f(x)). This depends on the optimization 

problem, when minimizing the least value is chosen while 

maximizing selects the highest value. This pattern follows 

as it progresses from Xβ (next to the highest value of f(x) 

2nd best fitness value and (next to the Xβ fitness value 3rd 

best fitness value) the other values are represented as 

other wolves which support in attacking the prey. 

(Hatamlou 2012). 

 

3.2. Steps in Grey Wolf optimization implementation 

The steps to be adopted in implementing the grey wolf 

algorithm are as follows: 

1) Initialize population size: set as five wolves to 

ensure enough interactions with the parameters, 

given the three important wolves to carry out this 

optimization method. 

2) Generate a Random number for the initial wolf table 

with the constraint of the factors. Using the X=L-

Rand*(U-L) where X is the positions, L is the lower 

range value and U is the upper range value. Rand is 

represented as a random number from (0 to 1). 

3) 3.Generate fitness function using the Taguchi 

signal-to-noise ratio table. The delta value in 

conjunction with the ranks is used to generate this 

fitness equation and also calculate the fitness values 

using the X positions. 

4) Identity the X(t),Xα(highest value of f(x) best 

position),  Xβ(next to the highest value of f(x) 2nd 

best position), Xδ(next to the Xβ fitness value 3rd 

best). 

5) 5.Compute the values to determine the space within 

hunted prey and grey wolf using the equation to start 

the iterations. 

In this section, the working of the GWO regarding 

how the GWO can solve the optimization problem 

(optimization of parameters of carbon fibre reinforced 

plastic composite drilling process) is explained. The 

commencement step is to update the position of the grey 

wolf by using the equation for updating position, Equation 

(1). The term “t” in Equation (1) shows the possibility of 

iteration in the computation. The value of “t” is usually 3, 
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where the components of the iteration are the values 

obtained from the alpha, beta and gamma involved. The 

iteration guarantees that successive values obtained from 

computations are closer approximations to the Xnew 

desired as the position of the grey wolves changes in the 

park during hunting and attacking prey. 

Updating positioning equation is Equation (1): 








 ++
==

3

321 XXX
XX tnew

      (1) 
Equation (1) contains X1, X2 and X3. But X1 is the 

best position of the group of involves, X2 is the second 

best position for the group of involves and X3 is the third 

best for the group of involves. However, to further explain 

the meaning of X1, X2 and X3 there is a need to work 

with an objective function. This objective function is a 

minimization function, which is also called the fitness 

function. Notice that the data used for the present analysis 

is the experimental data from Krishnamoorthy (2011), 

which produced Table 1. Having applied the signal-to-

noise principle of lower the better in Table 1, there 

response table was obtained, which showed the optimal 

values for all the parameters. These details are not shown 

here for conciseness. Thus, the work goes ahead to apply 

the grey wolf to the optimal parametric settings produced 

by the signal-to-noise ratios. This qualifies the title of the 

present work as a merger of the Taguchi signal-to-noise 

ratios and the grey wolf optimization. Now, Minitab 18 

(2020) version was used on the results of the optimal 

parameters to obtain Equation (2). Notice that in Equation 

(2), S is the speed, PA is the point angle and FR is the feed 

rate. 

Fitness function development (minimization 

equation): 

f(x) = 9.02078 S3+0.50339 PA2+0.367571 FR  (2) 

Now, to explain the best, second best and third best 

values from the data being considered, the values of S, PA 

and FR are each substituted in Equation (1) to obtain a set 

of values say with the values being 5000, 6500, 5250, 

4920, 8460. So the question is from the set of five 

members stated, what is the best value, second best value 

and third best value? However, this should be defined 

according to the minimization of the response objective of 

the drilling process. From the set of numbers indicated, 

the best value, being the minimum is 4920. The second-

best and third-best values are 5000 and 5250, respectively. 

According to the notations in the present work, the best 

value is the X alpha, the second best value is the X beta 

and the third best value is the X delta. Now,  to compute 

the best position, Equations (4), (5), (6) and (7) are used 

to update the position of the involves indicated in 

Equation (1). In Equation (4) and (5), "rand" indicates the 

random numbers generated. The random numbers used in 

the present work, generated from the random number 

tables are 0.640729385, 0.005415743, 0.8582527, 

0.196047495, 0.252475744 and 0.6960741. The random 

numbers picked always fall between 0 and 1. Also, to 

calculate the second best position Equations (8), (9), (10) 

and (11) are formed with Equation (8) resembling 

Equation (4) while pairs of other resembling equations are 

Equations (9) and (5), equation (10) and (6) as well as 

Equation (11) and (7). Furthermore, Equations (12), (13), 

(14) and (15) are formed with resemblances as Equations 

(12) and (14), Equations (13) and (5), Equations (14) and 

(6) as well as Equations (15) and (7). 

To further explore the working steps of the grey wolf 

optimization algorithm, the next major step is to initialize 

the parameters. This entails the population size and the 

maximum iteration. Next, the researcher moves to 

obtaining the best, second and third-best positions. 

Afterwards, the calculations may be made using Equation 

(3). Then the researchers moved to evaluating the new 

position by using equation (1). It is essential to check if 

the new position lies between the bounds. Then the 

researchers finally perform the greedy selection. 

a= 2(1- (iteration/maximum iteration))     (3) 

A = 2a rand – a           (4) 

C1 = 2 rand            (5) 

|)(| 1 tXXCD −=           (6) 

 DAXX 11 −=
          (7) 

A2 = 2a rand – a           (8) 

C2 = 2 rand            (9) 

|)(| 2 tXXCD −=              (10)

 DAXX 22 −=
             (11) 

A3 = 2a rand – a              (12) 

C3 = 2 rand               (13) 

|)(| 3 tXXCD −=              (14) 

 DAXX 11 −=
             (15) 

 As indicated in the section on methodology, the 

objective (fitness) function developed in Equation (2) is a 

minimization problem. The limits of the variables S, PA 

and FR are set as Equations (16), (17), (18) and (19): 

Speed:   1000 ≤ x ≤ 3000           (16) 

Point angle:   100 ≤ x ≤ 300           (17) 

Feed rate:   100 ≤ x ≤ 500           (18) 

Updating equation 

 
)( LURLX −−=

             (19) 

Where R is a random number between 0 to 1, L is the 

lower limit and U is the upper limit. 

 

4. RESULTS AND DISCUSSIONS 

 

 To start the explanation of the results, one needs to 

consider the initialisation parameter. In this case, the 

swarm (population) is considered as 5. The number of 

iterations is set as 10 since it is to be manually driven. In 

this case, it is noticed that there are three parameters S, 

PA and FR. So the basic task is to compute the solution 

such that there are three columns in the spreadsheet. The 

first column is for the parameter S with five wolves under 

it. The second column, which contains the parameter PA 

also has five involves under it while the third column, 

which should contain the fitness function also has five 

involves under it. Thus the goal of the present researchers 

is to calculate and update the values in the three columns. 

However, it is possible to update by considering the 

initialized parametric values, which are the lower and 

upper bound values of the speed, point angle and feed rate, 

respectively.  



54  E.O. Taiwo, S.A. Oke, J. Rajan, R. Jose, E.O. Oyetunji, and K.A. Adedeji 

 

 

 

To achieve this, the values of L, random numbers and 

upper values are substituted in Equation (19). Considering 

the speed parameters, S, there is a need to compute values 

for five different involves. The question is how do we 

compute for the first involvement? Notice that as one 

considers the constraint Equation (17), the lower and 

upper boundaries, L, and U are 1000 and 3000, 

respectively. Now, considering the first involve, L is 

1000, U is 3,000 and a random number of 0.36518 is 

generated, when these values are substituted in Equation 

(19), a value of 1730.36 is obtained for the first involve. 

While keeping L, and U the same for involves 2,3,4 and 

5, the random numbers are used as 0.46132, 0.31841, 

0.8418 and 0.78435, respectively. The results of the 

predicted speed values for involves 2,3,4 and 5 are 

1922.64, 1636.82, 2683.6 and 2568.7, respectively. This 

set of values is referred to as X alpha. To obtain values for 

Xbeta for involves 1,2,3,4 and 5, it is noticed that the 

lower and upper boundaries change to 100 and 300, 

respectively, for point angles. By following the same 

procedure as for X alpha, we obtained the values of X beta 

for involves 1, 2, 3, 4 and 5 as 267.436, 152.076, 429.792, 

201.728 and 376.904, respectively. Similarly, for X delta, 

for the wolves 1 to 5, we obtained 151.674, 177.828, 

109,414, 103.348 and 240.580, respectively. The 

calculations discussed so far are for the computation of 

 
Figure 1 Schematic for the application of grey wolf optimization 
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the fitness function. Now, consider the first wolf and the 

various values of X1, X2 and X3, which correspond to X 

alpha, X beta and X delta. By substituting these values in 

Equation (2) for the fitness values, the value for f(x) is 

obtained. Let us consider the first involvement in all the 

parameters, S, PA and FR. Here, S is 1730.36, PA is 

767.436 while FR is 151.674. when the coefficients of S, 

PA and FR, notably 9.02078, 0.50339 and 0.,367571 are 

substituted with the values of the variables S, PA and FR 

in Equation (2), the obtained result for wolf 1 is 

46736246242. Accordingly, for wolves 2, 3, 4 and 5, the 

following respective values are obtained: 64111817815, 

39559234719, 1.7434E+11 and 1.52892E+11. 

 Moreover, the computations are made for each row 

concerning S, PA and FA to obtain f(x), the task is to 

obtain the best value, second best value and third best 

value from the computations. To rate these values, the 

column for the fitness function f(x) is considered. 

Therefore, out of the rows of the f(x), containing the f(x) 

values, the minimum is chosen as the best: 39559234719. 

However, the corresponding values of S, PA and FR are 

identified as 1636.82, 429,792, and 109.4141, 

respectively. The last mentioned three values become the 

X alpha, indicating the best performing involves updating. 

They are the closest to the prey being hunted in the course 

of capturing the prey. Also, the second best value for the 

f(x) is 46736246242. Notice that the problem being 

solved is the minimization of the responses. Accordingly, 

the involves, represented as S, PA and FR for the second 

best value of f(x) have the following values of 1730.36, 

267.436 and 151.674, respectively. The third best value is 

64111817815 as f(x). The corresponding values of S, PA 

and FR are 1922.64, 152.076 and 177.828, respectively. 

Accordingly, these last three numbers obtained are X 

delta. Recall that some three values were obtained before 

these last set. Those values are the X beta values. Now, 

the focus is on computing the value of "a" from Equation 

(3). To use Equation (3), the maximum number of 

iterations is set as 20. Then Equation (3) is obtained as 2 

(1-1/20) =1.9. After obtaining “a” as 1.9, the values of X1, 

X2 and X3 which are predictions of the alpha, beta and 

delta involved, may be obtained. It follows from the first 

wolf (row 1 of the computations under S, PA and FR) that 

X = [730.36     267.436      151.674]. Then X1 could be 

obtained by referring to Equation (4), (5), (6) and (7). 

Recall that the value of "a" has already been computed as 

1.9 and a random number of 0.640729385 has been 

generated. By substituting these values into Equation (4), 

we have (2) (1.9) (0.640729385)-1.9], which gives 

0.281459. Next is our interest in Equation (5) which 

simply multiplies 2 by a random number. The random 

number generated is 0.005415743, which gives C1 as 

0.392095. Next, Equation (6) is used to calculate D alpha. 

Now, the X alpha to be used is X alpha = [1636.82   

429.792   109.414]. Also, C1 has been computed for use 

as 0.392095. Here we compare the X alpha with the values 

of the first wolf. For X alpha, we have [1636.82    429.92   

109.414] but for the first wolf, we have [1922.64   152.076   

177.828]. By computing , we obtained -607.9050096. 

Then by substituting all the values, X1 is obtained as 

1171.1. Similarly, the values of parameters for the 

second-best position may be contained as -495.0485125. 

Furthermore, for the third best position, D delta yields 

392.148239 while X3 yields 719.024. Now by 

considering X1, X2 and X3, the average is obtained as 

800.14581. This is the new updated value. 

 Having obtained the Xnew, there is needed to 

calculate the updated values. For this task, there is need to 

calculate X1 (i.e. S), X2 (i.e. PA) and X3 (i.e. FR). These 

values of X1, X2 and X3 will be compared with what was 

obtained earlier in the matrix for row 1 (wolf 1). The 

dilemma is to decide on which value to use between these 

calculated values of X1, X2 and X3 and the previous 

values of X1, X2 and X3. To successful progress, there is 

need to conduct a greedy selection. It means that we can 

calculate the function value at the new position, f(Xnew) 

and also at the previous value. To calculate f(Xnew) the 

values of X1, X2 and X3 at the new position can be 

substituted into the fitness function. These two values of 

f(Xnew) and f(X) are compared. Since minimization is 

sought, which ever is minimum out of the two values is 

used. The lower value of f(Xnew) and f(X) is accepted as 

the solution while the other function is discarded, what 

results from this action is a new matrix that will be 

created. So we have to update the wolves with the lower 

values of f(Xnew) and f(X). All what has been done is for 

the first wolf. Similarly, we could apply the steps to obtain 

values for the second, third, fourth and fifth wolf. 

Consider the calculation of X1. Notice that it is for the 

speed parameter. Speed falls between 1000 and 3000. If 

the value obtained is say 1500, it is within the boundary 

and the value of 1500 should be used. However, suppose 

a value of -1325 is obtained. This value is definitely 

outside this range. It is closer to 1000 than 3000. 

Therefore the value 1000 is used to replace the stated 

value of -1325. Now a comparison is made between the 

values under Xnew and those under the original 

framework. All the values can be computed repeatedly. 

The procedure will be followed for all others. The analysis 

of the result obtained from Table 2 is done using 

Microsoft Excel 2016. 

The values generated for 5 wolves based on the 

random number from the Speed, Point angle, feed rate and 

the calculated fitness function by substitution are 

tabulated to begin the iteration as shown in Table 3. Table 

4 is the initial calculated result for vectors and random 

numbers. 

In Table 5, the summarized result of the best wolf 

among the top three wolves is shown. Table 5 starts with 

the input of data obtained from substitution into the 

equation. 

Xnew is the average of the three-position vectors X1, 

X2, and X3, the greedy selection is performed to ensure 

the values of the parameters fall within the range. Table 6 

shows the summary of the first iterations. Which are the 

bases for the next iteration. This process is repeated and 

results are generated. 

The conclusion from this result is that the Taguchi-

GWO method was able to reduce the thrust force and its 

effects on tools. This is shown in Table 7 and depicted in 

Figure 2. 
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 Table 2. Drill parameters (Krishnamoorthy, 2011) 

Level S: Speed P: Point angle F: Feed rate 

1 1000 100 100 

2 2000 118 300 

3 3000 300 500 

 

Table 3. Estimation of fitness values 

Speed: rev/mm (X1) Point angle (X2) Feed rate mm/min (X3) f(x) 

1730.36 183.72 203.35 46736227248 

1922.64 126.04 255.66 64111814198 

1636.82 264.90 118.83 39559177058 

2683.60 150.86 106.70 1.7434E+11 

2568.70 238.45 381.18 1.52892E+11 

 

Table 4. Initial calculated result for vectors and random numbers 

A A1 C1 A2 C2 A3 C3 

1.9 0.5348 0.3921 -1.8794 0.5050 1.3614 1.3922 

 

Table 5. Summarised values of the Best wolf, 2nd best wolf, 3rd best wolf and X1, X2, X3 using parameters and 

position vectors for the thrust force minimisation problem (the first wolf iterations) 

Category of 

wolf 

Wolf’s 

performance 

Hierarchy Hierarchy-

multiplier 

Repositioning 

Factor 

New position Average (B, 

S, T) 

  Xα C*Xα Dα Xi X (New) 

 Best wolf 1636.82 641.79 -1088.57 2218.96  

Alpha wolf 

(X1) 

Second best 

wolf 264.89 103.86 -79.85 307.59 

1560.60 

 

Third best 

wolf 118.83 46.59 -156.76 202.66 

 

 Best wolf 1730.36 873.75 -856.61 120.43  

Beta wolf 

(X2) 

Second best 

wolf 183.72 92.77 -90.95 12.79 

227.12 

 

Third best 

wolf 203.35 102.68 -100.67 14.15 

 

 Best wolf 922.64 2676.6 946.24 634.47  

Gamma wolf 

(X3) 

Second best 

wolf 126.04 175.46 -8.25 137.28 

137.08 

 

Third best 

wolf 255.66 355.91 152.56 47.96 

 

 

Table 6. Summarised values of iterations 1, 5 and 10 respectively are presented below for the thrust force 

minimisation problem (the first wolf iterations) 

Iteration 1    

1560.60 227.12 137.08 34286403283 

1922.64 126.04 255.66 64111814198 

1492.54 141.77 173.58 29993245956 

2513.97 253.47 100.00 1.43326E+11 

2412.43 300.00 291.42 1.26651E+11 

Iteration 5    

1000 100 100 9020785071 

1000 100 122.32 9020785079 

1427.871 147.5829 158.8281 26260984684 

1191.949 119.783 136.4111 15276260918 

1433.458 156.8058 155.9672 26570445408 

Iteration 10    

1000 100 100 9020785071 

1000 100 122.32 9020785079 

1227.104 124.7442 133.2249 16668189924 

1117.268 112.6445 120.8339 12581033482 

1139.058 113.3738 117.9413 13331583864 
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It was noticed that at the end of the first iteration, the 

best f(x) was 14263085729, and it became 9020808071 at 

the end of iteration 3. At iteration 6, f(x) dropped to 

9020785071. As we reached iteration 10, the minimum 

f(x) value was maintained as the same value at iterations 

7, 8 and 9. An observation is that by comparing the fitness 

value with the number of iterations it starts to converge at 

iteration 6 and retains this value until iteration 10, which 

we used as a terminating criterion (Hatamlou, 2012). At 

this converging value, the corresponding values of S, PA 

and FR are 1000, 100 and 100 respectively. It means that 

the optimal spindle speed is 1000rpm, the point angle at 

the optimum points is 100° and the feed rate at the optimal 

level is 100mm/min. this concerns the results of 

Krishnamoorthy (2011) as indicated in Table 1. This 

study uncovers a new understanding of the optimization 

of drilling parameters of speed, point angle and feed rate 

as significant contributors to obtaining an optimized 

response. It challenges the present method of Taguchi 

method presented by Krishnamoorthy (2011), showcasing 

simplicity and robust results. 

 

4.1. Validation 

 Research design validation is highly needed to 

produce the best practice in academic works. This helps 

to give credibility to an experimental approach and is 

defined as a process of using a novel approach to another 

problem or scenario to be sure the technique will produce 

similar results. It is important because design errors and 

experimental failures could be avoided and spotted before 

the approach is adopted. Failure to validate research 

methods has led to an increase in failure of structures 

during design simulations (Eisenmann, 2015). The 

research done by Kamal et al. (2015) worked on 

optimizing the performance of friction stir welding which 

involves joining metals with the internally produced heat 

within the workpiece and the non-consumable tool 

without melting processes. The cumulative impact of 

process variables including welding speed, tool rotation 

speed, tool shoulder diameter and tool pin profile have 

been examined for the percentage elongation and ultimate 

tensile strength of AA6082 alloy joined using the friction 

stir welded joints. Taguchi's design of experiments 

approach is being used in the study to obtain an optimal 

parametric setting from this welding process. We use the 

experimental data shown in Table 8, from Kamal et al., 

(2015), to conduct a validation of this novel Taguchi–grey 

wolf optimization method. After applying the Taguchi 

method to this experimental result, it produced a signal-

to-noise ratio for the untreated and treated condition 

which is presented in Tables 9 and 10. The optimal 

parametric setting which is is presented in Table 11. 

Table 7. Best fitness value for the 10 iterations of T-GWO 

Iteration X1 X2 X3 Best fitness value 

1 1164.991 290.0394 127.6312 39559177058 

2 1000 302.4744 100 29993245956 

3 1000 235.9897 100 24592377849 

4 1000 175.4229 100 24592377849 

5 1000 171.9659 100 9020785071 

6 1000 100 100 9020785071 

7 1000 100 100 9020785071 

8 1000 100 100 9020785071 

9 1000 100 100 9020785071 

10 1000 100 100 9020785071 

11 1000 100 100 9020785071 

 

 
Figure 2. Convergence of best fitness value with iteration 



58  E.O. Taiwo, S.A. Oke, J. Rajan, R. Jose, E.O. Oyetunji, and K.A. Adedeji 

 

 

 

. Using the delta values from the signal-to-noise 

response to generate a polynomial fitness functions 

Equations (20) and (21) for the untreated and treated alloy 

respectively. The fitness function of the untreated 

condition, Equation (20): 

f(x) = 0.3261A4 + 0.1844D3 + 0.0996B2 + 0.065C     (20) 

The fitness function of the Cryogenic treated condition, 

Equation (21): 

f(x) = 0.2963A4 + 0.1463D3 + 0.1021B2 + 0.0587C   (21) 

where  

A is the tool rotation speed.  

B is the welding speed. 

C is the Tool pin profile (cylindrical, threaded cylindrical, 

square and trapezoidal. 

D is the tool's shoulder diameter. 

 

4.1.1. Results from validation 

 The best fitness value produces a similar trend as 

generated in the thrust force problem (Table 12). 

 

4.1.2. Untreated AA 6082-T6 

 If proportions are followed and the value obtained, 

8852490803784.80, is to be understood in terms of the 

lower value of 341.273, obtained by experiment, it is 

stated that the value produced by the T-GWO will 

generate a value of 253.06, which is lower than the UTS 

experimental value of 341.273 for the untreated condition. 

When the first calculation of the difference between 

8852490803784.80 and 2248275044887.20 is 25.40%, 

the value of 253.06 is achieved. The remaining 25.40% of 

341.273 is then subtracted from 341.273 to arrive at UTS 

of 253.06. Using the Taguchi-grey wolf optimisation 

technique, it can be inferred from this result that the UTS 

and its impacts on tools might be decreased from 341.273 

(experimental) to 253.06. For the percentage of 

elongation, which had an experimental value of 14.13 for 

untreated AA 6082-T6, a value of 10.54 was produced. 

Figure 8852490803784.80 should be interpreted in terms 

of the lower value of 14.13, which was discovered 

through experimentation if proportions are to be followed 

and the value attained. When the first calculation of the 

difference between 8852490803784.80 and 

2248275044887.20 is 25.40%, the value of 10.54 is 

achieved. The remaining 25.40% of 14.13 is then 

subtracted from 14.13 to obtain a % elongation of 10.54. 

Using the Taguchi-grey wolf optimisation technique, it 

can be inferred that the % elongation and its impacts on 

tools might be decreased from 14.13 (experimental) to 

10.54.  

 

4.1.3. Cryogenic treated AA 6082-T6 

 If proportions are to be followed and the value 

obtained, 20332767897759.50, is to be understood in 

terms of the lower value of 335.491, obtained by the 

experiment, the value produced by the T-GWO is stated 

to generate a value of 250.30, which is lower than the UTS 

Table 8. Variables and their levels (Kamal et al., 2015) 

Level A: Tool Rotation Speed B: Welding Speed C: Tool pin profile D: Tool shoulder dia 

1 1200 20 1 14 

2 1950 25 2 16 

3 3000 30 3 18 

4 4600 35 4 20 

1 = cylindrical; 2 = threaded cylindrical; 3 = Square; 4 = trapezoidal 

 

Table 9. Taguchi SN ratio Response table for untreated AA 6082-T6 

Level A B C D 

1 0.7490* 0.5092 0.5744 0.6371 

2 0.6090 0.5762 0.6052* 0.6419* 

3 0.5041 0.5907 0.5651 0.5483 

4 0.4229 0.6088* 0.5402 0.4577 

Delta 0.3261 0.0996 0.6050 0.1844 

Rank 1 3 4 2 

*Optimum value 

 

Table 10. Taguchi SN ratio Response table for Cryogenic treated AA 6082-T6 

Level A B C D 

1 0.7152* 0.4907 0.5685* 0.6070* 

2 0.5921 0.5572 0.5552 0.6068 

3 0.4708 0.5563 0.5635 0.5226 

4 0.4189 0.5928* 0.5099 0.4607 

Delta 0.2963 0.1021 0.0587 0.1463 

Rank 1 3 4 2 

*Optimum value 

 

Table 11. Experimental optimal parameters 

Parameters Untreated AA 6082-T6 Cryogenic Treated AA 6082-T6 

Ultimate tensile strength UTS 341.273 335.491 

Percentage elongation %EL 14.13 13.57 

Parametric setting A1B4C2D2 A1B4C1D1 
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experimental value of 335.491 for the cryogenic treated 

AA 6082-T6 condition. When the first calculation of the 

difference between 20332767897759.50 and 

5163931334813.98 equals 25.39%, the value of 250.30 is 

achieved. After that, 25.39% of 335.491 is subtracted to 

arrive at a UTS of 250.30. Using the Taguchi-grey wolf 

optimisation technique, it can be inferred from this result 

that the UTS and its impacts on tools might be decreased 

from 335.491 (experimental) to 250.30. Cryogenic treated 

AA 6082-T6 yielded a value of 10.12 for the % elongation 

with an experimental value of 13.57. The figure of 

20332767897759.50 should be interpreted in terms of the 

lower value of 13.57, which was derived by 

experimentation, assuming proportions are to be 

followed. The value of 10.12 is reached when the 

difference between 20332767897759.50 and 

5163931334813.98 is originally estimated as 25.39%. 

The remaining 25.39% of 13.57 is then subtracted from 

13.57 to obtain the percent elongation of 10.12. Using the 

Taguchi-grey wolf optimisation technique, it can be 

inferred that the % elongation and its impacts on tools 

might be decreased from 13.57 (experimental) to 10.12. 

 

5. CONCLUSIONS 

 

 This study addresses how to integrate the Taguchi 

approach with the grey wolf optimization model to 

minimize thrust force. This work applied this dual 

technique to explore how thrust force could be minimized 

in drilling carbon fibre-reinforced plastic CFRP. Taguchi 

method was used to generate a polynomial fitness 

function combining all input parameters such as feed rate, 

point angle and spindle speed. The fitness equation is now 

utilized for grey wolf optimization to perform a 

minimization of the thrust force in the drilling process. By 

combining Taguchi and grey wolf optimization using data 

from Krishnamoody (2011), the parameters and outputs 

response when applying the Taguchi-grey wolf 

optimisation strategy the fitness value which is a 

combination of all inputs shows a drop in the values for 

each iteration until there were no changes after multiple 

iterations when this result is compared with other 

combined optimization methods, it is found have a 

corresponding outcome of minimization of the thrust 

force in the drilling process. The value produced from the 

T-GWO is stated to generate a value of 65.27N, which is 

lower than the thrust force experimental value of 84.23N 

(Krishnamoody, 2011) if proportions are to be followed 

and the value obtained 39559177058 (i.e the first value of 

the fitness in Table 4), is to be understood in terms of the 

lower value of 84.23N obtained by experiment. When the 

difference between 39559177058 and 9020785071 is 

initially calculated as 22.80%, the value of 65.27N is 

obtained. Then, to get 65.03N, the remaining 22.80% of 

84.23N is deducted from 84.23N. This finding leads to the 

conclusion that the thrust force and its effects on tools 

might be reduced from 84.23N (experimental) to 65.03N 

using the Taguchi-grey wolf optimisation approach. This 

shows that the grey wolf optimization approach is a good 

option for predicting the optimal parameters of carbon 

fibre-reinforced plastic composite (CFRP). The results 

revealed that the developed function from the upper and 

lower bounded response table elements is reliable. The 

optimized parameters yielded a thrust force equivalent to 

9020785071 units of simulation counts. The research 

supports practice in the drilling area. The study's 

innovative component is the use of a Taguchi-Grey Wolf 

optimizer for drilling process optimisation for this 

particular class of composite materials. Future research 

may include integrating the Taguchi Pareto with the grey 

wolf optimizer to achieve more stable results. In 

Summary, the optimization results of this work confirm 

the possibilities of selecting an optimum combination of 

feed rate, point angle and spindle speed to achieve 

minimum thrust force. 
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