
Indonesian Journal of Information Systems (IJIS)

Vol. 3, No. 2, February 2021

82

Mudassir, Raghuveer, Dayanand (Towards comparative analysis of resumption techniques in ETL)

Towards Comparative Analysis of Resumption Techniques in

ETL

M Muddasir1, Raghuveer2, and Dayanand3

1Asst. Prof, Dept. of IS&E, Vidyavardhaka College of Engineering, Mysuru, India
2Prof and Head, Dept. of IS&E, National Institute of Engineering, Mysuru, India
3Technical Director, Mysuru, India

E-mail: mdmsir@gmail.com1, raghunie@yahoo.com2, dayanand_7@yahoo.com3

Submitted: 27 October 2020, revised: 10 February 2021, accepted: 12 February 2021

Abstrak. Gudang data dimuat dengan data dari sumber-sumber seperti basis data operasional.

Kegagalan proses pemuatan atau kegagalan salah satu proses seperti ekstraksi atau

transformasi menyebabkan kerugian finansial yang besar karena tidak tersedianya data untuk

analisis. Dengan munculnya e-commerce dan banyak aplikasi real time, analisis data dalam

waktu nyata menjadi sesuatu yang umum. Oleh karena itu, setiap kesalahan saat data sedang

dimuat ke dalam data warehouse perlu ditangani dengan cara yang efisien dan optimal. Teknik

untuk menangani kegagalan proses untuk mengisi data sama pentingnya dengan proses

pemuatan yang sebenarnya. Penataan alternatif perlu dilakukan jika terjadi kegagalan sehingga

proses masukan gudang data dilakukan tepat waktu. Penelitian ini membahas berbagai cara

untuk mengetahui proses mana yang gagal dalam mengisi gudang data, namun tetap dapat

dilanjutkan. Berbagai teknik memulai kembali (resumption) dibandingkan, dan teknik berbasis

blok baru diusulkan untuk meningkatkan salah satu teknik yang sudah ada.

Kata kunci: gudang data; berbasis blok; resumption; kegagalan ETL.

Abstract. Data warehouses are loaded with data from sources such as operational data bases.

Failure of loading process or failure of any of the processes such as extraction or

transformation causes great financial losses because of the non-availability of data for

analysis. With the advent of e-commerce and many real time applications, the analysis of data

in real time becomes a norm. Hence, any misses when the data is being loaded into data

warehouse need to be handled in an efficient and optimized way. The techniques to handle

failure of process to populate the data are as much important as the actual loading process. An

alternative arrangement needs to be made if failure happens so that processes of populating the

data warehouse are done in time. This paper explores the various ways through which a failed

process of populating the data warehouse could be resumed. Various resumption techniques

are compared, and a novel block-based technique is proposed to improve one of the existing

resumption techniques.

Keywords: data warehouse; block based; resumption; failed ETL.

1. Introduction

Extract Transform Load (ETL) is a process that helps integrate data from various disparate sources

into a common data warehouse. This is performed using data integration tools, or because of the cost

of integration tools, it sometimes is developed internally through the organizations development team

[1]. Moving data from operational systems to the data warehouse was traditionally executed during

off peak hour. Then, the advent of real time analysis has changed the ETL process. Now the ETL is

mailto:raghunie@yahoo.com

Indonesian Journal of Information Systems (IJIS)

Vol. 3, No. 2, February 2021

83

Mudassir, Raghuveer, Dayanand (Towards comparative analysis of resumption techniques in ETL)

also moving towards real time process, with a minimal delay and it is no longer during off peak hours.

This real time ETL[2] with a certain minimal delay is known as near real time ETL [3][4]. The

process of near real time ETL is more challenging to complete within in a stipulated time [5][6].

While the process of ETL helps move the data from transactional system to an analytical system, there

are several tasks which the ETL process needs to handle[7][8]. Each of the tasks has the potential to

be optimized, such as identification of the correct data from the source that is relevant to the current

cycle of ETL process. After identification process is the extraction step which is the most optimized

way not to burden the operational process of the transactional database. The next step is to customize

and integrate data into a common format. Before the final loading of the data, it is important to make

sure that only useful and cleaned data is propagated and loaded into the data warehouse [9].

Conceptually data warehouse design differs from transactional processing database system design.

In a transactional processing design, the focus is to normalize and minimize redundancy, so entity

relational model is used for conceptual modelling [10]. In a data warehouse the focus is for analysis,

so redundancy is allowed. Moreover, the data is stored in the forms of dimensions and facts that are

related to each other. Dimensions are the attributes that give the definition to the data, while facts

record the measures of the data. Schemas are organized as star or snowflake design depending on the

requirement to confine or elaborate the data.

What goes into the data warehouse without any hindrances shall be the part of decision making. At

the end, everything boils down to decision making based on updated data. Hence, it can be said that

business intelligence(BI) is the key beneficiary from the data warehouse setup [11][12]. BI helps in

better and real time decision making by collection data into data warehouses for mining, analysis,

reporting and visualizing, and others.

If any of the steps in the entire ETL functionality is not done completely or there is failure due to

the unavailability of network, database management system, etc., there is a need for resumption of the

entire process from the point of failure. The objective of this work is to compare various methods of

performing the resumption of failed ETL process. The methods studied are repetition, redundant flow,

and deployment of recovery point. Repetition is a simple technique to redo the entire ETL process.

Redundant flow is to have parallel flow and to keep track of amount of data loaded. In case of failure,

the parallel flow can take over from the point the ETL process stops. Deployment of recovery point is

to store the intermediate results after the transformation step of ETL process in a storage area. In case

of failure, one could reload the data from the intermediate storage without the need to repeat the

transformation. After the comparative analysis identifies the best resumption technique, this study

incorporates a novel block-based approach to further improve the resumption time for the deployment

of recovery point based on resumption technique.

2. Theoretical Framework

This section studies the existing work on resumption techniques in case of failed ETL process.

Identification of tuples that fail to load during a ETL process was proposed in [13]. Certain properties

of input tuples were taken to know if a certain group of tuples failed or were successfully loaded.

They propose an algorithm called as design-resume where the design phase identifies the failed tuples

and resume phase loads those missing tuples. Design-resume algorithm does not burden the

operational performance of the ETL process. To illustrate, when tuples from the source contribute to a

set of tuples in the destination, the identification of contributing tuples helps filter them out from the

resumption process. Design phase is taken as input to the graph G indicating the ETL process. In case

of failed ETL scenario process, the tuples become in reverse topological order and construct a graph

G’ which would filter out all the processed tuples that have contributed to the warehouse. Resume

phase acts as input to the graph G’ and performs the normal resumption operation with only

unprocessed tuples that remained to be loaded because of failure.

Improvement to the design-resume algorithm with multiple disparate sources was done by

[14].The writers have identified a major drawback in design resume algorithm that is if the initial load

completely fails without any rows being processed, then it is not possible to run the algorithm. In

Indonesian Journal of Information Systems (IJIS)

Vol. 3, No. 2, February 2021

84

Mudassir, Raghuveer, Dayanand (Towards comparative analysis of resumption techniques in ETL)

addition, a save point mechanism to combine the data from various sources before transformation can

be applied and the data can be loaded into the actual data warehouse.

Check point techniques to make sure the data is loaded until this point was combined with design-

resume in [15]. Having a database management system technique of check point is an advantage

during an ETL process because the data to the check point is processed and loaded successfully.

Having check point puts a burden on the operational overhead of the ETL process. Hence, a combined

solution of having a check point with additional design resume algorithm is a win-win situation where

data loading is done with less over head during normal operation. In case of failure, the design and the

resume can take up the resumption process.

The recovery of ETL jobs from an exception situation helps maintain the execution time. A multi

agent system to do this job was developed in [16]. The idea is to have a log of the jobs being

execution and divide the data into blocks with a check point. Whether a block of data was loaded

successfully or not, check point is used to redo the loading of failed block. It is a multi-agent system

that accomplishes the difficult task to keep track of failed loads to be fixed in an efficient manner.

Various scenarios of failed ETL process are taken into consideration to process the most suitable

solution by considering the time window to complete the entire process [17]. Errors scenarios like fact

table load, dimension table load, and fact extraction are considered. In the case of fact table load, it

only affects the final warehouse table. In the case of dimension table load, failures stop the fact table

load as well. The solution is to maintain a log of successful and unsuccessful loads of dimensions and

facts. Moreover, the successful dimension fact table load is taken, or the other fact table load is

skipped. Hence, the time window of redoing is saved.

When the data integration tools are not available and all the sources are being loaded to database

management systems, Structured Query Language (SQL) supports various mechanisms to reload the

failed processes. In [18] the author explained various ways through which the missing data could be

loaded back into database system tables. SQL constructs the query to identify changes. Some of the

constructions are NOT EXIST, MERGE and LEFT OUTER JOIN. The author compared each of the

techniques for loading millions of rows that went missing and reported the best technique as insert

using except clause (i.e., basically difference operator).

Pentaho is a data integration platform which helps integrate data from various sources like

database management systems, file systems, etc. It can configure various transformations like

filtering, joining, grouping and so on. The advantage of using data integration platforms is that any

data source can be used in the ETL process. A solution for failed ETL loads in case of Pentaho data

integration services is explained in the article [19]. The idea used in their solution is to have check

points, control tables, and transactional transformations. Check point solutions adds a check point

between two hops of the ETL flow. In case of failure, the hop after the check point is used as a

starting point to restart the process. The disadvantage of check point is, in case of sub jobs, if the

parent job fails, the entire suite of sub jobs needs to be repeated for a particular hop. In case of control

table approach to a separate database, the table is maintained to keep track of the files that have been

processed successfully. In case of failure, this table is referred to restart the process of ETL.

Transactional transformation would roll back any changes made and start a fresh. This approach has

the advantage to avoid duplicating processing.

Some other works on ETL in near real time known as stream ETL[20] [21] [22] explore the

accuracy and the efficiency of the development of the data process in the fashion of streams. Another

study is using grammar and machine learning to perform the analysis of incoming queries and predict

the query processing time [23].

The above literature survey gave the writers motivation to explore resumption techniques further.

In the process, the writers tried to identify possible solution for having resumption techniques that

have fewer overheads. To consider, the percentage of failure examines the best strategy to perform

resumption of a failed load. The main problem identified and tried to solve in this paper is to have

recovery point for huge volumes of data. If the data volumes are very high, reaching a recovery point

Indonesian Journal of Information Systems (IJIS)

Vol. 3, No. 2, February 2021

85

Mudassir, Raghuveer, Dayanand (Towards comparative analysis of resumption techniques in ETL)

costs additional storages and retrieval processing. However, the proposed approach of having block-

based solution reduces the time for resumption of failed ETL load with recovery point as a technique.

3. Methodology

3.1. Resumption of failed ETL using repetition, recovery point and redundant flow

The reliability of an ETL flow lies on how many failures can occur before a process is completed. In

case of failure there could be three strategies to recover such as repetition, deployment of recovery

points, and commissioning of multiple redundant flows [24]. Comparative analysis of techniques to

perform resumption is discussed in this section. Three main strategies are considered, and experiments

were repeated for each one with the same set of parameters. A brief introduction of the three strategies

and possible challenges in them are discussed below. The implementation of these three strategies in

order to get the most useful one and to improve is discussed in the next section.

3.1.1. Repetition

It is a simple strategy where the load is repeated to make sure the duplicate entries are avoided, and

the integrity constraints are not violated. While doing repetition, the time-consuming part is to

perform again all the transformations. This strategy could be used in simple transformations that are

processing huge data so that the time to complete the transformation is less than the time to store the

data redundantly. Simple transformations are those that do not involve joining data from multiple

disparate sources and those that do not have aggregation operations like sum, min, max, and others.

Huge data refers to data that could not be processed on a single machine and it requires a distributed

cluster to perform reading operation[25][26].

3.1.2. Recovery Point

In this strategy after a complex transformation the data is loaded twice. One is in the recovery area

and the other is in the actual data warehouse. While loading the data in the data warehouse, if there is

a failure, then the data is recovered from the recovery area. This strategy avoids redoing the complex

transformation, but it requires extra time in storing the data twice. This strategy could be used in

complex transformation operation so that the time to execute the transformation is more than storing

data redundantly. The complex transformation occurs in the data that joins operation from multiple

disparate sources and has aggregate functions as mentioned in previous sub-section. Heuristics for

adding recovery point was proposed in [24]. They identified three possible positions to place recovery

points. The first is recovery point after every time-consuming transformation. The second is after an

end of a phase of operation. The last is to have recovery point where it is feasible to have without

additional overhead.

3.1.3. Redundant Flow

This strategy requires the load to have two or more flows. If a single flow fails, a failure over path

could be taken. The extra efforts are required to keep track of the successful loaded parts from the

unsuccessful load and to restart the failure from the point of previous load which fails. This strategy

could be used in situation that required real time data with high reliability.

3.2. Methodology of Evaluating the Existing Techniques

This comparative analysis experiments were conducted using the standard benchmark data set for

ETL such as Transaction Processing Council (TPC). Under TPC various benchmarks are available to

simulate ETL scenarios like TPC-DI, which DI stands for data integration, and TPC-DS, where DS is

decision support. In this work TPC-DS is used because it contains merging content of two or more

tables as the main transformation[27]. Besides that, any transformation with join is considered critical

in an ETL process[28][29]. TPC-DS gives details of a model that represents retail sales. As shown in

Figure 1, TPC-DS performs as several sources such as stores sales, web sales, and catalogue sales. In

other words, every source performs ETL operations and populates several dimensions and facts.

In this experimentation, the writers have taken store sales as the fact table with dimensions of date,

time, store, customer, promotion, and others. The data size was 1GB generated through DBGEN

Indonesian Journal of Information Systems (IJIS)

Vol. 3, No. 2, February 2021

86

Mudassir, Raghuveer, Dayanand (Towards comparative analysis of resumption techniques in ETL)

program of TPC [27]. The initial data was already populated into the data warehouse tables.

Incremental loads were populated using the data integration load and failure was simulated, so that

experimentation could be performed. Store sales data warehouse is populated by merging data from

dimension tables and fact tables. This helped simulate transformation which was very much required

to access the efficiency of resumption techniques. As mentioned previously, repetition in resumption

techniques requires redoing the transformation, whereas redundancy and recovery point-based

resumption does not need to redo the transformations. Our results show that if transformation has to

be repeated, then it takes more time (in this case more than 60%) to perform the resumption.

However, the writers do not claim it is always the case because if the transformations are light weight

(simple transformation as mentioned earlier) and the data volumes are huge [25], it is quite possible

that other resumption techniques would take more time.

Figure 1. TPC-DS benchmark components.

Experimentation evaluation was done for loading 5lac, 10lac and 15lac rows (size of data in units

of number of rows processed) with 10, 25, 50, 75 and 90 percentage failures in each case. Failure

needs to be simulated to know how fast the resumption could be possible. In this regard, the writers

simulated failure of ETL job after loading 10%, 25%, 50%, 75% and 90%. These percentages were

used as a standard as mentioned din the work by authors of [13].The same percentage is used in this

experiment as a reference to make sure all possible percentages of failures are covered. The hardware

specification of the system used for the experiment was an Intel i5 2.5 GHz processor, with a memory

on 4GB running on windows 10 operating system. The database management system used is

PostgreSQL version 10.

3.2.1. Results of evaluation of existing techniques

Figure 2, Figure 3, and Figure 4 show the results of comparison of the three techniques. The graphs

are plotted with percentage failure on the horizontal axis and time in milliseconds to perform the

resumption on the vertical axis. Each of the failures starting from 10% to 90% was simulated for at

least 5 times and the average time for resumption was recorded in the graphs shown. Taking the case

of 5lac rows, 10% failure is the ETL process that stops after loading 50k row. So, this was simulated

and all the three techniques (repetition, recovery point and redundant flow) were applied to record the

time for resumption. Similarly, simulation was done for other percentage failures. Later the

experiment was repeated by increasing the row size to 10lac and 15lac with the pattern of recording

the resumption time remaining the same (5 times and taking average). As the result, a full proof

system relays the resumption time for each of the three techniques.

Indonesian Journal of Information Systems (IJIS)

Vol. 3, No. 2, February 2021

87

Mudassir, Raghuveer, Dayanand (Towards comparative analysis of resumption techniques in ETL)

Figure 2. Comparison of 3 resumption techniques with data size of 5lac rows

Figure 3. Comparison of 3 resumption techniques with data size of 10lac rows

Figure 4. Comparison of 3 resumption techniques with data size of 15lac rows

3.2.2. Analysis of the evaluation of existing technique

The above experimentation results show the time taken for performing the resumption of failed ETL

load using three techniques which are repetition, recovery point and redundant flow. Repetition

techniques took more time to perform the resumption as shown in green color bar. Improvement to

repetition technique was obtained by using recovery point techniques as shown in blue color bar.

Finally, the redundant flow techniques took the least time (60% less) to perform the resumption as

Indonesian Journal of Information Systems (IJIS)

Vol. 3, No. 2, February 2021

88

Mudassir, Raghuveer, Dayanand (Towards comparative analysis of resumption techniques in ETL)

shown in red color bar. However, doing redundant flow for every ETL setup was practically not

feasible. This was an experimental setup that could easily achieve redundant flow. The

implementation of redundant flow technique in real world is a challenging job because of the

complexity involved in maintaining consistency amongst the various databases that hold a redundant

copy. However, performing recovery point was a feasible solution because it is easier to maintain

compared to redundant flow. The repetition was certainly the easiest, but it was time consuming.

After the initial experiment, the writers wanted to improve the recovery techniques. This was because

redundant flow technique was challenging, and repetition was time consuming. Hence, the writers

took up a novel block-based approach to maintain the recovery points, as explained in the next

section, and the approach reduced the resumption time. Recovery point-based technique was

improved as shown in the results of the next and subsequent section of this work.

3.3. Methodology to create blocks of data

Block based solution makes the available data into blocks. Data blocks are the primary unit to

consider for the success or failure of the process. For example, it is possible that certain blocks are

loaded successfully, and the other blocks are not. In prioritizing, the blocks are the basic unit so

certain blocks can have a higher priority than certain other blocks. Replication is done on block level

as well. During the replication operation, some blocks are replicated depending on the available time

window.

The idea of making the data into blocks was taken from the blog in [30]. The creator of the blog

shared the code to make the blocks of data and the writers used the same code. The enhancement of

this research was the data combined from various dimensions tables and it made the data available to

be loaded into store sales. Hence, the blocks-based database was extended to data joined with more

than one table. Figure 5 and Figure 6 below show the screen shots of the data and how the same data

looks with blocks in postgreSQL admin (PGADMIN). Things to notice in Figure 5 are the number of

rows returned is 15lacs because of space constraint that could not show the exact rows. Consequently,

only the message displayed by the query tool is shown. In Figure 6 a glimpse of the data has been

shown, where blocksize1 column shows the size of each block and the next two columns shows the

starting and ending value of row numbers. For 15lac rows with blocks size of 50k, there are 30 blocks

created. Apart from this, the writers did the experiment with 5lac, 10lac rows that make the data of

blocks 10k, 25k and 50k. The code snippet showed how the blocks of data were made with the

available database table. The parameter value in this case was taken as 10000 which determines the

block size. After the blocks were made, they were stored into the database as tables. The code in

Figure 7 shows the creation of 5lac rows making block size of 10k. Similarly, by changing the

parameter from 10k to 25k and 50k, other block size tables were created. The code was taken from

[30] but the writers created a permanent table to store the output of blocks creation code.

Figure 5. Screen shot of PGADMIN tool showing table with 15lac rows

Indonesian Journal of Information Systems (IJIS)

Vol. 3, No. 2, February 2021

89

Mudassir, Raghuveer, Dayanand (Towards comparative analysis of resumption techniques in ETL)

Figure 6. Screen shot of PGADMIN tool showing blocks of 50k for 15lac rows

Figure 7. Code snippet for creation of blocks

Making the smallest data unit like blocks has advantages to reduce the number of different

operations, ease to track the amount of data loaded, ease to track available data at source, and

replicate the repository and data warehouse. For example, if there are 1000 rows to be loaded and 500

rows are loaded successfully, the remaining 500 are supposed to be 400rows in the source and 100 in

replication repository. Identification of failed rows at the source requires performing SQL

DIFFERENCE or OUT JOIN operation among 500 rows successfully loaded at the data warehouse

with the 1000 rows present at the source. Similarly, to know the 100 rows in the repository, the

different operation or outer joining operation needs to be performed between the initial source data of

Indonesian Journal of Information Systems (IJIS)

Vol. 3, No. 2, February 2021

90

Mudassir, Raghuveer, Dayanand (Towards comparative analysis of resumption techniques in ETL)

1000 rows and 100 rows data in the replication repository. If the same data is made into blocks and

each block is the basic unit of execution, suppose 1000 rows are divided into blocks of 100 each then

there are 10 blocks. So, with the preceding example 5 blocks are loaded successfully, 4 are at the

source and 1 is in the replication repository. The task of identifying failed data that could be loaded is

being now reduced to a smaller number of comparisons because of the block of data being made. To

know how many rows have been successfully loaded, it only requires comparing the blocks available

at source and destination. In case of 5 blocks presented at source, if 4 are loaded successfully and only

1 block is not loaded, then it is easy to identify that 1 block of data which failed to load. If this block

is not made and there are 1000 rows at source and only 500 loaded successfully, then it becomes

tedious to identify 500 rows at source which failed to load. Hence, it can be said that this block-based

approach has reduced the time to identify data that failed to load by about 10 times.

3.4. Methodology of Block Based Recovery Point

We repeated the recovery techniques with a novel block-based approach, where data are grouped into

blocks and any missing data is to be found in one of the blocks. By keeping track of blocks of data for

recovery, it is natural that number of comparisons is reduced. So, it can be said that the methodology

recovery point technique has improved. The data is made into blocks using a range of primary key

values. Each data set of 5lac rows is made into blocks of various size of about 10k 25k and 50k block

size. That means 5lac rows would result in 50 blocks if made into blocks of size 10k each. Similarly,

if made into blocks of size 25k each, 5lac rows would result in 20 blocks and 50k block size results in

10 blocks. As the size of block increases, the number of blocks for the data reduces.

4. Implementation and Results

Initially blocks of 10k were created for data of size 5lac. As shown in Figure 2, Figure 3, and Figure 4

75%, the loading takes the maximum time to recover in all the three data sizes of 5lac, 10lac and

15lac rows. Simulation of 75% failure was carried out and the resumption techniques using recovery

method was deployed. Later the experiment was repeated with block size of 25k and 50k for same

data size of 5lac rows with 75% failure only. To know the effectiveness of the method, the data size

was increased to 10lac rows and 15lac rows keeping the block size and percentage failure common

across all the experiments. Each experiment was repeated five times and the average time for

resumption was recorded. As shown in Figure 8, Figure 9, and Figure 10, block-based approach

reduced the resumption time (approximately by an average of 10%) as compared to normal recovery

based method. Normal recovery time was taken from comparative section where all the three

techniques were compared viz. recovery point, repetition, and redundant flow.

Figure 8. Blocked based recovery data size of 5lac rows

Indonesian Journal of Information Systems (IJIS)

Vol. 3, No. 2, February 2021

91

Mudassir, Raghuveer, Dayanand (Towards comparative analysis of resumption techniques in ETL)

Figure 9. Blocked based recovery data size of 10lac rows

Figure 10. Blocked based recovery data size of 15lac rows

The results lead to the conclusion that as the number of blocks reduces, by increasing the row in

each block the, resumption time also reduces. This is a natural scenario because when the number of

blocks reduces, the time to compare and to note the failed and successful blocks also reduces. If the

blocks are not made, then every data row needs to be checked for failed load or successful load.

5. Conclusion and Future Enhancements

Near real time ETL has many aspects that should be achieved before the data could be loaded into the

data warehouse. One of the aspects such as the resumption of failed ETL process was studied in this

paper. The writers have compared existing techniques for resumption for pointing out which is the

best technique for the scenario and data set available as benchmark (TPC-DS) used in this work. The

writers found that redundant flow was the best performing solution for resumption of failed ETL

process as compared to repetition and deployment of recovery point. However, this result was specific

to the case where transformation process took less time as compared to storing and retrieving data

from the recovery point. Here it is assumed that the transformation process in case of ETL of store

sales fact table of TPC-DS benchmark took less time and redundant flow outperformed recovery point

of deployment technique. Citing this as the reason, this work has improved the recovery point of

deployment-based resumption technique using a novel block-based approach. The result of the novel

block-based approach was found to be encouraging (approximately 10% average reduction), which

was tested on 75% failure case for data set of 5lac, 10lac and 15lac. This can be concluded that,

Indonesian Journal of Information Systems (IJIS)

Vol. 3, No. 2, February 2021

92

Mudassir, Raghuveer, Dayanand (Towards comparative analysis of resumption techniques in ETL)

transformation step of ETL with light weight and huge recovery point of deployment-based approach

would improve the time for resumption.

In the future the writers would like to study and compare the deployment of recovery point in a

distributed environment where the data flow is partitioned. If the partition is unsuccessful, the study

would discuss the strategies that can be used to get data from a particular portioned. Furthermore, how

optimal a distributed recovery point for ever partition that should go with a redundant flow could be a

possible future study for this work.

References

[1] P. Vassiliadis, A. Simitsis, and S. Skiadopoulos, “Conceptual modeling for ETL processes,”

ACM Int. Work. Data Warehous. Ol., pp. 14–21, 2002, doi: 10.1145/583890.583893.

[2] N. Biswas, A. Sarkar, and K. C. Mondal, “Efficient incremental loading in ETL processing for

real-time data integration,” Innov. Syst. Softw. Eng., vol. 16, no. 1, pp. 53–61, 2020, doi:

10.1007/s11334-019-00344-4.

[3] P. Vassiliadis and A. Simitsis, Near Real Time ETL, vol. 3. 2009.

[4] K. Kakish and T. a Kraft, “ETL Evolution for Real-Time Data Warehousing,” Proc. Conf. Inf.

Syst. Appl. Res., pp. 1–12, 2012.

[5] S. Gorhe, “ETL in Near-Real Time Environment : Challenges and Opportunities,” no. April,

2020.

[6] A. Sabtu et al., “The challenges of Extract, Transform and Loading (ETL) system

implementation for near real-time environment,” Int. Conf. Res. Innov. Inf. Syst. ICRIIS, pp. 3–

7, 2017, doi: 10.1109/ICRIIS.2017.8002467.

[7] and S. D. Weiping Qu, Vinanthi Basavaraj, Sahana Shankar, “Real-Time Snapshot

Maintenance with Incremental ETL Pipelines in Data Warehouses,” Lect. Notes Comput. Sci.

(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9263, pp. 28–39,

2015, doi: 10.1007/978-3-319-22729-0.

[8] W. Qu, “Incremental ETL Pipeline Scheduling for Near Real-Time Data Warehouses 1,” no.

Btw, pp. 299–308, 2017.

[9] A. Simitsis, P. Vassiliadis, and T. Sellis, “Optimizing ETL processes in data warehouses,”

Proc. - Int. Conf. Data Eng., no. June 2014, pp. 564–575, 2005, doi: 10.1109/ICDE.2005.103.

[10] R. E. S. B. Navathe, Database Systems. 2016.

[11] U. Dayal, M. Castellanos, A. Simitsis, and K. Wilkinson, “Data integration flows for Business

Intelligence,” Proc. 12th Int. Conf. Extending Database Technol. Adv. Database Technol.

EDBT’09, pp. 1–11, 2009, doi: 10.1145/1516360.1516362.

[12] M. Minhaj, “An Exploratory Study of Near-Real Time ETL Approaches for the Design of

Agile Business Intelligence Infrastructure Mohamed Minhaj,” SDM Res. Cent. Manag. Stud.,

vol. V, pp. 23–44, 2016.

[13] W. J. Labio, J. L. Wiener, H. Garcia-Molina, and V. Gorelik, “Efficient resumption of

interrupted warehouse loads,” pp. 46–57, 2000, doi: 10.1145/342009.335379.

[14] M. Gorawski and P. Marks, “High efficiency of hybrid resumption in distributed data

warehouses,” Proc. - Int. Work. Database Expert Syst. Appl. DEXA, vol. 2006, pp. 323–327,

2005, doi: 10.1109/DEXA.2005.108.

[15] M. Gorawski and P. Marks, “Checkpoint-based resumption in data warehouses,” IFIP Int. Fed.

Inf. Process., vol. 227, pp. 313–323, 2006, doi: 10.1007/978-0-387-39388-9_30.

[16] J. Huang and C. Guo, “An MAS-based and fault-tolerant distributed ETL workflow engine,”

Proc. 2012 IEEE 16th Int. Conf. Comput. Support. Coop. Work Des. CSCWD 2012, pp. 54–58,

2012, doi: 10.1109/CSCWD.2012.6221797.

[17] S. Tu and L. Zhu, “An optimized etl fault-tolerant algorithm in data warehouses,” 2013 IEEE

3rd Int. Conf. Inf. Sci. Technol. ICIST 2013, pp. 484–487, 2013, doi:

10.1109/ICIST.2013.6747594.

[18] D. Lozinski, “Fastest-way-to-insert-new-records-where-one-doesnt-already-exist,” The curious

consultant, 2015. .

[19] C. Morehouse, “Restratability in PDI,” Hitachi, 2019. .

[20] M. Gorawski and A. Gorawska, “Research on the Stream ETL Process,” Commun. Comput.

Indonesian Journal of Information Systems (IJIS)

Vol. 3, No. 2, February 2021

93

Mudassir, Raghuveer, Dayanand (Towards comparative analysis of resumption techniques in ETL)

Inf. Sci., vol. 424, no. April, pp. 61–71, 2014, doi: 10.1007/978-3-319-06932-6_7.

[21] G. V. Machado, Í. Cunha, A. C. M. Pereira, and L. B. Oliveira, “DOD-ETL: Distributed on-

demand ETL for near real-time business intelligence,” J. Internet Serv. Appl., pp. 1–15, 2019,

doi: https://doi.org/10.1186/s13174-019-0121-z.

[22] T. H. R. Munige, “NEAR REAL-TIME PROCESSING OF VOLUMINOUS, HIGH-

VELOCITY DATA STREAMS FOR CONTINUOUS SENSING ENVIRONMENTS,”

Colorado State University, 2020.

[23] M. Gorawski, M. Gorawski, and S. Dyduch, “Use of grammars and machine learning in ETL

systems that control load balancing process,” Proc. - 2013 IEEE Int. Conf. High Perform.

Comput. Commun. HPCC 2013 2013 IEEE Int. Conf. Embed. Ubiquitous Comput. EUC 2013,

pp. 1709–1714, 2014, doi: 10.1109/HPCC.and.EUC.2013.243.

[24] A. Simitsis, K. Wilkinson, U. Dayal, and M. Castellanos, “Optimizing ETL Workflows for

Fault-Tolerance,” 2010.

[25] D. Eadline, Hadoop 2 quick start. 2016.

[26] A. Awadallah and D. Graham, “Hadoop and the Data Warehouse | When to Use Which,”

2012.

[27] “Transaction Processing Council,” 2020. [Online]. Available:

http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-ds_v2.13.0.pdf.

[28] S. H. A. El-Sappagh, A. M. A. Hendawi, and A. H. El Bastawissy, “A proposed model for data

warehouse ETL processes,” J. King Saud Univ. - Comput. Inf. Sci., 2011, doi:

10.1016/j.jksuci.2011.05.005.

[29] Stitchdata, “ETL Transforms,” Talend, 2019. .

[30] J. VANLIGHTLY, “Building-synkronizr-a-sql-server-data-synchronizer-tool-part-1,”

RabbitMQ, 2016. [Online]. Available: https://jack-vanlightly.com/blog/2016/11/12/building-

synkronizr-a-sql-server-data-synchronizer-tool-part-1.

