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ABSTRACT

Adhesion engineers increasingly use coatings in industrial equipment on gas turbine blades and vanes because of the
benefits of protection against thermal stresses, oxidation, and hot corrosion. However, the coating process has suffered
sub-optimal value determination, posing a serious threat to the economics of coating. While the prevailing approach of
introducing the Taguchi method appears effective in resolving this issue, it sacrifices convergence speed and multiple
optimization solutions. Thus, the grey wolf algorithm is proposed to optimize the coating of 67Nil8Cr5Si4B alloy
powder process parameters, including powder feed rate, spray velocity, and spray distance. The high-velocity oxygen
fuel spray was used, and the objectives were good microhardness, adhesion strength, and porosity. The optimal value to
obtain the best coating for each of the responses was given as 85MPa for the adhesion strength, 0.684909% porosity,
and 583.04HV microhardness. The present study offers important insights into the optimization thresholds to help the
components development process. The quantitative form of this work is new. Fast convergence solutions offered by
metaheuristics such as the grey wolf optimization algorithm are rarely found in the literature.
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1. INTRODUCTION

The rapid advancement in product manufacture has
been motivated by the unprecedented tastes and
preferences of consumers globally. This has necessitated
an increase in the use of industrial equipment and
machinery. Among the utilities used in manufacturing
industries, the gas turbine is a central focus of many
manufacturers. The gas turbine is used for combustion in
power plants, translating natural gas to mechanical
energy. The generated energy propels a generator, which
creates electrical energy that is responsible for moving
along power lines to service the manufacturing industry.
Within the gas turbine, the blades and vanes ascertain an
adequate flow of air within the whole turbine. These
blades, which are appended to a shaft, facilitate the
extraction of energy obtainable in the air. While using
blades and vanes in gas turbines, thermal stresses,
oxidation, and hot corrosion are usually experienced and
affect the lifespan of these blades and vanes. To mitigate
this problem, adhesion engineers increasingly use
coatings in industrial equipment in gas turbine blades and
vanes since they protect them against thermal stresses,
oxidation, and hot corrosion.

Furthermore, investments in coating equipment, such
as the high-velocity oxygen fuel spray, are demanding and
elevated. The challenge is even the wide sides,
capabilities, and complexity required by the coating
system to function effectively. This stresses the need to
optimize the coating process for cost-effectiveness and to
guarantee the sustainability of the process and the
manufacturing process as a whole.

However, the coating process has suffered sub-
optimal value determination, which poses a serious threat
to the economics of coating. While the prevailing
approach of introducing the Taguchi method appears
effective in resolving this issue, it sacrifices convergence
speed and multiple optimization solutions. But the grey
wolf algorithm has these attributes and many more. For
instance, it is implemented easily, exhibiting a limited
number of parameters and abiding by simple principles to
operate. Thus, the grey wolf algorithm is proposed to
optimize the coating of 67Nil8Cr5Si4B alloy powder
process parameters in chiding powder feed rate, spray
velocity, and spray distance. While using the powder
specified in this work, of interest to the researcher are the
following objectives: adhesion strength, porosity, and
good microhardness. It is agreed that coating in utilities
such as gas turbine blades and various components is a
great way to protect components and help them withstand
extremely high temperatures. This happens as
components are thermally insulated. It is also known that
the high-velocity oxygen fuel spray is the coating trend of
the future. However, no study has covered straightforward
mathematics in  his implementation of the
67Ni18Cr5Si4B alloy powder to choose the best
parameters in the spray process. Moreover, despite the
diverse usage of the grey wolf algorithm, most studies to
date have focused mainly on the modified Taguchi
method (Danthala et al., 2021). Given the foregoing
information as motivation, the optimization of the spray
process  parameters was  pursued using the

67Ni18Cr5Si4B alloy powder. This optimization is of

great significance to the associated studies since it could

enrich researchers with this new knowledge.

Contribution: In this work, we proposed a
metaheuristic optimization method based on the grey wolf
algorithm. The following states the principal
contributions of this work:

1. A new heuristic is presented, which can optimize the
spray process parameters using the grey wolf
algorithm. The adoption of this method allows us to
overcome the drawback of the Taguchi method, which
is a relatively poor convergence ability and an
inability to produce multiple solutions at the same
time.

2. The method of the grey wolf algorithm attains
satisfactory performance and serves as a forerunner in
its implementation in other processes.

In this study, the grey wolf optimisation, which is a
non-traditional optimisation and not a traditional method,
was employed for the following reasons: First, differently
from other optimization tools such as the Taguchi method,
integer programming, and linear programming methods,
it offers insights into the optimization process of
67Ni18Cr5Si4B alloy powder. This is done as it uses a
population of points, which mimics the different
recognizable classes of grey involved (i.e., alpha, beta,
and delta) in their social and hunting behaviour for prey
devouring. It uses these points during searching, generates
random positions, and explores the search space.
Secondly, by offering a quick optimization procedure, it
indirectly reduces the cost of coating the 67Nil8Cr5Si4B
alloy powder and improves the efficiency of the
fabrication process.

In the remaining part of the article, section 2 discusses
the literature review in a detailed account. Section 3 states
the methodology of the process. Section 4 discusses the
results and discussion. Section 5 is the concluding
remarks.

2. LITERATURE REVIEW

In modern industrial thermal spraying technologies,
the high-velocity oxygen-fuel (HVOF) is located as a
central process aimed at controlling the complex
phenomenon of physicochemical scheme while coating
materials. In this section, the various literature associated
with thermal spraying technology is discussed regarding
previous literature contributed by authors. In the area of
HVOF, Ren et al. (2021) suggested a discontinuous cycle
optimization  representation. The  attribute-based
CAD/CFD was built to represent the conceptual structure.
It was found that the spray coating was improved by
handling the in-flight particle trend. Cheng et al. (2022)
applied the Taguchi Optimisation technique to HVOF
parameters to optimize them. It was found that the
optimized coating illustrated better corrosion resistance
relative to other coatings.

Notwithstanding, Murugan et al. (2014) suggested the
optimization of HVOF spray parameters and found that
WC-based cermet coatings are effective in the tested
procedure. Ren et al. (2023) utilized a parametric coating
treatment forecast prototype, the Nelder-Mead approach.
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Hong et al. (2023) considered cermet coatings generated
through HVOF spraying to improve cavitation silk
erosion prevention in ocean power systems. It was found
that two types of carbide-based cermet HVOF spray
coating sets using commercial Cr3Cr2-2S(NiCr) and WC-
10(N;) powers as the on-process powders. Russell et al.
(2023) used sodium alginate as a gelation assistant for
producing spherical cement feedstock powders from
ceramic metal particles. It was found that spherical
particles enhanced activities within the HVOF gas stream.
Meghwal et al. (2022) fabricated an AICoCrFeNi high
entropy alloy coating utilizing the HVOF process. In the
aspect of improving the wear resistance of AlICoCrFeMo
high entropy coatings, Patel et al. (2024) considered the
material for applications in aerospace.

Dinh et al. (2018) used OCE and Taguchi to optimize
process parameters for polishing using high-velocity
oxygen fuel spray. The ANOVA analysis noted the spray
distance as the parameter having the most effect standing
at 53.18%, next is velocity at 32.72% and the least being
the power feed rate standing at 13.45% while the values
to make the most of the microhardness are velocity at
1000m/s, 40g/min power feed pace and a spray length
0.2m. in the vain, to decrease the polishing porosity a
velocity of 900m/s is suggested, power feed rate 30g/min
as well spray distance 0.1. The wear characteristic of
crankshaft journal bearing coated using the HVOF
method was the study carried out by Nursoy et al. (2008).
Several reaction optimizations of the method factor for a
small force cold spray polishing practice with the aid of
the Taguchi value model were studied by Goyal et al.
(2014). The outcome of the studies shows an
enhancement in the Utility function (raw data), such as CT
and CD.

Pukasiewicz et al. (2017) examined the impact of face-
off length, power feed rate, as well as the proportion of
fuel to oxygen on stress, microstructure as well and
cavitation on the polishing of FeMnCrSi. Nguyen et al.
(2021) determine the most favourable variable to obtain
greater velocity in oxygen fuel spray employing 16Mn
substance sprayed by a WC-12 Co. Spray distance
appears to be the most prominent for the porosity and
strength. Ribu et al. (2022b) studied water jet washing
away performance as regards HVOF-sprayed WC-10Co
polishing when used on 35CrMo grade steel using trials.
The highest force on the coating erosion was from the
impingement angle. Danthala et al. (2021) pointed out that
productivity, lower expenses on labour, quality, and a
clean environment can be achieved using robotic
techniques of spraying. The call-in parameters for the
optimal result are pressure, distance, and speed. An easily
improved Taguchi method is employed to reduce surface
roughness and thickness variation and to maximize the
film adhesion in robotic spraying.

Gornik et al. (2021) used statistical methods to
examine the microstructure of WC-Co-Cr coatings
accumulation along with HVOF. From the outcome, the
porosity lies between 5.01% to 5.38% in volume, and a
coating size of 0.1-1.0 pm was noticed to be dominant.
Ribu et al. (2022a) used a usual polished HVOF
composite WC-10Co coating on steel support. Coating
wasted several experimental models have been

formulated. The author concluded that speed is the most
significant, followed by impinging angle, slurry
composition, and time being the least.

Prasad et al. (2021) focus on comparison analysis and
examination of HVOF feed invariable to get the most out
of the hardness and bring down the porosity as relates to
the WC-10Co-4Cr coatings. An acceptable reduced value
of 0.2% was obtained, and 1325.26 HVx was maximized
in contrast with the rest forms of coating as established
through response graphs and contours. Chi et al. (2021)
pointed out that, as a result of increased hardness of the
unprocessed material, a usual method of coating was
brought in to enhance the slurry erosion-resistant ability.
Al-Abboodi et al. (2022) studied the arid amorphous
coating made of iron deposited on mild steel with the aid
of the HVOF heat technique of spraying. Yang et al.
(2022) examined the deposition of Ni-Mo alloy coating
on nodular cast iron substrate using the HVOF spraying
technique. The outcome shows the possibility of using
HVOF to achieve 58.8 MPa bonding strength, as well as
a Ni-Mo coating not subjected to corrosion with 0.62%
porosity. Oksa et al. (2014) in the study of nickel-based
HVOF coating behaviour pointed out the special ability of
HVOF coating made of Nickel under varying
temperatures below 800°C in a biomass CFB boiler.

Wang et al. (2020) suggested the manufacturing of
completely densified as well as a complete circular WC-
Co particle to be utilized in thermal spraying using a novel
alumina-aided treatment technique. Mosayebi et al.
(2020) investigated the impact of Ni-Mo as well as Ni
concerning their ability to resist corrosion in chloride
media. The outcome shows a higher corrosion ability for
3v/v% HCI and 3.5wt%.% NaCl for the Ni-Mo and an
utmost polarization resistance in Ni-15 wt% when the two
coating methods are analyzed. The study of Hong et al.
(2021) subjected high-velocity fuel (HVOF) sprayed
nanostructured WC-10Co-4Cr coatings to seawater at
different intervals under the influence of bacteria aimed at
bringing down the surface. The outcome of the study
shows a reduction in current density associated with
corrosion, an increase in resistance parameters up to one
magnitude, and elevated penetration ability of the sealant
into the sprayed coating as a result of the ultrasound—
aided sealing method. Henao et al. (2020) investigated the
activity of behaviour of HVOF-sprayed HAp/TiO; graded
coatings on a Ti-6Al-4V alloy. They concluded that the
HVOF-sprayed Hap-based coating has a superior
advantage over the uncoated Ti-6Al1-4V alloy. Mahade et
al. (2021) deposited a Cr3C2eNiCr-based coating using
the High-Velocity Oxy Fuel as well as High-Velocity Air
Fuel to study how feasible it is to adopt Cr3C2eNiCr-
based coating on the brakes of automobiles, as regards
sliding wear performance when dry under varying
examination processes.

From the reviews conducted in this section, the focus
of the various articles was declared, and the associated
shortcomings of the papers were discussed. However,
despite convincing evidence of extensive studies on
fabrication, mechanical property modification, and
enhancement of coating properties of HVOF coatings,
among others, the aspect of parametric optimization
during the HVOF coating process is less tackled in the
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literature. In light of this research gap, the objective of this
article is to optimize the parameters of the HVOF thermal
spray  coating process while processing the
67Nil18Cr5Si4B alloy powder using the grey wolf
optimization specifically, the novel grey wolf
optimization was chosen for the present study based of its
outstanding advantage of fast computational ability and
the unique material of 67Nil8Cr5Si4B was used. The
grey wolf optimization was introduced and satisfied the
condition that, despite the paucity of data that may
confront the coating process, the grey wolf algorithm
thrives, providing a rich set of information to which
further managerial decisions could be made.

3. METHODOLOGY

In this paper, the data by Dinh et al. (2018) was
utilized, which proposed the optimization of
67Ni18Cr5Si4B coating using the Taguchi-OEC method.
This requires first defining the orthogonal array and then
proceeding to evaluate the objective function of the grey
wolf optimization through the combination of the
orthogonal array entries. Thus, the procedure followed in
the present paper is as follows:

Step 1: Establish the factor level to propose an
orthogonal array from this table: After
establishing the HVOF coating process, the key
components of the process essential to achieve
the goal of the coating process in terms of
efficiency and quality of outputs are established.
These components are referred to as parameters.
In all, three process parameters are identified to
influence the HVOF coating process. These are
the standoff distance, powder feed rate, and
particle velocity. Given these three parameters,
specific levels are chosen, which are levels 1, 2,
and 3 in this case, obtainable from the data
provided by Dinh et al. (2018), which is the
coating of 67Nil8Cr5Si4B substance on C45
steel substrate. Then, by entering the number of
parameters and levels into software such as
Minitab 18 (2020), an orthogonal array of a
particular run is returned as the result of the
inputs of the parameter number and level. The
Minitab 18 (2020) is a statistical package with
an orthogonal array design facility that employs
rules for the specification of the orthogonal
array for a problem.

Step 2: Use the orthogonal array and the data on factors
and levels to obtain the translated orthogonal
array, which is the replacement of the initially
generated orthogonal entries with the specific
values obtained from the factor level table.

Step 3: For each objective function, identify the
constraints and variables and determine if the
function is in a minimization or maximization
context.

Step 4: Apply the grey wolf algorithm.

Step 4.1: Randomly initializes the grey wolf
population: Here, the parameters, namely the
standoff distance, powder feed rate, and
particular velocity, are assigned some initial

values in no order.

Step 4.2: Find the positions of the alpha, beta,
and omega wolves. It is assumed that their
positions relative to the prey being hunted are
important and are determinants in catching and
killing the prey.

Step 4.3: Find the first, second, and third
positions of the wolves.

Step 4.4: Obtain the new position of the wolves
as they move towards the same targeted prey.
Step 4.5: Carry out greedy selection.

4. RESULTS AND DISCUSSIONS

In this section, the discussion only centred on the grey
wolf algorithm since the Taguchi techniques, which
involve the development of an orthogonal array, have
been reported by Dinh et al. (2018). The results and
discussion section is structured according to four
segmentations: (1) the Pre-grey wolf application stage, (2)
the grey wolf prey-searching stage, (3) The prey-
encycling stage (4) the prey-killing stage. The
corresponding steps for these stages in the methodology
are as follows: steps 1 to 3 are the pre—grey wolf
application stage. Step 4.1 shows the searching stage for
the prey. Step 4.2 of the methodology stage shows the
encyling stage for the prey, while steps 4.3 to 4.5 are
implemented for the grey killing stage.

Phase 1 - The prey-grey wolf application stage: At this
prey-grey wolf application stage, factors (parameters) and
their levels are extracted from the original data presented
by Dinh et al. (2018). In a case where those data are not
available in the form presented by Dinh et al. (2018), the
most important parameters that should represent the
coating process are identified. Then data is collected
multiple times and grouped according to some preferred
classes, which are called the levels. The data obtained
from levels and factors form the basis of the selection of
orthogonal arrays, which were picked from the generated
data of the Minitab software. The orthogonal array
provides a set of experimental trials upon which the
regression equation is generated. This forms the ending
point of the first phase of the result generation. The output
of'this phase is Equation (1), which expresses the adhesive
strength in terms of stand-off distance, powder feed rate,
and particle velocity. Moreover, two other progression
equations were generated, similar to Equation (1).
However, the details are not shown here, but only the
results are used for further processing in the work. Thus,
regression  equations related to porosity and
microhardness were generated and used for further
processing in the grey wolf optimization procedure. New,
starting the second phase, Equation (2) is deployed.

Moreover, three empirical models were developed in
the work, each of which focuses on the objective function.
Formulation, where the adhesion strength (A) is the
dependent variable of the linear programming
formulation while. The standoff distance, powder feed
rate, and particle velocity are the independent variables.
These independent variables are also maintained in the
second and third objectives, where porosity (P) and
Microhardness (M) are the dependent variables.
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Moreover, these three empirical models, which were
obtained, will be used for the optimization using the grey
wolf optimization algorithm. The optimization process is
achieved with the help of a C++ program. The
optimization process is conducted to help determine the
output variables. Furthermore, starting the working of the
process with objective 1, it is known that the adhesion
strength (A) should be maximized. Therefore, by
extracting data from the orthogonal array and feeding it
into the Minitab 18 (2020) software, Equation (1) is
formulated as follows:

A =216 - 0.248V — 8.22Q +1187L + 0.01052VQ -
0.809VL - 9.63QL @)

From Equation (1), the inputs, which are the standoff
distance, powder feed rate, and particle velocity, have the
units of measurement as metres, grams/min, and
metres/second, respectively. Equation (1) is for the output
named Adhesion strength (MPa), symbolized as A, and
should be maximized. Furthermore, as the analysis will be
done in this section, the expected objectives of porosity
(%), named P, are minimization, while microhardness
(HV), named M, should be maximization. Moreover, for
the experimentation conducted in this section, the
population size used is a wolf of seven, while the number
of iterations is fixed at 180.

Phase 2: The grey wolf prey-searching stage - Next,

each parameter is defined as per their boundaries in the
lower and upper aspects. These boundaries are obtained
from the generated orthogonal arrays (translated), which
show 800 and 1000 metres/second as the lower and upper
boundaries for particle velocity, respectively. The lower
and upper boundaries for powder feed rate are 30 and 50
grams/min, while for the standoff distance, the lower and
upper boundaries are 0.1 and 0.3, respectively. Notice that
from the steps indicated in the methodological section, the
application of the grey wolf algorithm is the next phase of
action after defining the objective function stated in
Equation (1). For this application step, the sub-step to
implement is the randomization and initialization of the
grey wolf algorithm. To achieve this objective, Equation
(2) is used:
X=L+r(U-L) 2)
Note that L is the lower boundary value of the parameter
of interest U is the upper boundary value for the
parameter. r is the randomly generated number between 0
and 1.

The boundaries defined for this problem show where
the values of a parameter begin (i.e., lower boundary) and
where it ends (i.e., upper boundary). By setting
boundaries for the parameters, the various goals for the
coating process could be prioritized. This means that the
decision-maker chooses either the efficiency of the
coating process on the substrate C45 steel or the quality
of the coating should be considered first. This protects the
processing time and the energy expenditure of the
decision-maker in the process. Overall, the sustainability
of the process is promoted. The format used in running the
C++ program is to generate values in rows, with each row
having process parametric values of the upper and lower
boundaries. This represents a wolf. This consists of a
matrix (wolf). The wolf contains values falling within the
specified boundaries. These values can randomly be

determined with Equation (2) yields a value of 0.287322.

In summary, from calculations, V, Q, and L are
obtained as 827.442,48.4716,and 0.287323, respectively.
These values provide a basis to be substituted into
equation (1), which is the objective function that defines
the adhesive strength of the coats on the C45 steel
substrate. By substituting the values of V, Q, and L
mentioned above into Equation (1), the predicted value of
the adhesive strength, AD, is obtained as 48.8891MPa.
This is an intermediate value that should be used for
further processing. The calculated random variable
generated is 0.137211, and the upper boundary is 1000
metres/second. By substituting these values into equation
(2), V is obtained as 827.4422. Also, knowing the lower
limit of Q is 30g/min, the upper limit is 50 g/min, the
random variable is 0.923582, and the value of Q, using
equation (2), is calculated as 48.47164. Furthermore, L
may be calculated using Equation (2). However, there is a
need to introduce the lower boundary as 0.1 metres, the
upper boundary as 0.3 metres, and the random variable
used is 0.936613, and then introduce these values into aid
of equation (2). For the first wolf, the random variables
generated are as follows: 1st wolf 0.137211 0.923582
0.936613.

Now, for this first wolf, the values of all the inputs,
namely particle velocity (V), powder feed rate (Q), and
standoff distance (L), could be predicted and substituted
into the objective function (i.e., equation (1) to establish
the output value, AD. The next calculation involves
determining the value of V using Equation (2). Notice that
the lower boundary is given as 800 metres/second; the two
are also repeated for wolves 2 to 7 using newly generated
random values. The summary of these results is shown in
Table 1.

The calculations in Table 1 set the scene for the more
intensive evaluations through several iterations until
convergence is achieved. In the analysis that follows, the
representative detail of each iteration is shown, and this is
repeated until very close or the same values of outputs are
generated each time, which is the convergence of the
results. The iterations start with iteration 1 and proceed to
iteration 180, which is considered the terminating
iteration. Furthermore, this paper highlights the method of
the grey wolf algorithm to propose optimization for the
coating of 67Nil8Cr5Si4B alloy powder process
parameters. However, for a deeper understanding of the
methodology and implementation of the grey wolf
algorithm in the practical scenario discussed in this
research, some important questions need to be answered,
such as the following: What is the likelihood that the grey
wolf algorithm will lead to the correct result? How many
initial guesses are essential to affect the convergence
result for the algorithm? By deeply understanding these
questions and attempting to answer them, there is a
pointer to the need to add information about the stopping
rule for the algorithm. Moreover, the stopping condition
forces the grey wolf algorithm to terminate the process. In
the literature, the popular and meaningful conditions
could be any of the following: the use of a random
termination key, an external /internal condition, the
quality of the solution, and the number of interactions.
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Table 1. The result summary

v Q L AD
827.442 48.4716 0.287323 48.8891
846.004 40.1169 0.149709 50.8736
938.865 43.6534 0.139827 56.4785
865.908 30.5042 0.259673 78.4293
807.343 44.6733 0.230076 51.8345
929.337 42.2208 0.255913 58.5604
965.032 36.5505 0.205087 58.4305

Table 2. The information of the 1%, 2", and 3" wolf

X1 X2 X3

A =2ar-a Ar=2ar-a Aj;=2ar-a

C=2r Cy=2r Cs=2r

D, =|C1Xa_X(t)| Dﬁ :‘C2Xﬁ_X(t)| Da‘ :‘C3X5_X(t)‘
X, =X,-4D, XZ:Xﬂ—AZDﬂ X,=X;-A4,D;

However, based on the nature of the grey wolf algorithm,
the number of iterations is used as a unique criterion in
this work. It is fixed at 180 iterations. The motivation to
use the number of iterations as a stopping criterion in this
work is the opportunities it provides to reach
convergence. Higher iterations provide higher
opportunities for feedback and chances to adjust and fine-
tune the outcome, yielding enhanced overall results.
Furthermore, the number of iterations of 180 was decided
based on several initial multiple independent runs of the
program with random initialization. It was found that at
180 runs, the results show the capability of the grey wolf
optimization to track the counting problem being solved
in the present study.
Commencement of iteration 1

Here, the appropriate step to implement is to find the
positions of the alpha, beta, and omega wolves. In this
step, each of these wolves represents the best, second, and
third-best values of the seven wolves, respectively. Notice
that the objective of the decision maker is to maximize the
value of A, which implies that the best position is the wolf
with the highest value of A. The second-best position has
the second-highest value of the serial number, and the
third-best value of A is with the wolf having the third
largest value of A from the seven wolves. Recall that with
Equations (1) and (2), the values of inputs, V, Q, and L,
were simulated with the corresponding output, AD. Now,
the three outputs AD, which yield the best results, are
recalled and labeled as alpha, beta, and delta wolves. The
corresponding values of the outputs, which give the best,
are 78.4.293, with the inputs of V, Q, and L as 865.908,
30.5042, and 0.259673, respectively. This is the 4th wolf
in the set of results. The second best has an AD value.
58.5604 that has corresponding values of V, Q, and L as
929.337, 42.2208, and 0.255913, respectively. Next, the
third best output is 58.4305 and has the values of V, Q,
and L as 965.032, 36.5505, and 0.205087, respectively.

Phase 3 - The prey-encycling stage: The next stage is
to calculate X, X,, and X3. However, this is achieved by
first determining the value of "a", Equation (3).

a= 2(1 B itemtionj 3)

maxiter

Now, to evaluate the value of “a”, the iteration number
is 1, and the Maxiter is given as 180. The value of “a” is
1.98. However, it is known that for the first, second, and
third wolf, the following information is useful (Table 2):

Now, obtaining the value of X, the expression for A;
is obtained by substituting the values “a”, and r as 1.99,
and 0.137516, respectively. Thus, A is 1.4427. Also, C;
is obtained by substituting r as 0.137516, and C; yields
0.275032. Now, having obtained the value of Ci, the value
of D alpha is computed as C1 is introduced as 0.275032,
X alpha is.

X1, Xa, X,

Using the values 865.908 30.5042 0.259673
X(t) = 827.442 48.4716 0.287323

D, =10.275032 (865.908 30.5042 0.259673) - (827.442
48.4716 0.287323) |

Do= 589.2896 40.082  0.215903

X1 =865.908 30.5042 0.259673 — [-1.4427(589.2896
40.082 0.215903)]

X = 1716.0761  88.3305 0.571153

Following the same procedure, the C++ programming
language is used to derive the values of and
Xi: 172034 88.6204 0.57272
Xor -472.109 -3.70879 -0.0330428
X3 885.218 34.6325 0.1899
The next step involves finding Xyew, the average of X, Xo,
and X3. Thus, Xew is obtained as follows:
Xnew: 711.149  39.848  0.243192

Phase 4 - The prey-killing stage: Next, the greedy
selection is conducted, where the researcher inputs the
values of Xyew into the objective function to obtain the
required output value. In the present objective, we are
expected to optimize as such when the value obtained
Xnew surpasses the previous value for the output. We
replace the wolf, but if the reserve is the case, the wolf
remains unchanged. The process undergone above is
called greedy selection.
The previous value of adhesion strength is 48.8891, but
Xnew 18 63.3636.
Then F(Xyew) of adhesion strength is 63.3636.

The objective demands that the F(Xnew) produces a
value above the initial value of F. However, we noticed
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Table 3. The updated values

vV Q L AD
800.000 39.8480 0.243192 63.3636
846.004 40.1169 0.149709 50.8736
938.865 43.6534 0.139827 56.4785
865.908 30.5042 0.259673 78.4293
807.343 44.6733 0.230076 51.8345
929.337 42.2208 0.255913 58.5604
965.032 36.5505 0.205087 58.4305

Table 4. The output summary of the 1% iteration

Iteration

Output

Iteration 1
Iteration 2
Iteration 3

Iteration 177
Iteration 178
Iteration 179
Iteration 180

: 78.4293
:78.4293
:78.4293

1 85.82
1 85.82
1 85.82
: 85.82

that in this case, the new value is above the previous value,
i.e.,, FXnew) > F(X). Since this satisfies our needed
condition, the new wolf is desirable, and the wolf is
replaced. The updated values are shown in Table 3.

A similar operation is repeated for the rest of the
wolves. At the end of each iteration, the best values with
the highest S/N value will be taken as X alpha. Moreover,
a total of 180 iterations were processed for the problem.
In this situation, the optimal input in terms of particle
velocity, powder feed rate, and stand-off distance was
obtained with their corresponding output of adhesion
strength, porosity, and microhardness. After running
several iterations, it was observed that iterations one, two,
and three yielded 78.4293 each. Further iterations yielded
different values, which increased over time for the
adhesion strength. Furthermore, little increases were
observed in adhesion strength for iteration 4 to iteration
176. Finally, the value of 85.82 was obtained
consecutively for iterations 177,178,179, and 180. This
gives the motivation to terminate the iteration at 120
because it converges at this point. Notice that the values
continue to increase because maximization of the
objective function is desired. Two other sets of iterations
were worked on in the iteration concerning porosity,
minimization of the objective function is pursued, and the
minimum value converges at 0.684909. Also, for the
output named microhardness, maximization of the output
yielded a value of 583.04, which was truncated at 180
iterations. However, in this work, only a brief detail of
iterations for the adhesion strength is shown, covering
iterations 1 to 3 and 177 to 180. Details of iterations for
other outputs are not indicated here. In summary, the
output of the first iteration, which is adhesion strength, is
shown Table 4.

Furthermore, the best fit, which is taken as the values
for the adhesion strength after 180 iterations, yielded
values of V, Q, L, and A at the 180th iteration as 80m/s,
30g/min, 0.248465m, and 85.82MPa, respectively.
Moreover, for the best feet of X alpha for porosity at the
end of 180 iterations, the values of V, Q, L, and P are

800m/s, 30g/min, 0.229903m, respectively. The
corresponding porosity is 0.684909 percent. Moreover,
for the micro-hardness output, the best feet X alpha values
at the end of 180 iterations are V=180m/s, Q=30g/min,
L=0.3m, while the microhardness is 583.04 HV.

In practice, several instances occur where the addition
of layers of coating is made to the surfaces of solid objects
such as pipes, car bodies, and other applications. The
result of this study provides information on the
appropriate position to stand while handling the nozzle
with respect to the surface being coated, i.e., stand-off
distance. In addition, it educates the decision maker on the
powder feed rate, which should not be above the one
specified in this work. Besides, the particle velocity of the
nozzle of the spray unit should be discharged at the
maximum threshold displayed in this work. If all
conditions are satisfied, the efficiency of the coating
process is guaranteed. In addition, the quality of the coat
should also be desirable.

5. CONCLUSIONS

This study focuses on the optimization of coating by
the HVOF spraying technique. To obtain stand-out
responses for the adhesive strength, porosity, and micro-
hardness, the grey wolf optimization approach was
adopted as the optimization method. The input parameters
were found jointly to have an outstanding performance on
the responses when alternated within the given range of
800-1000 for the velocity (V), 30-50 for the feed rate (Q),
and 0.1-0.3 for the distance (L). The optimal coating
condition for the adhesion strength is at a particle velocity
of 800m/s, at a 30g/min power feed rate, and a standoff
distance of 0.229903m. Undertaking the coating at a
particle velocity of 800m/s, 30g/m power feed rate, and
0.3 standoff distance provides the best condition for the
micro-hardness and an optional condition for porosity at
800m/s particle velocity, 30g/m power feed rate, and
0.229903 standoff distance. This is the first time grey wolf
optimization is used to optimize coating parameters of
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67NiCrS5i4B on C45 steel substrate. In further work, the
merging of fuzzy and VIKOR to the grey wolf
optimization model for combined selection and
optimization of parameters, to demonstrate the impact of
uncertainties in selecting among the coating process
parameters, should be discussed. This study can also be
extended with practical data obtained from practice, in
which the optimal quantities suggested in this work are
further optimized by methods such as ant colony
optimization and whale optimization.
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