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ABSTRACT 

Presently, in friction drilling optimization schemes, quick convergence of solutions and simplicity of methods are still 

challenging. These issues are drawbacks in obtaining the maximum potential benefits from the optimization process. 

Therefore, this paper applies a new optimization method, Harris Hawk optimization to the thermal drilling process of 

AISI 304 stainless steel. The algorithm minimizes the axial force, determination error, radial force, and radial error and 

maximizes the bushing length as the major output of the process. The proposed approach was tested with experimental 

data obtained from the literature. The obtained results indicate that the optimal production is feasible. An example is 

given here of the results of the input parameters for the minimum axial force, which is as follows: After 500 iterations, 

the optimal axial force yields a tool cylindrical region diameter of 5.78593 mm, a friction angle of 60 degrees, a friction 

contact area ratio of 57.7082, workpiece thickness of 3 mm, feed rate of 140 mm/min and rotational speed of 3002.85 

rpm, which can be applied. The results assist engineers in implementing optimal conditions for the drilling process. The 

outcome of this study strengthens decisions to establish thresholds of values that are less or more than expected thereby 

providing a basis for comparison, reward, and reprimand for workers. Thus the drilling process can be optimized. 
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1. INTRODUCTION 

 

  In these challenging manufacturing days, friction 

drilling has been used as a process improvement strategy 

to sustain manufacturing systems. The advantages of 

friction drilling include efficient processes, reduced set-

up times, minimized production errors, and reduced 

material waste generation. In drilling, most of the 

activities are focused on either improving the inputs, 

outputs, or both. This shows that inputs and outputs play 

important roles in drilling operations. It is known that 

drilling costs and the overall profit of the drilling 

organization are important concerns in the present 

economic challenges. Thus, leading global drilling 

organizations and work centers know the urgency of 

optimizing drilling inputs and outputs and have made 

conscious efforts to draw up optimization schedules for 

drilling activities. 

  The above discussion has led to the issue of friction 

drilling performance optimization, which has attracted the 

attention of industry and academia. Studies on friction 

drilling performance evaluation are intensive and some 
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available literature is as follows: El-Bahloul et al. (2018) 

worked on how to optimize the process parameters in the 

transformation of AISI 304 stainless steel. Dehghan et al. 

(2021) examined the process parameters using three main 

difficult-to-machine materials Inconel 718, AISI304 and 

Ti6Al-4V. Kumar and Hynes (2020) worked on 

optimizing process parameters. The galvanized steel was 

used as the working material and the parameters focused 

on are the spindle speed, angle of tool and workpiece 

thickness. Kumar et al. (2019) obtained optimal process 

parameters to include roundness errors as one of the 

parameters to be minimized apart from surface roughness, 

which is common in many papers. Bilgin (2021) checked 

the effect of the drilling environment on the formation of 

the thrust force during the thermal drilling process. 

  From the present authors’ understanding of the 

literature, many studies on the friction drilling of  AISI 

314 stainless steel are centred on the experimental side 

where the choice of tool and materials for the friction 

drilling process have been the major concern. 

Unfortunately, there have been few academic papers 

discussing the optimization problem. In many instances, 

the optimization used is the traditional type, such as the 

Taguchi method, response surface methodology and 

desirability function analysis with less concern for the 

quick solution convergence for the problem. Simplicity in 

the implementation of optimization procedures has also 

been ignored. 

  In contrast, the aim of this study is to provide a novel 

evolutionary framework, called the Harris Hawk 

algorithm, and apply it to evaluate the optimization 

capability of friction drilling while drilling the  AISI 304 

stainless steel. The proposed method entails an objective 

function based on an empirical model in a non-linear 

structure to maximize or minimize the output of the 

process according to the desired outcomes, Experimental 

data was extracted from El Bahloul et al. (2018) based on 

the AISI 304 stainless steel material as the first stage of 

the analysis. Then, the objective functions are formulated 

and introduced into the Harris Hawk algorithm and the 

solutions are compared with literature results. The 

difference between the present work and previous studies 

lies in that the traditional optimization measures such as 

the Taguchi method and the response surface 

methodology attempt to find optimum solutions at a slow 

convergence rate. However, the Harris Hawk algorithm 

proposed here attempts to achieve this in a quick 

convergence of the optimal solution to the problem. 

  The outputs of the drilling process are the axial force, 

determination error, radial force, and bushing length. The 

inputs to the process are the tool cylindrical region 

diameter, friction angle, friction contact area ratio, 

workpiece thickness, feed rate and rotational speed. To 

the best of our knowledge non-conventional optimization 

techniques in the thermal drilling literature, particularly, 

optimizing the outputs of the thermal drilling process 

using the Harris Hawk algorithm have no previous 

representation in the drilling literature. Thus, the novelty 

of this article stands as filling this important gap in the 

perspective expressed here. In summary, an optimization 

method of the Harris Hawk optimization is developed, 

formulated as a linear programming model and solved by 

running a computer programme in C++. Compared to the 

traditional optimization model such as goal programming, 

the Harris hawk optimization combines the unique 

attributes of requiring fewer parameters, a straightforward 

platform for implementation, quick convergence and a 

strong capability in attaining local search. 

  The contribution of the present study is the application 

of the Harris Hawk algorithm to the friction drilling 

process of AISI 314 stainless steel. It reveals diverse 

chasing patterns that mimic the dynamic form of scenarios 

and escape trends of the prey in an optimization procedure. 

Moreover, this study applies the Harris Hawk algorithm 

to analyze the optimization thresholds of outputs thereby 

eliminating reliance on the operator's judgment or the 

decision maker's opinion. Using experimental data 

exhibits more confidence in the Harris-Hawk algorithm's 

predictive ability. Furthermore, the study developed a 

relatively new method, the Harris Hawk algorithm, which 

has numerous advantages such as robustness, promising 

convergence speed, fewer parameters, exploration and 

exploitation and simplicity. 

  Furthermore, robustness describes the ability of HHO 

to handle the diverse non-linear and linear optimization 

problems in the industry. Besides, on convergence speed, 

the HHO has demonstrated quick convergence in 

obtaining optional solutions when run on benchmark 

problems. Also, HHO has shown an effective balancing 

of exploitation and exploration when subjected to 

problem-solving. This attribute is demonstrated as the 

HHO searches the solution space efficiently for solutions. 

Next, weighted against other metaheuristics, the HHO 

requires only fewer parameters thus making it 

straightforward to tune and use for optimization purposes. 

Furthermore, from the simplicity standpoint, the 

algorithm from the Harris Hawk optimizer has a 

comparatively straightforward implementation procedure. 

It is also easy to understand, possesses a simple structure 

and needs only fewer hyperparameters for tuning. 

 

2. LITERATURE REVIEW 

 

 The literature review for this research was aimed at 

revealing the newness of the Harris Hawk friction drilling 

optimization problem, the methodology deployed to 

solve this problem and the results obtained from applying 

the Harris Hawk model to a case study involving the 

friction drilling of AISI304 stainless steel. Consequently, 

the review is categorized into (1) optimization of the 

process parameters in the transformational AISI 304 

stainless steel, and (2) the Harris Hawk algorithm. These 

reviews are important to state the contribution of this 

research. 

 

2.1. Optimization of process parameters for AISI 304 

stainless steel 

 

 The optimization procedure establishes the best 

possible set of process parameters while processing the 

AISI304 stainless steel through different processes, 

including laser cutting (Jadhav and Kumar, 2019), 

electropulsing – oriented turning (Wang et al., 2015), 

formability studies (Vaz and Tomiyama, 2020), among 
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others. Jadhav and Kumar (2019) analysed the laser 

cutting parameters, namely, gas pressure, cutting speed 

and laser power while using the surface roughness as the 

response in processing AISI304 material. The results 

showed that the principal influential parameters for the 

laser-cutting process are the gas pressure and laser power. 

It was added that as the laser power and gas pressure 

increased, a corresponding reduction of surface roughness 

was experienced, which is a desirable result. The 

differences, between the article being reviewed and the 

current article are as follows: A substantial number of 

outputs, precisely five, namely the axial force radial force, 

bushing length, roundness error, and hole diameter 

dimensional error are explored in the present study, which 

is more comprehensive than only the surface roughness 

analysed in the reviewed article. 

 Moreover, the number of input parameters considered 

in the present work is more than three, which is below the 

number for the current study. More importantly, the 

Harris Hawk algorithm shows great flexibility in being 

modified and adapted to solve several complicated 

problems whereas the desirability approach adopted to 

solve the problem in the reviewed article is short of that 

capability. Vaz and Tomiyama (2020) analysed the 

formability process parameters of AISI 304 stainless steel 

while conducting tensile tests with multi-geometric 

samples. It was shown that at least, an improvement value 

of 30.43% of the global error index was attained for the 

process. Compared with the present study, the limited 

scope of the parameters in the review article to hardening 

parameters, including failure response is lower in 

comprehensiveness compared to the five responses 

considered in the present study. Wang et al.  (2015) 

conducted a turning experiment to highlight the 

significance of the process parameters of electropulsing 

while machining the AISI 304 stainless steel. It was 

concluded that the machined surface was less affected by 

the axial roughness, principal cutting force and 

microhardness. Weighted against the present study which 

focuses on five outputs, the focus of the reviewed article 

is less, which is limited to axial roughness, principal 

cutting force and microhardness. Moreover, the 

optimization focuses on the possibility of obtaining 

multiple solutions in the current study, which is a 

characteristic of evolutionary methods like the Harris 

Hawk model against a single solution provided by the 

reviewed article. 

 Furthermore, Nehri et al. (2024) conducted a 

machining experiment to optimize the process parameters 

of AISI 304L stainless steel deploying three optimization 

methods of artificial neural networks, Taguchi method 

and response surface methodology. The parameters 

analysed were the cutting depths, cutting speeds and feed 

as opposed to tool diameter, friction angle, friction contact 

area ratio, feed rate, and rotational speed, among other 

outputs. It was reported that the optimal results are the 

Al2O3 +TiCN coating with a depth of cut at 1.1mm, a 

cutting speed of 170m/min and a feed of 0.13mm/rev. 

Kalidass and Palanisamy (2014) studied the joint 

influence of cutting parameters (i.e. depth of cut, spindle 

speed, and feed rate) and helix angle for the cutting tool 

on surface roughness while machining AISI304 stainless 

steel. It was concluded that the utmost surface roughness 

value was 1.2 micrometre. Although multiple parameters 

are used in this reviewed article, they are not as wide-

ranging as in the present study. Also, only the surface 

roughness was used in the reviewed article against five 

outputs utilized in the present study. In addition, the 

unique advantage of providing multiple but reliable 

solutions distinguishes the present study and places it at 

an edge over the reviewed article.  

 

2.2. Harris Hawk algorithm 

 

 The application of the Harris Hawk algorithm could 

be found in several areas such as energy distribution 

system (Dey and Marungsri, 2024) intrusion detection 

(Zhou et al., 2023), power flow (Akpamukcu et al., 2023), 

reactive power (Jiao et al., 2024). Dey and Marungsri 

(2024) contributed an optimal sizing and photovoltaic 

locational study using the adjusted Harris hauk 

optimization procedure. It was declared that the optimal 

location of the PV system and sizing yielded superior 

voltage stability. Zhou et al. (2023) utilized the enhanced 

Harris Hawk algorithm to optimize detection accuracy by 

the conventional intrusion detection approaches. It was 

shown that feature choice and data balance structure 

significantly enhanced the accuracy of detection. 

 Moreover, the detection accomplishment outperforms 

the available intrusion detection approaches. Akpamukcu 

et al. (2023) combined the Harris Hawk procedure with 

an electromagnetic field to achieve optimal power flow. It 

was declared that optimization performance grew with the 

optimization to optimization method which the 

philosophy of the electromagnetic field optimization 

remains constant. Jiao et al. (2024) hybridized the Harris 

Hawk algorithm with the sine cosine optimization 

procedure in power system planning. It was reported that 

the hybrid method reduce the power loss by 33.19% 

compared with analysis involving no optimization. Babu 

and Swarnasri (2020) use the Harris Hawk algorithm and 

the teaching learning-oriented optimization to efficiently 

distribute renewable distributed generation. It was 

concluded that a significant power loss reduction, voltage 

profile enrichment and exactness of the proposed 

approaches occurred. 

 Song et al. (2020) contributed a novel approach to the 

choice of optimal parameters for the Proton Exchange 

Membrane Fuel cell using the improved Harris Hawk 

algorithm to reduce the sum of the square deviations 

between the projected data and output voltage. It was 

reported that the total of the squared deviations is 2.0164, 

0.0594 and 0.014 for the NedSstack PS6 of 6.KW, 

Horizon H-12 and Ballard Mark V., respectively, which 

are the lowest values (0.0189, 0.0016 and 0.014) for the 

cases weighed against other approaches in the literature. 

Mary et al. (2020) optimized the parameters of the 

feedback control in a controller for the automatic voltage 

regulator system. The performance of the suggested 

controller competes favourably with other proportional 

integral derivative controllers using various algorithms. 

Upputuri et al. (2024) formulated the power flow problem 

as an optimization problem and solved it using the 

improved Harris Hawk algorithm combined with the 
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pattern search method. It was reported that the proposed 

integrated method performed better than others. Swetha et 

al. (2021) applied the Harris Hawk algorithm combination 

with the particle swarm optimization to the voltage 

control problem. The result of the method was superior to 

those compared with. Swetha et al. (2021) applied the 

Harris Hawk algorithm combination with the particle 

swarm optimization to the voltage control problem. The 

result of the method was superior to those compared with. 

 

2.3. Summary of the literature review 

 

 From the literature review of the two separate topics 

examined under the survey, it was found that the AISI 304 

stainless steel is a widely used engineering material that 

has experienced significant applications in processes such 

as laser cutting and turning among others. However, none 

of these studies has applied the Harris Hawk algorithm. It 

is also known that several optimization methods have 

been used in previous research while processing the AISI 

304 stainless steel in diverse processes such as laser 

cutting and turning, among others. These optimization 

methods include the Taguchi method, response surface 

methodology and desirability function analysis. In general, 

these methods have their merits in that they are effective 

and offer useful values with which the performance of 

workers may be compared. Yet, they have the general 

weakness of slow convergence. However, in the present 

complex manufacturing era, time is of the essence and fast 

convergence of solutions is desired for operational 

competition. Therefore, the Harris Hawk algorithm, 

which converges fast in obtaining a solution is preferable 

to the mentioned methods in terms of performance. 

 

3. METHODOLOGY OF THE HHO ALGORITHM 

  

The Harris Hawk Optimization (HHO) algorithm is an 

optimization technique that was inspired by the behaviour 

of Harris's Hawks during hunting. It is a method that was 

introduced by Heidari et al. in 2019 and it draws its 

inspiration from the hunting strategy of the Harris Hawks 

which is cooperative. The Harris Hawks are considered to 

be among the most intelligent birds and this is shown in 

the way they hunt. Their diet typically consists of large 

insects, birds, lizards and small-sized mammals like 

rabbits and rats. The HHO algorithm utilizes a set of 

hawks to represent possible solutions in the search region. 

By adapting behaviours like exploration, exploitation and 

sharing of information, the HHO algorithm strives to 

maintain a balance between the several strategies. This 

then brings about the convergence towards an optimal or 

near-optimal solution. The HHO algorithm has multiple 

applications in diverse domains some of which are 

engineering design, feature selection and numerical 

optimization. It is utilized in solving different engineering 

problems and it has also demonstrated promising results 

in terms of the quality of the solutions and the speed with 

which convergence is attained. The Harris Hawk 

Optimization algorithm has two main phases according to 

the hunting behaviour of the Hawks and they are as 

follows: 

1. The exploratory phase 

2. The Exploitative phase 

 

3.1. The exploratory phase 

 

In the exploratory phase, the Hawks monitor the area 

to see prey. There are two main strategies employed by 

the Hawk to achieve this, and to choose between the two 

strategies, a random number "q" between 0 and 1 is 

chosen. N.B. For the sake of illustration, a rabbit is used 

to represent the prey. 

 

3.1.1. Equal chance (when q < 0.5) 

 

This implies that the perch of the Hawk is based on the 

positions of the other family members of the Hawk and of 

the rabbit. The rabbit in this case is the intended prey, this 

at every stage of the hunting or at every iteration in this 

case, the best candidate solution is considered as the 

intended prey or near optimum. In this strategy, the 

equation used to obtain the next potential location is given 

in Equation (1) for the next potential location for equal 

chance situations in the exploratory phase. 

))(())()(()1( 43 LBUBrLBrtXtXtX mrabbit −+−−=+   (1) 

 

3.1.2. Random Perch (when q < 0.5) 

 

In this case, the Hawks perch on random tall trees. As 

applied in the algorithm, they perch on random locations 

inside the hunting group's range. The Equation (2) is the 

equation for obtaining the next potential location for 

random perch in the exploratory phase. 

|)(2)(|)(()1( 21 tXrtXrtXtX randrand −−=+    (2) 

where, 

X(t+1) – Position vector of Hawks in the next iteration t 

Xrabbit(t) – Position of rabbit 

X(t) – Current position vector of Hawks 

r1, r2, r3, r4, q – Random numbers inside (0,1) which are 

updated with each Hawk 

LB and UB – Lower and upper bounds of variables 

Xrand (t) – Randomly selected Hawk from the current 

population 

Xm – Average position of the current population of Hawks 

The method of obtaining the average position of 

Hawks: 

Equation (3) is used to obtain the mean position of the 

population. 


=

=
N

i

im tX
N

tX
1

)(
1

)(           (3) 

Xi(t) – location of each Hawk in iteration (t) 

N – total number of Hawks 

It is possible to have multiple arrivals of Hawks at the 

average position of the Hawks but the HHO adopts a 

simple way. 

 

3.1.3. Transition from exploration to exploitation 

 

The HHO algorithm can migrate from exploration 

which is simply surveying the area to exploitation and 

also change from exhibiting exploitative to explorative 

behaviors. The adoption and migration of one hunting 

behaviour to the other all hinges upon the escaping energy 
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of the prey "E". Typically, the energy of the prey 

diminishes as it tries to escape since it exerts energy in 

running and hopping to safety. The energy of the prey is 

modelled as follows: 

Equation (4) is the equation used to obtain the energy of 

the prey. 









−=

T

t
EE 12 0

           (4) 

where, 

E – Escaping energy of the prey (with a range of -1 to 1) 

T – Maximum number of iterations 

E0—Initial state of the energy of the prey 

Equation 5 is used to obtain the initial state of the energy 

of the prey. 

E0 = 2 rand ( ) – 1           (5) 

rand ( ) – Random number inside (0,1) 

a. When E0 decreases from 0 to -1, this means that the 

rabbit is very weak and is physically flagging. 

b. When E0 increases from 0 to 1, the rabbit is growing 

in strength. 

c. If |E| ≥ 1, then the Hawk searches different regions to 

explore a rabbit location. 

d. If |E| < 1, the algorithm tries to exploit the 

neighbourhood of the solutions during the exploitation 

steps. 

In summary; 

Where |E| ≥ 1, exploration takes place, and where |E| < 1, 

exploitation takes place. 

 

3.2. Exploitation phase 

 

The Harris Hawks carry out the surprise pounce in this 

phase by executing an attack on the prey which has been 

detected in the exploratory phase. The prey also attempts 

to escape and flee these situations and thus the prey 

utilizes different techniques to do so. There are four 

techniques for chasing and hunting down the prey in the 

HHO modelled here and it all depends on the escaping 

behaviour of the prey. As we see, the Harris Hawks 

manifest their intelligence by adapting their hunting at 

every stage so that it is optimal enough to suit the escaping 

behavior of the prey. To select the technique of hunting in 

this phase, we choose a random number between 0 and 1 

called "r" which represents the chances of prey escaping. 

r -  chances of escape for a prey. 

if (r < 0.5) – there are chances that the prey will escape 

before the surprise pounce. 

if (r ≥ 0.5) – there are chances that the prey will not 

successfully escape. 

Therefore the reaction and response of the prey 

determines whether the Hawks will perform a hard or soft 

besiege to catch the prey. 

 

3.2.1. Soft besiege 

 

In this exploitation phase, the rabbit still has sufficient 

energy, since {|E| ≥ 0.5, r < 0.5}. The Hawks therefore 

encircle the prey softly and gently as it flees and hops 

away and this is done in ++ order to exhaust the rabbit. 

The model of this haunting phase is shown below. 

Equation (6) is used to obtain the prospective location in 

the soft besiege. 

|)()(|)()1( tXtJXEtXtX rabbit −−=+     (6) 

where, 

∆X(t) - The difference between the position vector of the 

rabbit and the current location in iteration “t”. 

Equation 7 is used to obtain ∆X(t), a variable in the 

equation for the next prospective solution. 

)()()( tXtXtX rabbit −=          (7) 

Equation (8) is used to obtain J which represents the 

random jump strength of the rabbit (changes for each 

Hawk in each iteration). 

J = 2 (1 – rs)            (8) 

rs – random number inside (0, 1) 

 

3.2.2. Hard besiege 

 

In this phase, the prey is exhausted and thus it has a 

low escaping energy making it more vulnerable to being 

captured. In this case, in this exploitation phase, the rabbit 

still has sufficient energy, since {|E| < 0.5, r ≥ 0.5}. The 

modelling of this phase is depicted in the mathematical 

model below. Equation (9) is used to obtain the 

prospective location for Hard Besiege. 

|)(|)()1( tXEtXtX rabbit −=+        (9) 

 

3.2.3. Soft besiege with progressive rapid dives 

 

When |E| ≥ 0.5 but r < 0.5, the rabbit has enough 

energy to successfully escape, however, a soft besiege is 

still executed before the surprise pounce. This procedure 

depicts a superior intelligence than the previous case. This 

situation is competitive; thus the Hawks evaluate their 

next move using the rule depicted below. Equation 10 is 

utilized in obtaining Y, a possible prospective location. 

|)()(|)( tXtJXEtXY mrabbitrabbit −−=         (10) 

If the prey then notices that the prey is performing 

more deceptive motions to facilitate its escape, it also 

performs irregular abrupt and rapid dives as it approaches 

the prey. The Levy Flight (LF) is used to mimic the real 

zigzag deceptive motion of the prey as shown below. 

Equation (11) is utilized in obtaining Z, a possible 

prospective location. 

)(DLFSYZ +=              (11) 

where, 

D – Dimension of the problem (i.e. population size) 

S – Random vector by size 1 x D 

LF – Levy flight function 

The levy flight function that introduces the aspect of 

the zigzag motion of the birds and the elements that 

constitute the obtaining of the Levy function is shown 

below. Equation (12) is used to obtain the Levy 

distribution 

Levy (D) 




1

|| v

u
s


=             (12) 

s — constant values fixed at 0.01 

U and v — random numbers between 0 and 1 

 Equation (13) is utilized in obtaining the value of 

sigma (σ) which is utilized in the Levy function. 
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where β = a constant fixed at 1.5 

To decide on Y or Z as the next location, the following 

criteria is followed: 

    Y if F(Y) < F(X(t)) 

=+ )1(tX  
Z if F(Z) < F(X(t)) 

Hard besiege with progressive rapid dives 

The rabbit does not have enough energy in this phase 

to escape the Hawks and a hard besiege is carried out 

before the surprise pounce to catch and kill the prey. A 

simple mathematical illustration of this phase is shown 

below. 

    Y if F(Y) < F(X(t)) 

=+ )1(tX  
    Z if F(Z) < F(X(t)) 

Equation (14) is used to obtain the value of Y, a 

prospective location in the Hard besiege phase with 

progressive rapid dives. 

|)()(|)( tXtJXEtXY mrabbitrabbit −−=         (14) 

Z is obtained as in Equation (11).  

 

4. APPLICATION OF THE HARRIS HAWK 

ALGORITHM TO THE THERMAL DRILLING 

PROBLEM 

 

 The input variables used in the present study are 

explained as follows: The inputs are namely rotational 

speed (RS), tool cylindrical region diameter (d), feed rate 

(FR), frictional angle (B), workpiece thickness (T) and 

friction contact area/circumference area (FCAR). These 

inputs are explained as follows: 

1. The rotational speed indicates the frequency of 

rotation of the tool applied under pressure and friction 

on the  AISI 304  stainless steel material around an 

axis. 

2. Tool cylindrical region diameter is the measurable 

size of the tool that engages the workpiece while 

drilling a circular hole. It should match the material's 

strength to avoid breakage. The total diameter is 

measured with a calliper. 

3. Feed rate is the distance cutting tools cover in a 

revolution of the tool. To determine the feed rate of 

the tool, the drill type and the material to be drilled as 

the two major factors to consider. 

4. Friction angle is the angle that the resultant of a 

normal reaction and the limiting factors make with the 

normal reaction. It is important because the strength of 

many materials is impacted by friction. 

5. Workpiece thickness is the width or height of the 

metallic piece being worked on or machined. 

6. Friction contact area/ circumference area is the surface 

area of the contact force that does not influence 

friction since friction merely relies on the object's 

mass, frictional coefficient and gravity. 

The objectives to be achieved with the HHO algorithm 

in the thermal drilling problem are shown in Table 1. 

 

4.1. Description of the outputs and their importance in 

the thermal drilling process 

  

 Axial Force (AF): The axial force simply is the force 

which is applied along the axis of the drill bit during the 

process of the drilling. Having a minimal axial force in the 

 
Figure 1. Simplified step-by-step implementation of Harris Hawk algorithm 
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thermal drilling process therefore significantly improves 

the thermal drilling process in the following concrete 

ways. Reduction of Axial force reduces the tool wear and 

thus prevents excessive deformation of the material. 

Reduction of the axial force also has economic 

implications as there is a cut in power requirements due 

to reduced required force. 

 Radial Force (RF): Radial Force is the force applied 

perpendicular to the axis of the drill bit in the drilling 

process. When the Radial force is minimized, there is a 

reduction in the lateral pressure that is exerted on the 

material being drilled. The reduction of the radial force 

also brings about better hole quality as well as more 

dimensional accuracy. 

 Hole Diameter Dimensional Error (DE): The hole 

diameter dimensional error is simply the amount of 

deviation between the hole diameter that was desired and 

the actual diameter obtained. The minimizing of the Hole 

diameter dimensional error therefore is very important in 

the optimization of the thermal drilling process, and this 

is because when the error is reduced, the process obtains 

greater accuracy and consistency in terms of the size of 

the hole thus ensuring that the important standards are 

fulfilled. Another benefit that comes from minimizing DE 

is that the functionality and integrity of drilled products 

are maintained, thus allowing for better alignment and 

better product quality. 

 Roundness Error (RE): Roundness error is simply the 

deviation of the thermal drilled hole from a perfect 

circular shape. Therefore, minimizing the roundness error 

is very important for an optimal thermal drilling process. 

A minimal roundness error yields an improved circularity 

and concentricity of the drilled hole. The minimizing of 

the roundness error also ensures proper fit, alignment and 

optimal functioning of thermal drilled components 

especially in cases where precision and tight tolerances 

are compulsory. 

 Bushing Length (BL): The bushing length is the 

portion of material which is thermally deformed as well 

as displaced to bring about a cylindrical bushing around 

the drilled hole. A longer bushing length means a larger 

contact area between the bushing and the surrounding 

material bringing about a better stability and load-bearing 

capacity. Extended bushing length also increases the 

ability of the material to have a secure and durable 

connection between the drilled component and other parts 

in a thermal drilled joint. 

 

4.2. Objective function formulation 

 

 For each of these output parameters, objective 

functions have been obtained and they are the starting 

point for optimizing of any output in Single Objective 

optimization scenarios. The several objective functions 

for each of the output parameters are shown below. 

Objective 1: Minimize AF 

AF = 0.5701D – 0.01711β + 0.004136FCAR – 0.8286T -

0.006045FR + 0.000148RS – 0.04019D2 + 0.000244β2 

(15) 

Objective 2: Minimize DE 

DE = 0.6657D – 0.05554β + 0.002693FCAR – 0.004186T 

– 0.008202FR + 0.000200RS – 0.05726D2 – 0.000671β2 

(16) 

Objective 3: Maximize BL 

BL = 0.05361D – 0.001201β – 0.001920FCAR + 0.2180T 

– 0.001325FR – 0.000003RS – 0.002078D2 – 0.00000β2 

(17) 

Objective 4: Minimize RF 

RF = 0.4580D + 0.008589β + 0.001332FCAR – 0.3035T 

+ 0.005417FR – 0.000007RS – 0.03882D2 – 0.000023β2 

(18) 

Objective 5: Minimize RE 

RE = -0.01057D + 0.03423β + 0.005979FCAR –

0.34798T + 0.000947FR – 0.000027RS – 0.008459D2 –

0.000259β2               (19) 

 

4.3. Optimizing the axial force 

 

 For the sake of illustration, the HHO optimization is 

illustrated in detail for the first member of the population 

(the first Hawk) in the first iteration. A population of 10 

Hawks and a maximum iteration of 500 is adopted for the 

Harris Hawk optimization. 

Step 1: Random Initialization of the matrix 

Formula for Randomly initialized value: L + R (U – L) 

The procedure followed in obtaining the first variable in 

the first Hawk of the population is shown below. 

Lower Boundary: 5.4, Upper Boundary: 9.2, Random 

Number: 0.104678 

5.4 + 0.104678(9.2) – 5.4 = 5.79778 

 The same procedure was used to obtain the values for 

the randomly initialized matrix. The fitness values for the 

Axial Force (AF) were thus obtained by inserting the 

randomly initialized values into the objective function for 

Axial force. The randomly initialized matrix is shown 

below (together with their fitness values in the last 

column). Table 2 simply shows the randomly initialized 

matrix i.e. the Hawks that have been randomly initialized 

at the 10 different locations. The last column is the fitness 

value of the locations after they were inserted in the 

objective function for the Axial Force. 

4.4. Purpose of randomizing in the Harris Hawk 

Optimization Algorithm 

 

The cooperative hunting style of Harris Hawks served 

as the basis for the Harris Hawk Optimization (HHO) 

Table 1. The Output values of the thermal drilling problem and the optimization objectives 

S/N Output Operation 

1 Axial Force (AF) Minimize 

2 Radial Force (RF) Minimize 

3 Hole Diameter dimensional error (DE) Minimize 

4 Roundness Error (RE) Minimize 

5 Bushing Length (BL) Maximize 
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algorithm. The HHO method incorporates randomness in 

several places to add variety and exploration to the search 

space. Here are some examples of when randomization is 

used: 

a. Initialization: The initial population of potential 

solutions is given random values at the start of the 

procedure. This randomness contributes to the 

creation of a varied collection of initial solutions, 

enabling the exploration of various search space 

locations. The HHO algorithm selects leaders (or 

global best solutions) from the population based on the 

fitness values of those solutions. To add an element of 

chance, randomness might be included throughout the 

leader-choosing process. For instance, to promote 

exploration and avoid hasty convergence, a random 

leader could periodically be chosen rather than always 

choosing the optimal answer. 

b. Movement of Solutions: Randomness can be included 

to introduce stochasticity during the movement phase, 

in which solutions modify their positions. This can be 

accomplished by adding arbitrary disturbances or 

arbitrary steps in the movement's direction. 

Randomness aids in better search space exploration 

and prevents solutions from becoming snared in local 

optima. 

c. Crossover and Mutation: Randomness is essential for 

the execution of operators like crossover and mutation 

used in the HHO algorithm. Solutions are combined or 

altered at random to produce new offspring with 

diverse traits. This randomization encourages 

population variety and helps to explore new parts of 

the search space. 

The HHO method can achieve a balance between 

exploration and exploitation by introducing 

randomization at these various points, making it possible 

to quickly find the best solutions to challenging 

optimization problems. 

 

4.5. Information about the first iteration 

 

Step 2: Obtain Xrabbit  

Since we are minimizing, the  Xrabbit is the best 

candidate solution with the smallest fitness and it is given 

as in Table 3. Table 3 simply shows the location in the 

population which has the lowest fitness value (i.e. the 

smallest value of the Axial Force). 

Step 3: Obtain Xmean  

Xmean is the average position of the current population 

of the Hawks. It is obtained using the following equation: 


=

=
N

i

imean tX
N

tX
1

)(
1

)(            (20) 

The values of Xmean obtained are shown below. Table 4 

depicts the mean location obtained in the first iteration. 

The mean has been arrived at for each of the variables by 

taking their sum and dividing them by the number of 

Hawks in the population. 

 

4.6. Information about the first Hawk in the first 

iteration (Iteration 0) 

 

Step 4: Initialize the values of E0 and J 

E0 = 2 rand ( ) – 1 

Random number chosen between (0 & 1): 0.936155 

Table 2. The randomly initialized matrix alongside the fitness values at all the 10 prospective locations 

D β FCAR T FR RS AF 

5.79778 43.9705 53.148 2.66698 102.062 3229.24 -

0.455305 

8.51299 56.6207 92.5794 1.11945 124.948 3276.3 0.939019 

8.34275 57.951 51.3245 1.99332 136.699 1592.41 -

0.243247 

7.6373 41.0416 92.201 1.74111 79.1778 3199.21 0.652095 

6.0688 54.135 68.4317 1.01715 103.851 2863.57 1.00468 

5.90482 41.904 86.6665 2.79754 115.793 2414.52 -

0.625697 

5.73701 54.7823 56.2304 2.95965 125.07 2819.68 -

0.815711 

8.9938 45.363 67.0553 1.73733 135.596 1763.07 -

0.118549 

7.86704 56.7718 59.4012 1.97 121.147 2998.15 0.137418 

8.53955 45.0691 62.3524 2.4135 116.513 2879.74 -0.35798 

D – Tool diameter, mm; β - Friction angle – degree; FCAR – Friction contact area ratio – unitless; 

FR – Feed rate – mm/min; RS – Rotational speed – rpm; AF – axial force 

 

Table 3. The most optimal location obtained from the randomly initialized matrix 

D β FCAR T FR RS AF 

5.73701 54.7823 56.2304 2.95965 125.07 2819.68 -0.815711 

 

Table 4. The mean location obtained from the randomly initialized matrix 

D β FCAR T FR RS AF 

5.73701 54.7823 56.2304 2.95965 125.07 2819.68 -

0.815711 
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E0 = 2 (0.936155) – 1 = 0.872311 

J = 2 (1- rand ()) 

Random number chosen between (0 and 1): 0.675375 

J = 2 (1- 0.675375) = 0.649251 

Step 5: Obtain the energy E of the prey 

The energy E of the prey is modelled and can be obtained 

as follows: 









−=

T

t
EE 12 0

 

Substituting the respective values, we have: 

74462.1
500

0
1872311.0*2 =








−=E   

Since |E| ≥ 1, the exploration phase is adopted. 

 

4.7. Source of the energy of the prey 

 

 From inspection, it is possible to discover from the 

energy equation that it is directly proportional to the 

number of iterations already carried out. Therefore, an 

analogy can be struck between the number of iterations 

and the escape energy of the rabbit such that in the early 

iterations, the rabbit has ample energy, which decreases 

gradually as the number of iterations increase and 

eventually becomes 0 when the number of iterations 

carried out is equals to the maximum number of iterations. 

 

4.8. Exploration phase 

 

Step 6: Obtain the potential new location X(t + 1)  

To decide the strategy to adopt, we first of all obtain 

random numbers r3, r4 and q all within (0, 1). The perch is 

based on the positions of other family members and the 

location of the rabbit are chosen as the random numbers. 

r3: 0.11948; r4: 0.0559404; q: 0.410474 

Since q < 0.5, then the following formula will be used to 

evaluate  X(t + 1). 

))(())()(()1( 43 LBUBrLBrtXtXtX mrabbit −+−−=+  
Other values required to obtained X(t + 1) are shown. 

Xrabbit    Xm(t)   X(t) 

5.73701  7.34018  5.79778 

54.7823  49.7609  43.9705 

56.2304  68.939   53.148 

2.95965  2.0416   2.66698 

125.07   116.086  102.062 

2819.68  2703.59  3229.24 

 The above formula for XNew is illustrated via the first 

variable in the first Hawk of the first iteration as shown 

below. 

XNew = (5.73701 54.7823 56.2304 2.95965 125.07 

2819.68 ) – (7.34018 49.7609 68.939 2.0416 116.086 

2703.59 ) – 0.11948 *(5.4 + 0.0559404 (9.2 - 5.4)) 

Checking if the values fall within the upper and lower 

bounds given for each of the input parameters. XNew 

obtained (before checking if each value fall within the 

bounds): -2.27376 1.23645 -19.0169 0.785204 1.28115 -

76.495. XNew obtained (After checking if each falls within 

bounds): 5.4 30 50 1 60 1500. XNew obtained (after 

checking if each falls within bounds) together with the 

fitness values: 5.4 30 50 1 60 1500 0.8504. 

 

4.9. Greedy selection 

 

 Since we are minimizing the Axial Force (AF), we 

desire that this prospective location would have a fitness 

value that is better than the already existing fitness value. 

I.e. the fitness value should be smaller before replacement 

of the entire location can occur. 

F(X(t)): -0.455305; F(XNew): 0.8504 

Since we are maximizing AF, and F(XNew) < F(X(t)) 

replacement does not take place as the prospective 

location is not desirable. 

 

4.10. Effect of the greedy selection 

 

 The greedy selection is at the heart of all optimization 

algorithms. The fundamental implication of greedy 

selection is that the optimization algorithm will adopt a 

potential solution if and only if it offers superior benefits 

in the pursuit of the particular goal in question which can 

be the maximization or the minimization of the objective. 

For this particular optimization problem, the effect of the 

greedy selection is shown in the sense that since the 

prospective location yields an axial force of 0.8504, the 

current location has a value of -0.455305 for axial force. 

Since we intend to minimize axial force, the greedy 

selection will reject the prospective location since it does 

not provide benefits superior to the already existing 

location given the final goal. 

 After Carrying out the Harris Hawk Operations on the 

first Hawk in the first Iteration, the randomly initialized 

matrix remains unchanged as shown below, since 

replacement did not take place. Table 5 shows the state of 

Table 5. The population after carrying out the optimization operation on the first Hawk in the population in the 

first iteration 

D β FCAR T FR RS AF 

5.79778 43.9705 53.148 2.66698 102.062 3229.24 -0.455305 

8.51299 56.6207 92.5794 1.11945 124.948 3276.3 0.939019 

8.34275 57.951 51.3245 1.99332 136.699 1592.41 -0.243247 

7.6373 41.0416 92.201 1.74111 79.1778 3199.21 0.652095 

6.0688 54.135 68.4317 1.01715 103.851 2863.57 1.00468 

5.90482 41.904 86.6665 2.79754 115.793 2414.52 -0.625697 

5.73701 54.7823 56.2304 2.95965 125.07 2819.68 -0.815711 

8.9938 45.363 67.0553 1.73733 135.596 1763.07 -0.118549 

7.86704 56.7718 59.4012 1.97 121.147 2998.15 0.137418 

8.53955 45.0691 62.3524 2.4135 116.513 2879.74 -0.35798 
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the population after carrying out the Harris Hawk 

optimization on the first Hawk of the iteration. From the 

table we can observe that the replacement did not take 

place, therefore the values for the matrix after optimizing 

the first Hawk with HHO remain the same with the initial 

randomly initialized matrix. 

 At the end of the 500th iteration, the optimal 

parametric setting for obtaining minimal Axial Force 

(AF) presented by Harris Hawk Algorithm is shown in 

Table 6. Table 6 implies that at the end of 500 iterations, 

to obtain an optimal value of Axial force, a tool 

cylindrical region diameter of 5.78593, a friction angle of 

60, a friction contact area ratio of 57.7082, Workpiece 

thickness of 3, feed rate of 140 and rotational speed of 

3002.85 can be applied (see Figure 2). The results are not 

discreet and possess decimal values, however, they are all 

within the range of what is obtainable in the industry. 

Thus in cases where strict adherence to the results 

obtained as optimal parametric setting is not possible, 

insight is still to be gained from the values obtained. The 

Optimal parametric settings and the plot summary at the 

end of the iterations are shown for the other outputs that 

are to be optimized. 

 

4.11. Effect of minimization on the axial force 

  

As can be seen from Figure 2, there is an early 

convergence of the values of axial force during the Harris 

Hawk computation. This is because the Harris Hawk 

optimization algorithm is very efficient and it arrives at its 

goal with speed. The minimization of the Axial Force 

using the HHO has yielded negative values of AF which 

is -0.844078 in this case, which in practice is not possible 

but which shows that carrying out the thermal drilling 

process at this optimal parametric setting will yield lower 

values of axial force. The value yielded as the optimal 

value for AF, is smaller than all the values for the AF in 

the reference paper, El-Bahloul et al. (2018), where the 

experiment was carried out. 

The minimum value of AF from the reference paper: 0 

(El-Bahloul et al., 2018). The minimum value of AF from 

the HHO algorithm: is -0.844078. % reduction in the 

value of AF: 84.4%. 

It is important to note that the value of AF from the 

reference paper is 0 because they are normalized values, 

simply representatives of the magnitudes of their original 

values with respect to the other values. 

 

4.12. Minimize Delamination Error (DE) 

 

 At the end of the 500th Iteration, the optimal 

parametric setting for obtaining minimal Delamination 

Error (DE) presented by Harris Hawk Algorithm is shown 

in Table 7. Table 7 implies that at the end of 500 

iterations, in order to obtain an optimal value of 

Delamination Error, a tool cylindrical region diameter of 

9.2, a friction angle of 54.7235, a friction contact area 

ratio of 61.3808, Work piece thickness of 1.96018, Feed 

rate of 89.1133 and rotational speed of 2224.02 can be 

applied (Figure 3). 

 

4.13. Effect of minimizing Delamination Error (DE) 

 

 The minimizing of delamination error after 500 

iterations has yielded 0.119017 to be the minimum value 

obtainable given the optimal parametric setting. The 

minimum value of AF from the reference paper: is 0 (El-

Bahloul et al., 2018) while the minimum value of DE 

yielded by HHO is 0.119017. % reduction of DE: -12%. 

Therefore, the value from the reference paper is 

smaller, hence more desirable with respect to the 

objective of optimal Delamination Error. 

 

4.14. Maximize Bushing Length (BL) 

 

 At the end of the 500th Iteration, the optimal 

parametric setting for obtaining maximum Bushing 

Length (BL) presented by the Harris Hawk Algorithm is 

Table 6. The optimal parametric setting for AF after 500 iterations 

D β FCAR T FR RS AF 

5.78593 60 57.7082 3 140 3002.85 -0.844078 

 

 

Figure 2. Axial force against the number of iterations 
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shown in Table 8. Table 8 implies that at the end of 500 

iterations, in order to obtain an optimal value of Bushing 

Length, a tool cylindrical region diameter of 9.2, a friction 

angle of 40.3913, a friction contact area ratio of 66.0103, 

Work piece thickness of 3, Feed rate of 138.662 and 

rotational speed of 3436.16 can be applied (Figure 4). 

 

4.15. Effect of maximizing the Bushing Length 

 

 From the normalized values of the reference paper (El-

Bahloul et al., 2018), as expected, the maximum value is 

1. The maximum value yielded by the Harris Hawk 

algorithm however is 0.953808. % increase in value of BL: 

-5%. This value again is smaller than the value in the 

reference paper hence less desirable to the parametric 

setting in the reference paper. This does not however 

discredit to effect of maximization brought about by the 

HHO in the Bushing Length value. 

4.16. Minimize Radial Force (RF) 

 

 At the end of the 500th Iteration, the optimal 

parametric setting for obtaining minimal Radial Force 

(RF) presented by Harris Hawk Algorithm is shown in 

Table 9. Table 9 implies that at the end of 500 iterations, 

in order to obtain an optimal value of Radial Force, a tool 

cylindrical region diameter of 9.2, a friction angle of 

48.5444, a friction contact area ratio of 100, Work piece 

thickness of 3, Feed rate of 140 and rotational speed of 

3500 can be applied (Figure 5). 

 

4.17. Effect of minimizing Radial Force 

 

 The radial force obtained from the optimal parametric 

setting yielded by the HHO is - 0.269558. The value 

which was obtained as minimum from the reference paper 

for the radial force is 0. % decrease in the value of Radial 

Table 7. The optimal parametric setting for DE after 500 iterations 

D β FCAR T FR RS DE 

9.2 54.7235 61.3808 1.96018 89.1133 2224.02 0.119017 

 

 

Figure 3. Delamination Error against the iterations 

Table 8. The optimal parametric setting for BL after 500 iterations 

D β FCAR T FR RS BL 

9.2 40.3913 66.0103 3 138.662 3436.16 0.953808 

 

 

Figure 4. Bushing length against the iterations 
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Force: 26.96%. This implies that the value yielded here 

by the Harris Hawk optimization algorithm is more 

desirable than the parametric setting yielded in the 

reference paper, El-Bahloul et al. (2018). 

 

4.18. Minimize Radial Error (RE) 

 

 At the end of the 500th Iteration, the optimal 

parametric setting for obtaining minimal Radial Error (RE) 

presented by Harris Hawk Algorithm is shown in Table 

10. In Table 10, at the end of 500 iterations, in order to 

obtain an optimal value of Radial Error, a tool cylindrical 

region diameter of 8.83195, a friction angle of 42.6124, a 

friction contact area ratio of 93.696, Work piece thickness 

of 2.96595, Feed rate of 60 and rotational speed of 1500 

can be applied (Figure 6). 

 

4.19. Effect of minimizing the Radial Error 

 

 The radial error obtained from the optimal parametric 

setting yielded by the HHO is -0.220422. The value which 

was obtained as minimum from the reference paper for the 

radial error is 0. % decrease in the value of Radial Error: 

22.04%. This implies that the value yielded here by the 

Harris Hawk optimization algorithm is more desirable 

than the parametric setting yielded in the reference paper, 

El-Bahloul et al. (2018). 

 

4.20. Validation of the proposed method 

 

 To demonstrate the effectiveness of the method and 

showcase its validity, the present study was compared 

with the literature data that was developed from the 

integrated taguchi-Pareto–grey wolf-desirability function 

analysis optimization technique. The values obtained 

from both methods were subjected to the Wilcoxon signed 

rank test, a non-parametric statistical test. Thus, this paper 

discusses the implementation of the Wilcoxon signed rank 

Table 9. The optimal parametric setting for RF after 500 iterations 

D β FCAR T FR RS RF 

9.2 48.5444 100 3 140 3500 -0.269558 

 

 

Figure 5. Radial force against the iterations 

Table 10. The optimal parametric setting for RE after 500 iterations 

D β FCAR T FR RS RE 

8.83195 42.6124 93.696 2.96595 60 1500 -0.220422 

 

 

Figure 6. Radial error against the iterations 
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test based on the literature data from Nwankiti and Oke 

(2022) and the present study. Table 11 reveals the results 

of the literature sources in the third column with the 

current study results shown in the fourth column. 

 The figures in these two columns represent data on the 

various parameters. Since the same data source is used in 

both cases, an easy comparison of results is made. The 

aim is to determine if significant differences exist between 

the literature data and the present study results. It implies 

that the two are paired data. The authors did not use the t-

test since the data pairs are minimal and it is suspected 

that the data are not normally distributed. In that case, it 

was decided to use the Wilcoxon signed rank test which 

works well on small samples and data suspected not to 

have normal distribution. To stand the test, there is a need 

to formulate the null hypothesis (H0) which states that the 

mean value, Hvalue, of the literature data is greater than the 

Hvalue of the present data. The alternative hypothesis (H1) 

is formulated, which states that the mean value, Hvalue, of 

the literature data is less than the Hvalue of the present data. 

Also, the significant level is fixed at α = 0.05 (i.e. 95% 

acceptability) and the value of the data, set, n, is 5. The 

first set of computations tests the paired parametric values 

when the output of AF (i.e. axial force). 

 The results are shown in Table 11. Computations are 

made by subtracting a set of values from the other set. 

Considering the first row, 5.7859 is subtracted from 5.43 

to give -0.3559. Likewise, 60 subtracted from 60 along 

the second row yields 0. Similar computations have been 

made for serial numbers 3 to 7 to obtain 0, 42.2918, 0, -

68.34 and -1388.81, respectively. Next is to obtain the 

absolute numbers from the differences, which involves 

removing the negative signs from numbers having these. 

In this instance, serial numbers 1, 5 and 6 were affected to 

give 0.3559, 68.34 and 1388.81, respectively. 

 By reviewing the absolute difference column, the 

smallest value, which is 0 is given a rank of 1. The next 

value to the smallest is 0.3559, which is given a rank of 3 

since a rank of 1 has been given to two serial numbers (i.e. 

serial numbers 2 and 4). The next rank is 4 given to serial 

number 3, which has a value of 42.2918. Other ranks such 

as 5 and 6 are attached to serial numbers 5 and 6 with 

68.34 and 1388.81, respectively. In this particular test, it 

is important to know all the negative and positive signs of 

the values before obtaining the absolute values of the 

negatives. Correspondingly, the researcher needs to know 

the ranks of all the positives and those of the negatives. 

Then, they can be summed for further analysis. These are 

mentioned as the ranks for the T – and T+. To achieve this 

goal, consider the difference column where all the 

negative values are -0.3559, -68.34, and -1388.81 and the 

corresponding ranks are 3, 5 and 6, which sums up to 14. 

Also, in the difference column, all the positive values are 

0, 0 and 42.2918 which have the corresponding ranks of 

1, 4 and 1 sum up to 6. Thus, T- is 14 and T+ is 6. The 

test, Wstat is the smaller of 6 and 14, which is 6. There is a 

need to determine a critical value Wcritical to compare with 

the Wstat to answer the questions posed by the hypothesis. 

To achieve this, Wilcoxon critical value table is used. The 

summarized results for all the outputs are given in Table 

12. 

 From the last column of Table 12, the decision on the 

calculations in Table 11 is shown as accepting the null 

hypothesis (H0) which states that the mean value, Hvalue, 

of the literature data is greater than the Hvalue of the present 

data. The two means are not the same. Thus the results 

given by the output, AF, are not the same for the literature 

method and the present method. Results for other outputs 

are shown. In all, only 20% of all cases show similarity in 

results while in 80% of the cases, the results change. 

 In addition to the statistical test, it was found that the 

optimization capabilities of the Harris Hawk algorithm 

while processing the inputs for outputs using the AISI 304 

L stainless steel are superior to the optimal parametric 

settings produced in El-Bahloul et al. (2018) in 60% of the 

case. The Harris Hawk algorithm exhibited higher optimal 

values of axial force, radial force and radical error 

compared with the optimal setting approach in El-Bahloul 

Table 11. Comparison of the literature data with the current study (Output is axial force, AF) 

S/N Parameters Literature data (Nwankiti 

and Oke, 2022) 

Current study 

data 

Difference Modulus of 

difference 

Rank 

1 d (mm) 5.43 5.7859 -0.3559 0.3559 3 

2 β (degree) 60.0 60 0 0 1 

3 FCAR (%) 100.0 57.7082 42.2918 42.2918 4 

4 T (mm) 3.0 3 0 0 1 

5 FR 

(mm/min) 
71.66 140 -68.34 68.34 5 

6 RS (rpm) 1614.04 3002.85 -1388.81 1388.81 6 
Note: Literature data was developed from the Integrated taguchi-pareto–grey wolf-desirability function analysis optimization 

technique while the current study data was developed from the Harris Hawk optimization method. Both studies worked on 

the drilling performance of AIS1 304 stainless steel 

 

Table 12. Summary for all outputs 

S/N Outputs T- T+ Wstat Wcritical Decision 

1 AF 14 6 6 0 Accept 

2 RF 6 5 5 0 Accept 

3 DE 8 13 8 0 Accept 

4 RE 0 21 0 0 Reject 

5 BL 11 9 9 0 Accept 
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et al. (2018). From this research, it could be inferred that 

the Harris Hawk algorithm suitably replaces the optimal 

setting approach of  El-Bahloul et al. (2018). Moreover, 

little research has been conducted to optimize friction 

drilling parameters considering quick convergence and 

simplicity. Furthermore, this work analyzed the frictional 

drilling parameters uniquely using the Harris Hawk 

algorithm on the AISI 304 stainless steel material. 

 

4.21. Modifications to the original HHO method 

 

 The original HHO method proposed by Hiedari et al., 

(2019) was shown to have results from computations. 

However, very little information is available on how the 

computations were made. In recent times, Heidari and 

colleagues presented Matlab codes, which ease 

computations. However, given the utility and adaptability 

of the C++ programme, the present authors abandoned the 

Matlab programme developed by Heidari and colleagues 

to present the C++ programme of our own, contributing to 

the automation of the procedure and permitting a wide 

circulation of the ideas as different group of users may be 

interested in using the C++ computer codes as opposed to 

the Matlab programme proposal by Heidai and 

colleagues. Furthermore, the present study showed that 

the objectives function utilized to run the Harris Hawk 

optimizer could be developed as an empirical non-linear 

model. The Minitab of Software was used to generate this. 

This objective function type could be adopted in many 

engineering situations. In Heidari et al., (2019), the choice 

of the objective function to introduce into the Harris 

Hawk optimizer is not explicitly stated. 

 

4.22. Implementation of the HHO method in industry 

and implications for workers’ reward 

  

In the industry, the Harris Hawk optimizer can be used 

to solve various engineering problems such that 

benchmarks that show how the Harris Hawk optimizer 

scales better to obtain good solutions to large problems in 

a short period weighted against exact analytical solutions. 

The HHO method, being new in the industry has not been 

fully tested. However, the following problems, which are 

envisaged in the future should be managed and corrected 

for a huge diffusion of the knowledge of the HHO method 

in the industry and its application. The first issue that 

should be tackled is the lack of reproducibility. As some 

evolutionary algorithms are known for, in an instance the 

user may obtain a fine solution. In another instance of the 

sample problem, a power solution may be obtained. This 

is a practical problem that should be guided against in the 

future. The second issue deals with the lack of 

interpretability. 

 Moreover, given the optimal values obtained in this 

study, they may be used in setting up standards with 

which the performance of parameters is compared. 

Periodic performance are monitored and recorded. There 

could be instances where the performance is equal to the 

standard set. In other instances the attained performance 

could be below or above the set standards. For above – the 

standard performance, the workers are commended and 

rewards with money or other things such certificates. 

However, when the performance is below the standard, 

the worker undergoes reprimand. Discussion is held with 

the worker on why and how the standard is missed for 

corrections. The next performance is then compared to 

ascertain that corrections are made. The loop of activities 

continues until the best performance is maintained by the 

workers. 

 

5. CONCLUSIONS 

 

In this work, the Harris Hawk algorithm was proposed 

and applied to drill AISI 304 stainless steel for 

optimization purposes. Thus, the thermal drilling process 

was optimized in a real process. However, the findings 

from the implementation of the Harris Hawk algorithm on 

the AISI 304 stainless steel data led to the following 

conclusions: 

1. The findings reveal that the application of the Harris 

Hawk algorithm to optimize the input parameters with 

the utmost output results is feasible. 

2. The optimal values revealed in the application of 

Harris Hawk algorithm are more desirable in 60% of 

the cases than the parametric setting provided by El-

Bahloul et al. (2018). The desirable cases involve the 

predicted values for the axial force, radical force and 

radical error in favour of the Harris Hawk algorithm. 

However, the results are in favour of the optimal 

setting generated El-Bahloul et al. (2018) for 

delamination error and bushing length. Nonetheless, 

the Harris Hawk algorithm is superior to the optimal 

settings in the reference paper according to the present 

findings. 

The future studies concerning the subjected treated 

here are discussed as follows: 

1. In friction drilling operations, machines and humans 

are the major elements driving the process. While 

machines and equipment may introduce imprecision 

in measurements, humans (operators) could also allow 

imprecision while interpreting the data. Thus, the 

process may be subjected to imprecision and 

uncertainty that needs to be evaluated in future studies. 

2. In the future, this research could be extended to 

consider hybrids of the Harris Hawk algorithm with 

other methods such as multi-criteria approaches to 

include, Decision making, Trial and Eliminating 

Laboratory (DEMATEL). The DEMATEL method is 

to assist the managers of the workshop to understand 

the association between the parameters of the friction 

drilling process both before and after the drilling 

process. 

3. The authors have evaluated the optimal outputs as 

single objective functions, in empirical form, 

substituted into Harris Hawk algorithm for solutions. 

This limitation of not combining the various empirical 

models can be overcome in a future study if 

desirability function analysis could be used to 

integrate the separate empirical models to obtain a 

single solution instead of the several solutions. 

 

NOMENCLATURE 

D Tool diameter 

β Friction angle 
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FCAR Friction contact area ratio 

FR Feed rate 

RS Rotational speed 

AF Axial force 

DE Delamination error 

BL Bushing length 

RF Radial force 

RE Roundness error 

X(t+1) Position vector of Hawks in the next 

iteration t 

Xrabbit(t) Position of rabbit 

X(t) Current position vector of Hawks 

r1, r2, r3, r4, q Random numbers inside (0,1) which are 

updated with each Hawk 

LB and UB Lower and upper bounds of variables 

Xrand (t) Randomly selected Hawk from the 

current population 

Xm Average position of the current 

population of Hawks 

Xi(t) Location of each Hawk in iteration (t) 

N Total number of Hawks 

E Escaping energy of the prey (with a range 

of -1 to 1) 

T Maximum number of iterations 

E0 Initial state of the energy of the prey 

r Chances of escape for a prey 

∆X(t) The difference between the position 

vector of the rabbit and the current 

location in iteration “t” 

rs Random number inside (0, 1) 

Z A possible prospective location 

Dp Dimension of the problem (i.e. population 

size) 

S Random vector by size 1 x Dp 

LF Levy flight function 

s Constant values fixed at 0.01 

U and v Random numbers between 0 and 1 

β A constant fixed at 1.5 
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