
 

 

International Journal of Industrial Engineering and Engineering Management (IJIEEM), Vol. 7, No. 2, December 2025 

  

e-ISSN: 2685-4090                 http://ojs.uajy.ac.id/index.php/IJIEEM 
 

 

 

 

 

 

 

ABSTRACT 

Adhesion engineers increasingly use coatings in industrial equipment on gas turbine blades and vanes because of the 

benefits of protection against thermal stresses, oxidation, and hot corrosion. However, the coating process has suffered 

sub-optimal value determination, posing a serious threat to the economics of coating. While the prevailing approach of 

introducing the Taguchi method appears effective in resolving this issue, it sacrifices convergence speed and multiple 

optimization solutions. Thus, the grey wolf algorithm is proposed to optimize the coating of 67Ni18Cr5Si4B alloy 

powder process parameters, including powder feed rate, spray velocity, and spray distance. The high-velocity oxygen 

fuel spray was used, and the objectives were good microhardness, adhesion strength, and porosity. The optimal value to 

obtain the best coating for each of the responses was given as 85MPa for the adhesion strength, 0.684909% porosity, 

and 583.04HV microhardness. The present study offers important insights into the optimization thresholds to help the 

components development process. The quantitative form of this work is new. Fast convergence solutions offered by 

metaheuristics such as the grey wolf optimization algorithm are rarely found in the literature. 
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1. INTRODUCTION 

 

 The rapid advancement in product manufacture has 

been motivated by the unprecedented tastes and 

preferences of consumers globally. This has necessitated 

an increase in the use of industrial equipment and 

machinery. Among the utilities used in manufacturing 

industries, the gas turbine is a central focus of many 

manufacturers. The gas turbine is used for combustion in 

power plants, translating natural gas to mechanical 

energy. The generated energy propels a generator, which 

creates electrical energy that is responsible for moving 

along power lines to service the manufacturing industry. 

Within the gas turbine, the blades and vanes ascertain an 

adequate flow of air within the whole turbine. These 

blades, which are appended to a shaft, facilitate the 

extraction of energy obtainable in the air. While using 

blades and vanes in gas turbines, thermal stresses, 

oxidation, and hot corrosion are usually experienced and 

affect the lifespan of these blades and vanes. To mitigate 

this problem, adhesion engineers increasingly use 

coatings in industrial equipment in gas turbine blades and 

vanes since they protect them against thermal stresses, 

oxidation, and hot corrosion. 

 Furthermore, investments in coating equipment, such 

as the high-velocity oxygen fuel spray, are demanding and 

elevated. The challenge is even the wide sides, 

capabilities, and complexity required by the coating 

system to function effectively. This stresses the need to 

optimize the coating process for cost-effectiveness and to 

guarantee the sustainability of the process and the 

manufacturing process as a whole. 

 However, the coating process has suffered sub-

optimal value determination, which poses a serious threat 

to the economics of coating. While the prevailing 

approach of introducing the Taguchi method appears 

effective in resolving this issue, it sacrifices convergence 

speed and multiple optimization solutions. But the grey 

wolf algorithm has these attributes and many more. For 

instance, it is implemented easily, exhibiting a limited 

number of parameters and abiding by simple principles to 

operate. Thus, the grey wolf algorithm is proposed to 

optimize the coating of 67Ni18Cr5Si4B alloy powder 

process parameters in chiding powder feed rate, spray 

velocity, and spray distance. While using the powder 

specified in this work, of interest to the researcher are the 

following objectives: adhesion strength, porosity, and 

good microhardness. It is agreed that coating in utilities 

such as gas turbine blades and various components is a 

great way to protect components and help them withstand 

extremely high temperatures. This happens as 

components are thermally insulated. It is also known that 

the high-velocity oxygen fuel spray is the coating trend of 

the future. However, no study has covered straightforward 

mathematics in his implementation of the 

67Ni18Cr5Si4B alloy powder to choose the best 

parameters in the spray process. Moreover, despite the 

diverse usage of the grey wolf algorithm, most studies to 

date have focused mainly on the modified Taguchi 

method (Danthala et al., 2021). Given the foregoing 

information as motivation, the optimization of the spray 

process parameters was pursued using the 

67Ni18Cr5Si4B alloy powder. This optimization is of 

great significance to the associated studies since it could 

enrich researchers with this new knowledge. 

 Contribution: In this work, we proposed a 

metaheuristic optimization method based on the grey wolf 

algorithm. The following states the principal 

contributions of this work: 

1. A new heuristic is presented, which can optimize the 

spray process parameters using the grey wolf 

algorithm. The adoption of this method allows us to 

overcome the drawback of the Taguchi method, which 

is a relatively poor convergence ability and an 

inability to produce multiple solutions at the same 

time. 

2. The method of the grey wolf algorithm attains 

satisfactory performance and serves as a forerunner in 

its implementation in other processes. 

In this study, the grey wolf optimisation, which is a 

non-traditional optimisation and not a traditional method, 

was employed for the following reasons: First, differently 

from other optimization tools such as the Taguchi method, 

integer programming, and linear programming methods, 

it offers insights into the optimization process of 

67Ni18Cr5Si4B alloy powder. This is done as it uses a 

population of points, which mimics the different 

recognizable classes of grey involved (i.e., alpha, beta, 

and delta) in their social and hunting behaviour for prey 

devouring. It uses these points during searching, generates 

random positions, and explores the search space. 

Secondly, by offering a quick optimization procedure, it 

indirectly reduces the cost of coating the 67Ni18Cr5Si4B 

alloy powder and improves the efficiency of the 

fabrication process. 

In the remaining part of the article, section 2 discusses 

the literature review in a detailed account. Section 3 states 

the methodology of the process. Section 4 discusses the 

results and discussion. Section 5 is the concluding 

remarks. 

    

2.  LITERATURE REVIEW 

 

In modern industrial thermal spraying technologies, 

the high-velocity oxygen-fuel (HVOF) is located as a 

central process aimed at controlling the complex 

phenomenon of physicochemical scheme while coating 

materials. In this section, the various literature associated 

with thermal spraying technology is discussed regarding 

previous literature contributed by authors. In the area of 

HVOF, Ren et al. (2021) suggested a discontinuous cycle 

optimization representation. The attribute-based 

CAD/CFD was built to represent the conceptual structure. 

It was found that the spray coating was improved by 

handling the in-flight particle trend. Cheng et al. (2022) 

applied the Taguchi Optimisation technique to HVOF 

parameters to optimize them. It was found that the 

optimized coating illustrated better corrosion resistance 

relative to other coatings. 

Notwithstanding, Murugan et al. (2014) suggested the 

optimization of HVOF spray parameters and found that 

WC-based cermet coatings are effective in the tested 

procedure. Ren et al. (2023) utilized a parametric coating 

treatment forecast prototype, the Nelder-Mead approach. 
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Hong et al. (2023) considered cermet coatings generated 

through HVOF spraying to improve cavitation silk 

erosion prevention in ocean power systems. It was found 

that two types of carbide-based cermet HVOF spray 

coating sets using commercial Cr3Cr2-2S(NiCr) and WC-

10(Ni) powers as the on-process powders. Russell et al. 

(2023) used sodium alginate as a gelation assistant for 

producing spherical cement feedstock powders from 

ceramic metal particles. It was found that spherical 

particles enhanced activities within the HVOF gas stream.  

Meghwal et al. (2022) fabricated an AlCoCrFeNi high 

entropy alloy coating utilizing the HVOF process. In the 

aspect of improving the wear resistance of AlCoCrFeMo 

high entropy coatings, Patel et al. (2024) considered the 

material for applications in aerospace. 

Dinh et al. (2018) used OCE and Taguchi to optimize 

process parameters for polishing using high-velocity 

oxygen fuel spray. The ANOVA analysis noted the spray 

distance as the parameter having the most effect standing 

at 53.18%, next is velocity at 32.72% and the least being 

the power feed rate standing at 13.45% while the values 

to make the most of the microhardness are velocity at 

1000m/s, 40g/min power feed pace and a spray length 

0.2m. in the vain, to decrease the polishing porosity a 

velocity of 900m/s is suggested, power feed rate 30g/min 

as well spray distance 0.1. The wear characteristic of 

crankshaft journal bearing coated using the HVOF 

method was the study carried out by Nursoy et al. (2008). 

Several reaction optimizations of the method factor for a 

small force cold spray polishing practice with the aid of 

the Taguchi value model were studied by Goyal et al. 

(2014). The outcome of the studies shows an 

enhancement in the Utility function (raw data), such as CT 

and CD. 

Pukasiewicz et al. (2017) examined the impact of face-

off length, power feed rate, as well as the proportion of 

fuel to oxygen on stress, microstructure as well and 

cavitation on the polishing of  FeMnCrSi. Nguyen et al. 

(2021) determine the most favourable variable to obtain 

greater velocity in oxygen fuel spray employing 16Mn 

substance sprayed by a WC-12 Co. Spray distance 

appears to be the most prominent for the porosity and 

strength. Ribu et al. (2022b) studied water jet washing 

away performance as regards HVOF-sprayed WC-10Co 

polishing when used on 35CrMo grade steel using trials. 

The highest force on the coating erosion was from the 

impingement angle. Danthala et al. (2021) pointed out that 

productivity, lower expenses on labour, quality, and a 

clean environment can be achieved using robotic 

techniques of spraying. The call-in parameters for the 

optimal result are pressure, distance, and speed. An easily 

improved Taguchi method is employed to reduce surface 

roughness and thickness variation and to maximize the 

film adhesion in robotic spraying. 

Górnik et al. (2021) used statistical methods to 

examine the microstructure of WC-Co-Cr coatings 

accumulation along with HVOF. From the outcome, the 

porosity lies between 5.01% to 5.38% in volume, and a 

coating size of 0.1-1.0 µm was noticed to be dominant. 

Ribu et al. (2022a) used a usual polished HVOF 

composite WC-10Co coating on steel support. Coating 

wasted several experimental models have been 

formulated. The author concluded that speed is the most 

significant, followed by impinging angle, slurry 

composition, and time being the least. 

Prasad et al. (2021) focus on comparison analysis and 

examination of HVOF feed invariable to get the most out 

of the hardness and bring down the porosity as relates to 

the WC-10Co-4Cr coatings. An acceptable reduced value 

of 0.2% was obtained, and 1325.26 HVx was maximized 

in contrast with the rest forms of coating as established 

through response graphs and contours. Chi et al. (2021) 

pointed out that, as a result of increased hardness of the 

unprocessed material, a usual method of coating was 

brought in to enhance the slurry erosion-resistant ability. 

Al-Abboodi et al. (2022) studied the arid amorphous 

coating made of iron deposited on mild steel with the aid 

of the HVOF heat technique of spraying. Yang et al. 

(2022) examined the deposition of Ni-Mo alloy coating 

on nodular cast iron substrate using the HVOF spraying 

technique. The outcome shows the possibility of using 

HVOF to achieve 58.8 MPa bonding strength, as well as 

a Ni-Mo coating not subjected to corrosion with 0.62% 

porosity. Oksa et al. (2014) in the study of nickel-based 

HVOF coating behaviour pointed out the special ability of 

HVOF coating made of Nickel under varying 

temperatures below 8000C in a biomass CFB boiler. 

Wang et al. (2020) suggested the manufacturing of 

completely densified as well as a complete circular WC-

Co particle to be utilized in thermal spraying using a novel 

alumina-aided treatment technique. Mosayebi et al. 

(2020) investigated the impact of Ni-Mo as well as Ni 

concerning their ability to resist corrosion in chloride 

media. The outcome shows a higher corrosion ability for 

3v/v% HCl and 3.5wt%.% NaCl for the Ni-Mo and an 

utmost polarization resistance in Ni-15 wt% when the two 

coating methods are analyzed. The study of Hong et al. 

(2021) subjected high-velocity fuel (HVOF) sprayed 

nanostructured WC-10Co-4Cr coatings to seawater at 

different intervals under the influence of bacteria aimed at 

bringing down the surface. The outcome of the study 

shows a reduction in current density associated with 

corrosion, an increase in resistance parameters up to one 

magnitude, and elevated penetration ability of the sealant 

into the sprayed coating as a result of the ultrasound–

aided sealing method. Henao et al. (2020) investigated the 

activity of behaviour of HVOF-sprayed HAp/TiO2 graded 

coatings on a Ti-6Al-4V alloy. They concluded that the 

HVOF-sprayed Hap-based coating has a superior 

advantage over the uncoated Ti-6Al-4V alloy. Mahade et 

al. (2021) deposited a Cr3C2eNiCr-based coating using 

the High-Velocity Oxy Fuel as well as High-Velocity Air 

Fuel to study how feasible it is to adopt Cr3C2eNiCr-

based coating on the brakes of automobiles, as regards 

sliding wear performance when dry under varying 

examination processes. 

From the reviews conducted in this section, the focus 

of the various articles was declared, and the associated 

shortcomings of the papers were discussed. However, 

despite convincing evidence of extensive studies on 

fabrication, mechanical property modification, and 

enhancement of coating properties of HVOF coatings, 

among others, the aspect of parametric optimization 

during the HVOF coating process is less tackled in the 



106  A.O. Adekola, B.Y. Ogunmola, M.A. Onitiri, N.S. Alozie, A. Oluwo, J. Rajan, S. Jose, and S.A. Oke 

 

 

 

literature. In light of this research gap, the objective of this 

article is to optimize the parameters of the HVOF thermal 

spray coating process while processing the 

67Ni18Cr5Si4B alloy powder using the grey wolf 

optimization specifically, the novel grey wolf 

optimization was chosen for the present study based of its 

outstanding advantage of fast computational ability and 

the unique material of 67Ni18Cr5Si4B was used. The 

grey wolf optimization was introduced and satisfied the 

condition that, despite the paucity of data that may 

confront the coating process, the grey wolf algorithm 

thrives, providing a rich set of information to which 

further managerial decisions could be made. 

 

3. METHODOLOGY 

 

 In this paper, the data by Dinh et al. (2018) was 

utilized, which proposed the optimization of 

67Ni18Cr5Si4B coating using the Taguchi-OEC method. 

This requires first defining the orthogonal array and then 

proceeding to evaluate the objective function of the grey 

wolf optimization through the combination of the 

orthogonal array entries. Thus, the procedure followed in 

the present paper is as follows: 

Step 1: Establish the factor level to propose an 

orthogonal array from this table: After 

establishing the HVOF coating process, the key 

components of the process essential to achieve 

the goal of the coating process in terms of 

efficiency and quality of outputs are established. 

These components are referred to as parameters. 

In all, three process parameters are identified to 

influence the HVOF coating process. These are 

the standoff distance, powder feed rate, and 

particle velocity. Given these three parameters, 

specific levels are chosen, which are levels 1, 2, 

and 3 in this case, obtainable from the data 

provided by Dinh et al. (2018), which is the 

coating of 67Ni18Cr5Si4B substance on C45 

steel substrate. Then, by entering the number of 

parameters and levels into software such as 

Minitab 18 (2020), an orthogonal array of a 

particular run is returned as the result of the 

inputs of the parameter number and level. The 

Minitab 18 (2020) is a statistical package with 

an orthogonal array design facility that employs 

rules for the specification of the orthogonal 

array for a problem. 

Step 2: Use the orthogonal array and the data on factors 

and levels to obtain the translated orthogonal 

array, which is the replacement of the initially 

generated orthogonal entries with the specific 

values obtained from the factor level table. 

Step 3: For each objective function, identify the 

constraints and variables and determine if the 

function is in a minimization or maximization 

context. 

Step 4: Apply the grey wolf algorithm. 

Step 4.1: Randomly initializes the grey wolf 

population: Here, the parameters, namely the 

standoff distance, powder feed rate, and 

particular velocity, are assigned some initial 

values in no order. 

Step 4.2: Find the positions of the alpha, beta, 

and omega wolves. It is assumed that their 

positions relative to the prey being hunted are 

important and are determinants in catching and 

killing the prey. 

Step 4.3: Find the first, second, and third 

positions of the wolves. 

Step 4.4: Obtain the new position of the wolves 

as they move towards the same targeted prey. 

Step 4.5: Carry out greedy selection. 

  

4. RESULTS AND DISCUSSIONS 

 

 In this section, the discussion only centred on the grey 

wolf algorithm since the Taguchi techniques, which 

involve the development of an orthogonal array, have 

been reported by Dinh et al. (2018). The results and 

discussion section is structured according to four 

segmentations: (1) the Pre-grey wolf application stage, (2) 

the grey wolf prey-searching stage, (3) The prey-

encycling stage (4) the prey-killing stage. The 

corresponding steps for these stages in the methodology 

are as follows: steps 1 to 3 are the pre–grey wolf 

application stage. Step 4.1 shows the searching stage for 

the prey. Step 4.2 of the methodology stage shows the 

encyling stage for the prey, while steps 4.3 to 4.5 are 

implemented for the grey killing stage. 

Phase 1 - The prey-grey wolf application stage: At this 

prey-grey wolf application stage, factors (parameters) and 

their levels are extracted from the original data presented 

by Dinh et al. (2018). In a case where those data are not 

available in the form presented by Dinh et al. (2018), the 

most important parameters that should represent the 

coating process are identified. Then data is collected 

multiple times and grouped according to some preferred 

classes, which are called the levels. The data obtained 

from levels and factors form the basis of the selection of 

orthogonal arrays, which were picked from the generated 

data of the Minitab software. The orthogonal array 

provides a set of experimental trials upon which the 

regression equation is generated. This forms the ending 

point of the first phase of the result generation. The output 

of this phase is Equation (1), which expresses the adhesive 

strength in terms of stand-off distance, powder feed rate, 

and particle velocity. Moreover, two other progression 

equations were generated, similar to Equation (1). 

However, the details are not shown here, but only the 

results are used for further processing in the work. Thus, 

regression equations related to porosity and 

microhardness were generated and used for further 

processing in the grey wolf optimization procedure. New, 

starting the second phase, Equation (2) is deployed.  

Moreover, three empirical models were developed in 

the work, each of which focuses on the objective function. 

Formulation, where the adhesion strength (A) is the 

dependent variable of the linear programming 

formulation while. The standoff distance, powder feed 

rate, and particle velocity are the independent variables. 

These independent variables are also maintained in the 

second and third objectives, where porosity (P) and 

Microhardness (M) are the dependent variables. 
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Moreover, these three empirical models, which were 

obtained, will be used for the optimization using the grey 

wolf optimization algorithm. The optimization process is 

achieved with the help of a C++ program. The 

optimization process is conducted to help determine the 

output variables. Furthermore, starting the working of the 

process with objective 1, it is known that the adhesion 

strength (A) should be maximized. Therefore, by 

extracting data from the orthogonal array and feeding it 

into the Minitab 18 (2020) software, Equation (1) is 

formulated as follows: 

A = 216 - 0.248V – 8.22Q +1187L + 0.01052VQ - 

0.809VL - 9.63QL          (1) 

 From Equation (1), the inputs, which are the standoff 

distance, powder feed rate, and particle velocity, have the 

units of measurement as metres, grams/min, and 

metres/second, respectively. Equation (1) is for the output 

named Adhesion strength (MPa), symbolized as A, and 

should be maximized. Furthermore, as the analysis will be 

done in this section, the expected objectives of porosity 

(%), named P, are minimization, while microhardness 

(HV), named M, should be maximization. Moreover, for 

the experimentation conducted in this section, the 

population size used is a wolf of seven, while the number 

of iterations is fixed at 180. 

 Phase 2: The grey wolf prey-searching stage - Next, 

each parameter is defined as per their boundaries in the 

lower and upper aspects. These boundaries are obtained 

from the generated orthogonal arrays (translated), which 

show 800 and 1000 metres/second as the lower and upper 

boundaries for particle velocity, respectively. The lower 

and upper boundaries for powder feed rate are 30 and 50 

grams/min, while for the standoff distance, the lower and 

upper boundaries are 0.1 and 0.3, respectively. Notice that 

from the steps indicated in the methodological section, the 

application of the grey wolf algorithm is the next phase of 

action after defining the objective function stated in 

Equation (1). For this application step, the sub-step to 

implement is the randomization and initialization of the 

grey wolf algorithm. To achieve this objective, Equation 

(2) is used: 

X = L + r (U – L)           (2) 

Note that L is the lower boundary value of the parameter 

of interest U is the upper boundary value for the 

parameter. r is the randomly generated number between 0 

and 1. 

 The boundaries defined for this problem show where 

the values of a parameter begin (i.e., lower boundary) and 

where it ends (i.e., upper boundary). By setting 

boundaries for the parameters, the various goals for the 

coating process could be prioritized. This means that the 

decision-maker chooses either the efficiency of the 

coating process on the substrate C45 steel or the quality 

of the coating should be considered first. This protects the 

processing time and the energy expenditure of the 

decision-maker in the process. Overall, the sustainability 

of the process is promoted. The format used in running the 

C++ program is to generate values in rows, with each row 

having process parametric values of the upper and lower 

boundaries. This represents a wolf. This consists of a 

matrix (wolf). The wolf contains values falling within the 

specified boundaries. These values can randomly be 

determined with Equation (2) yields a value of 0.287322. 

 In summary, from calculations, V, Q, and L are 

obtained as 827.442, 48.4716, and 0.287323, respectively. 

These values provide a basis to be substituted into 

equation (1), which is the objective function that defines 

the adhesive strength of the coats on the C45 steel 

substrate. By substituting the values of V, Q, and L 

mentioned above into Equation (1), the predicted value of 

the adhesive strength, AD, is obtained as 48.8891MPa. 

This is an intermediate value that should be used for 

further processing. The calculated random variable 

generated is 0.137211, and the upper boundary is 1000 

metres/second. By substituting these values into equation 

(2), V is obtained as 827.4422. Also, knowing the lower 

limit of Q is 30g/min, the upper limit is 50 g/min, the 

random variable is 0.923582, and the value of Q, using 

equation (2), is calculated as 48.47164. Furthermore, L 

may be calculated using Equation (2). However, there is a 

need to introduce the lower boundary as 0.1 metres, the 

upper boundary as 0.3 metres, and the random variable 

used is 0.936613, and then introduce these values into aid 

of equation (2). For the first wolf, the random variables 

generated are as follows: 1st wolf 0.137211 0.923582 

0.936613. 

 Now, for this first wolf, the values of all the inputs, 

namely particle velocity (V), powder feed rate (Q), and 

standoff distance (L), could be predicted and substituted 

into the objective function (i.e., equation (1) to establish 

the output value, AD. The next calculation involves 

determining the value of V using Equation (2). Notice that 

the lower boundary is given as 800 metres/second; the two 

are also repeated for wolves 2 to 7 using newly generated 

random values. The summary of these results is shown in  

Table 1. 

 The calculations in Table 1 set the scene for the more 

intensive evaluations through several iterations until 

convergence is achieved. In the analysis that follows, the 

representative detail of each iteration is shown, and this is 

repeated until very close or the same values of outputs are 

generated each time, which is the convergence of the 

results. The iterations start with iteration 1 and proceed to 

iteration 180, which is considered the terminating 

iteration. Furthermore, this paper highlights the method of 

the grey wolf algorithm to propose optimization for the 

coating of 67Nil8Cr5Si4B alloy powder process 

parameters. However, for a deeper understanding of the 

methodology and implementation of the grey wolf 

algorithm in the practical scenario discussed in this 

research, some important questions need to be answered, 

such as the following: What is the likelihood that the grey 

wolf algorithm will lead to the correct result? How many 

initial guesses are essential to affect the convergence 

result for the algorithm? By deeply understanding these 

questions and attempting to answer them, there is a 

pointer to the need to add information about the stopping 

rule for the algorithm. Moreover, the stopping condition 

forces the grey wolf algorithm to terminate the process. In 

the literature, the popular and meaningful conditions 

could be any of the following: the use of a random 

termination key, an external /internal condition, the 

quality of the solution, and the number of interactions.  
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However, based on the nature of the grey wolf algorithm, 

the number of iterations is used as a unique criterion in 

this work. It is fixed at 180 iterations. The motivation to 

use the number of iterations as a stopping criterion in this 

work is the opportunities it provides to reach 

convergence. Higher iterations provide higher 

opportunities for feedback and chances to adjust and fine-

tune the outcome, yielding enhanced overall results. 

Furthermore, the number of iterations of 180 was decided 

based on several initial multiple independent runs of the 

program with random initialization. It was found that at 

180 runs, the results show the capability of the grey wolf 

optimization to track the counting problem being solved 

in the present study. 

Commencement of iteration 1 

Here, the appropriate step to implement is to find the 

positions of the alpha, beta, and omega wolves. In this 

step, each of these wolves represents the best, second, and 

third-best values of the seven wolves, respectively. Notice 

that the objective of the decision maker is to maximize the 

value of A, which implies that the best position is the wolf 

with the highest value of A. The second-best position has 

the second-highest value of the serial number, and the 

third-best value of A is with the wolf having the third 

largest value of A from the seven wolves. Recall that with 

Equations (1) and (2), the values of inputs, V, Q, and L, 

were simulated with the corresponding output, AD. Now, 

the three outputs AD, which yield the best results, are 

recalled and labeled as alpha, beta, and delta wolves. The 

corresponding values of the outputs, which give the best, 

are 78.4.293, with the inputs of V, Q, and L as 865.908, 

30.5042, and 0.259673, respectively. This is the 4th wolf 

in the set of results. The second best has an AD value. 

58.5604 that has corresponding values of V, Q, and L as 

929.337, 42.2208, and 0.255913, respectively. Next, the 

third best output is 58.4305 and has the values of V, Q, 

and L as 965.032, 36.5505, and 0.205087, respectively. 

Phase 3 - The prey-encycling stage: The next stage is 

to calculate X1, X2, and X3. However, this is achieved by 

first determining the value of "a", Equation (3). 









−=

iter

iteration
a

max
12           (3) 

Now, to evaluate the value of “a”, the iteration number 

is 1, and the Maxiter is given as 180. The value of “a” is 

1.98. However, it is known that for the first, second, and 

third wolf, the following information is useful (Table 2): 

 Now, obtaining the value of X1, the expression for A1 

is obtained by substituting the values “a”, and r as 1.99, 

and 0.137516, respectively. Thus, A1 is 1.4427. Also, C1 

is obtained by substituting r as 0.137516, and C1 yields 

0.275032. Now, having obtained the value of C1, the value 

of D alpha is computed as C1 is introduced as 0.275032, 

X alpha is. 

X1, X2, X3, 

Using the values   865.908    30.5042    0.259673 

X(t) =     827.442    48.4716   0.287323 

Dα = |0.275032 (865.908   30.5042   0.259673) - (827.442   

48.4716   0.287323) | 

Dα =  589.2896 40.082  0.215903 

X1 = 865.908   30.5042   0.259673 – [-1.4427(589.2896 

40.082 0.215903)] 

X1 =  1716.0761  88.3305 0.571153 

Following the same procedure, the C++ programming 

language is used to derive the values of and 

X1:  1720.34    88.6204    0.57272 

X2:  -472.109  -3.70879  -0.0330428 

X3:  885.218    34.6325    0.1899 

The next step involves finding Xnew, the average of X1, X2, 

and X3. Thus, Xnew is obtained as follows: 

Xnew:  711.149    39.848     0.243192 

 Phase 4 - The prey-killing stage: Next, the greedy 

selection is conducted, where the researcher inputs the 

values of Xnew into the objective function to obtain the 

required output value. In the present objective, we are 

expected to optimize as such when the value obtained 

Xnew surpasses the previous value for the output. We 

replace the wolf, but if the reserve is the case, the wolf 

remains unchanged. The process undergone above is 

called greedy selection. 

The previous value of adhesion strength is 48.8891, but 

Xnew is 63.3636. 

Then F(Xnew) of adhesion strength is 63.3636. 

The objective demands that the F(Xnew) produces a 

value above the initial value of F. However, we noticed 

Table 1. The result summary 

V Q L AD 

827.442 48.4716 0.287323 48.8891 

846.004 40.1169 0.149709 50.8736 

938.865 43.6534 0.139827 56.4785 

865.908 30.5042 0.259673 78.4293 

807.343 44.6733 0.230076 51.8345 

929.337 42.2208 0.255913 58.5604 

965.032 36.5505 0.205087 58.4305 

 

Table 2. The information of the 1st, 2nd, and 3rd wolf 

X1 X2 X3 

A1 = 2a.r-a A2 = 2a.r-a A3 = 2a.r-a 

C1 = 2.r C2 = 2.r C3 = 2.r 

|)(| 1 tXXCD −=   
|)(| 2 tXXCD −=   

|)(| 3 tXXCD −=   

 DAXX 11 −=
  DAXX 22 −=

  DAXX 33 −=
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that in this case, the new value is above the previous value, 

i.e., F(Xnew) > F(X). Since this satisfies our needed 

condition, the new wolf is desirable, and the wolf is 

replaced. The updated values are shown in Table 3. 

A similar operation is repeated for the rest of the 

wolves. At the end of each iteration, the best values with 

the highest S/N value will be taken as X alpha. Moreover, 

a total of 180 iterations were processed for the problem. 

In this situation, the optimal input in terms of particle 

velocity, powder feed rate, and stand-off distance was 

obtained with their corresponding output of adhesion 

strength, porosity, and microhardness. After running 

several iterations, it was observed that iterations one, two, 

and three yielded 78.4293 each. Further iterations yielded 

different values, which increased over time for the 

adhesion strength. Furthermore, little increases were 

observed in adhesion strength for iteration 4 to iteration 

176. Finally, the value of 85.82 was obtained 

consecutively for iterations 177,178,179, and 180. This 

gives the motivation to terminate the iteration at 120 

because it converges at this point. Notice that the values 

continue to increase because maximization of the 

objective function is desired. Two other sets of iterations 

were worked on in the iteration concerning porosity, 

minimization of the objective function is pursued, and the 

minimum value converges at 0.684909. Also, for the 

output named microhardness, maximization of the output 

yielded a value of 583.04, which was truncated at 180 

iterations. However, in this work, only a brief detail of 

iterations for the adhesion strength is shown, covering 

iterations 1 to 3 and 177 to 180. Details of iterations for 

other outputs are not indicated here. In summary, the 

output of the first iteration, which is adhesion strength, is 

shown Table 4.  

Furthermore, the best fit, which is taken as the values 

for the adhesion strength after 180 iterations, yielded 

values of V, Q, L, and A at the 180th iteration as 80m/s, 

30g/min, 0.248465m, and 85.82MPa, respectively. 

Moreover, for the best feet of X alpha for porosity at the 

end of 180 iterations, the values of V, Q, L, and P are 

800m/s, 30g/min, 0.229903m, respectively. The 

corresponding porosity is 0.684909 percent. Moreover, 

for the micro-hardness output, the best feet X alpha values 

at the end of 180 iterations are V=180m/s, Q=30g/min, 

L=0.3m, while the microhardness is 583.04 HV. 

In practice, several instances occur where the addition 

of layers of coating is made to the surfaces of solid objects 

such as pipes, car bodies, and other applications. The 

result of this study provides information on the 

appropriate position to stand while handling the nozzle 

with respect to the surface being coated, i.e., stand-off 

distance. In addition, it educates the decision maker on the 

powder feed rate, which should not be above the one 

specified in this work. Besides, the particle velocity of the 

nozzle of the spray unit should be discharged at the 

maximum threshold displayed in this work. If all 

conditions are satisfied, the efficiency of the coating 

process is guaranteed. In addition, the quality of the coat 

should also be desirable. 

 

5. CONCLUSIONS 

 

This study focuses on the optimization of coating by 

the HVOF spraying technique. To obtain stand-out 

responses for the adhesive strength, porosity, and micro-

hardness, the grey wolf optimization approach was 

adopted as the optimization method. The input parameters 

were found jointly to have an outstanding performance on 

the responses when alternated within the given range of 

800-1000 for the velocity (V), 30-50 for the feed rate (Q), 

and 0.1-0.3 for the distance (L). The optimal coating 

condition for the adhesion strength is at a particle velocity 

of 800m/s, at a 30g/min power feed rate, and a standoff 

distance of 0.229903m. Undertaking the coating at a 

particle velocity of 800m/s, 30g/m power feed rate, and 

0.3 standoff distance provides the best condition for the 

micro-hardness and an optional condition for porosity at 

800m/s particle velocity, 30g/m power feed rate, and 

0.229903 standoff distance. This is the first time grey wolf 

optimization is used to optimize coating parameters of 

Table 3. The updated values 

V Q L AD 

800.000 39.8480 0.243192 63.3636 

846.004 40.1169 0.149709 50.8736 

938.865 43.6534 0.139827 56.4785 

865.908 30.5042 0.259673 78.4293 

807.343 44.6733 0.230076 51.8345 

929.337 42.2208 0.255913 58.5604 

965.032 36.5505 0.205087 58.4305 

 

Table 4. The output summary of the 1st iteration 

Iteration Output 

Iteration 1 : 78.4293 

Iteration 2 : 78.4293 

Iteration 3 : 78.4293 

…   

Iteration 177 : 85.82 

Iteration 178 : 85.82 

Iteration 179 : 85.82 

Iteration 180 : 85.82 
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67NiCrS5i4B on C45 steel substrate. In further work, the 

merging of fuzzy and VIKOR to the grey wolf 

optimization model for combined selection and 

optimization of parameters, to demonstrate the impact of 

uncertainties in selecting among the coating process 

parameters, should be discussed. This study can also be 

extended with practical data obtained from practice, in 

which the optimal quantities suggested in this work are 

further optimized by methods such as ant colony 

optimization and whale optimization. 
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