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Abstract. Face recognition is one of the interesting research topics in the field of computer vision. 

In recent years, deep learning methods, especially the Convolutional Neural Network, have 

progressed. One of the successes of CNN is in face recognition. Face recognition by computer is a 

technique done so that the computer can automatically recognize faces in an image. Various 

researchers have conducted related research on facial recognition. This survey presents research 

related to face recognition based on Convolutional Neural Network that has been conducted. The 

studies used are studies that have been published in the last five years. It was performed to 

determine the renewal that emerged in face recognition based on Convolutional Neural Network. 

The basic theory of the Convolutional Neural Network, face recognition, and description of the 

database used in various researches are also discussed. Hopefully, this survey can provide 

additional knowledge regarding face recognition based on the Convolutional Neural Network. 
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1. Introduction 
The human face is one of the unique parts of a body. A person can recognize others through the face. In 
addition to voice recognition, retinal scanning, or fingerprint recognition, face recognition is included in 
biometric identification [1]. Face recognition has become one of the interesting research topics in the field 
of computer vision. There are various researches done with the aim of the computer being able to 
recognize a person’s face [2]. Moreover, the emergence of interest in research on face recognition is driven 
by requests for the application of the technology. 

Face recognition by computer is a technique that is done so that the computer can recognize faces in 
an image automatically [3]. In general, there are four stages in face recognition, and they are face 
detection, facial straightening, facial feature extraction, and face matching or classification [3], [2]. The 
deep learning method has progressed in recent years, specifically the Convolutional Neural Network 
(CNN) for computer vision. Some of the successes achieved through CNN for computer vision are object 
detection, object recognition, gesture recognition, and one of them is face recognition. The success is due 
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to many datasets available for training, the use of GPUs in parallel that can speed up the computing 
process, and the emergence of new and more effective CNN architectures [4]. 

Nowadays, the field of face recognition is becoming an important issue. However, there is much 
research that readers sometimes find difficulties to reach a general view of the field. The current study 
integrates many aspects of face recognition in a brief but usual way. The focus of this survey is to discuss 
face recognition based on Convolutional Neural Network (CNN). This survey presents theories about the 
Convolutional Neural Network, face recognition, related studies, and face databases used in various 
studies. 

This survey's structure is as follows: Section 2 discusses the basic theory of the Convolutional 
Neural Network. Section 3 discusses face recognition. Section 4 discusses various studies on face 
recognition based on Convolutional Neural Network. Section 5 presents databases used in various 
researches and is followed by a conclusion in Section 6. 

 
2. Convolutional Neural Network 
Convolutional Neural Network or CNN was discovered by LeCun [5]. A Convolutional Neural Network 
consists of several layers. The layers are arranged in sequence. An example of the structure of a 
Convolutional Neural Network is shown in Fig. 1. 

 

Figure 1. Structure of a Convolutional Neural Network [5] 

2.1. Convolutional Layer 

Convolutional Layer is the primary layer of a CNN, and the Convolutional Layer has several filters or can 

be called kernels. A filter is a matrix that contains numbers. The filter serves to produce a feature map 

from the input layer (for the first time) or a feature map from the previous layer. Filters are convoluted 

with the input image to produce a feature map. Convolution is a mathematical operation that multiplies 

two matrices and sums them. Filters are connected to the input layer through a small area called the 

receptive field. The extent of the filter determines the extent of the area. The values in the filter will 

change in the learning or training process. After the convolution calculation results are obtained, each will 

be processed with an activation function [6]. The size of the output of the convolutional layer is 

determined by several parameters, such as depth (number of filters), stride (the amount of shift of the 

filter), and zero paddings (adjust the spatial size of the output) [7]. Fig. 2 shows an image that is 

convoluted with a filter to produce a feature map. 
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Figure 2. An image convoluted with a filter [7] 

2.2. Pooling Layer 
The pooling layer is placed after the convolutional layer. The pooling layer's function is to reduce the input 
size from the previous layer (feature map of the convolutional layer). The conventional method is by using 
the max-pooling or average pooling of several parts of the area in the feature map. An example of 
operation in the pooling layer is shown in Fig. 3. 

 

Figure 3. The operation in the pooling layer using max-pooling [8] 

2.3. Fully Connected Layer 
In the fully connected layer, each node is connected to all the feature map nodes from the result of the last 
pooling layer on CNN. An example of a fully connected layer is shown in Fig. 4.  

 

Figure 4. Fully connected layer [8] 
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Several fully connected layers change the feature map with the shape of 2D into a feature vector 

with the shape of 1D. A fully connected layer works similar to the neural network [8]. After the fully 
connected layer is the output layer. The amount of output depends on the goal to be achieved, for example, 
if CNN is used to recognize four classes' objects, then the number of outputs from the output layer is four. 
The relationship between the fully connected layer and the output layer is a softmax function. Softmax 
function changes the previous layer's features into the probability values of existing classes [5]. 

2.4. Activation Function 
The activation function used in CNN varies. Some commonly used functions are the sigmoid function, 
tanh function, Rectified Linear Units (ReLU), leaky-ReLU, exponential linear units (ELU), and scaled-
ELU (SELU). ReLU is the most commonly used activation function [2], [5]. 

 
3. Face Recognition 
Face recognition is one of biometric identification, apart from voice recognition, retinal scanning, and 
fingerprint recognition [1]. Face recognition is one of the challenges in the field of pattern recognition and 
computer vision, and one of the many studies conducted in recent years [9], [10], [5]. The trend is due to 
the increasing demand for face recognition technology to be applied in law enforcement, commercial use 
[10], human-computer interaction, access control, surveillance [11], video conference [1], authentication 
on mobile devices, payment transactions, autonomous car [9], automatic attendance system, and digital 
entertainment [12]. Face recognition become famous for its nature, which does not require physical contact 
with the scanner device, and tends to be relatively inexpensive [1]. 

Face recognition by computer is a computational technique to recognize someone in an image that is 
done automatically [3]. A person can be identified through certain features that make it different from other 
people's faces [13]. Based on its application, face recognition can be categorized into face identification 
and face verification. Face verification is when a computer is given a face pair, and the computer must be 
able to determine the faces in both images belong to the same person or not [14]. Face identification is the 
process carried out by a computer to find a face's identity in an image of a collection of faces whose 
identity has been stored in a database [10]. 

3.1. Stages of Face Recognition 
Face recognition is carried out through four stages: the face detection stage, the face alignment stage, the 
face feature extraction stage, and the face matching/classification stage [3], [2]. The Diagram of the face 
recognition stages is shown in Fig. 5.  

 

Figure 5. Diagram of stages in face recognition 
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3.1.1. Face Detection 

Face detection is the primary step used for analyzing faces, such as aligning face, modeling a face, 
recognizing a face, recognizing facial expression, tracking facial poses, and recognizing a person's gender 
or age based on their face [15]. The purpose of the face detection algorithm is if an image is given to the 
computer, the face location will be displayed with a box marking the faces found in the image [16]. Fig. 6 
shows an example of face detection in an image. The faces of people contained in the image were 
successfully detected, with the display of a colored box surrounding the face and the level of confidence. 
The faces are successfully detected even though the positions are different and not in a straight position to 
the camera. A face detector must have the ability to detect faces when the face is not in a straight position, 
varied lighting conditions, different expressions, different skin colors, obstacles, different face sizes in the 
images, low image resolution, and there are various other objects in an image [15], [16]. 

 

Figure 6. Example of face detection in an image [17] 

Until today, there are several methods used to detect faces in an image [18]. Face detection in an 
image begins with the work done by Viola-Jones [18]. Viola-Jones applied the Haar-like features 
combined with multilevel classifiers that were trained using the AdaBoost learning algorithm to detect 
faces in an image quickly and accurately [19]. However, the weakness of the Viola-Jones method is the 
difficulty in detecting faces with a different point of view, blurred images, or partially covered faces [17], 
[19], [20]. Another method is the Deformable Part Model (DPM) proposed by Felzenszwalb et al. DPM 
model information contained between parts of the face [17]. The weakness of DPM is that it requires 
extensive computing resources [19]. 

Recent research shows that deep learning, using the Convolutional Neural Network (CNN), 
achieved success in computer vision. One of the successes is to detect faces. The reason for CNN's 
superiority compared to the previous methods is that CNN can automatically learn features that represent 
complex visual variations from a large amount of training data [21]. Several studies used CNN to detect 
the face. Li et al. used CNN cascade, which uses more than one CNN [22]. The use of six CNNs makes the 
computer able to detect faces more accurately. However, the study's weakness is that the training process is 
very complicated and heavy because they must train the six CNN separately [20]. Qin et al. proposed a 
joint training method to optimize the CNN cascade training process with the same goal, which is to detect 
faces [23]. Sawat and Hegadi proposed a method for detecting face by combining CNN and Cubic Support 
Vector Machine [24]. Face Alignment 

The stage after detecting the face is to align the face. Face alignment is also known as detecting face 
landmarks [25]. Detecting face landmark is needed to make align to the front. It can increase the level of 
accuracy of face recognition. The main points of face landmark include the eyes, nose, mouth, and so on. 
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The shape or location gives a unique pattern to each face [26]. Fig. 7 shows the detection of face landmarks 
points. The face on the left shows 20 points of face landmarks, while on the right shows 68 points of face 
landmarks. 

 

Figure 7. Detection of face landmarks [26] 

3.1.2. Face Feature Extraction 

The feature extraction stage is essential in face recognition [27]. As the name suggests, the primary 
purpose of this stage is to extract features of the face. Face feature extraction is taking and storing the most 
important information of the face. The information is in the form of a geometric distribution and the shape 
of the mouth, nose, eyes, or other features that make a face unique. Face features are represented in vectors 
that will be used for the next stage [10], [28]. There are several methods proposed to extract features of the 
face, including using Principal Component Analysis (PCA), Independent Component Analysis (ICA), 
Local Binary Pattern (LBP), Histogram, and the latest and better is using CNN [10]. 

3.1.3. Face Matching / Classification 

This stage is the stage of comparing face features that have been extracted in the previous stage with face 
features contained in the database. Face recognition has two types of applications, namely, face 
identification and face verification [28]. Face verification is a one-to-one matching process. A test image 
will be compared with an image from the database to determine whether they are the same. Face 
identification is a one-to-many matching process. A test image is compared to a set of faces in the database 
to find the most likely match [10]. 

 

4. Face recognition based on Convolutional Neural Network 
Various studies on face recognition have been carried out. This section will discuss several studies that 
focus on face recognition using the Convolutional Neural Network. The selected studies are studies 
published from 2015 to 2020. 

Zafar et al. focused on making Bayesian DCNN for face recognition [2]. The researchers formed 
three CNN models with different depths and a Bayesian-DCNN. The use of different models is done to test 
the accuracy of each model. The dataset used in the study is the AT&T Face Database and the EURECOM 
Kinect Face Database. The accuracy obtained from the ordinary CNN models reached 94.2% when tested 
with the EUROCOM Kinect Face Database, and 97.5% with the AT&T Face Database. The test on the B-
DCNN model shows that the accuracy achieved was 98.1% with the EUROCOM Kinect Face Database 
and 100% with the AT&T Face Database. 

Peng et al. introduced a CNN called NIRFaceNet [5]. NIRFaceNet is a modification of GoogLeNet, 
used for face recognition whose input is in the form of Near-Infrared (NIR) images. The researchers chose 
to do face recognition with a NIR image because it has advantages over lighting changes. The dataset used 
is the CASIA NIR database. The advantage of this research is that the researchers added image variations 
to the dataset. These variations are motion blur, Gaussian blur, salt-and-pepper, and Gaussian noise. The 
addition of variations is done so that the model can recognize faces in unclear image conditions. The model 
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used is based on GoogLeNet, but only consists of 8 layers, different from the original, 27 layers. The 
reduction in layers provides the advantage of faster time needed for training. The test results show that 
NIRFaceNet obtained an accuracy rate of 100% to recognize faces without expression and normal position. 
Subsequent testing, with facial expressions and different facial positions, the accuracy level obtained, was 
98.28%. Then, the testing with blurred and noise images achieved accuracy ranging from 96.02% to 
98.48%. 

Ben Fredj et al. trained a CNN to recognize faces in an uncontrolled environment, in the sense that 
face images have noise, or partially covered faces [29]. The researchers used the data augmentation method 
of flipping, histograms, noise, blur, differences in lighting, partially covered faces, and parts of cut-off 
faces. Data augmentation increases the number of images in the dataset and adds variation. The research in 
[29] has little in common with research in [5]. Softmax loss and center loss are used. The dataset used in 
the study is CASIA-WebFace. The accuracy obtained is 99.2% when tested with the LFW dataset, and 
96.83% when tested with the YTF dataset. 

Pei et al. made a student attendance system using face recognition based on deep learning [30]. 
Researchers revealed the problem faced was the difficulty in getting a large amount of training data. Data 
augmentation was used as a solution to increase the number of images in the dataset that can be used. The 
dataset images are modified through geometric transformation (enlarging the image, translation, rotation), 
lighting, mean filter, median filter, Gaussian filter, and bilateral filter. The dataset used is privately owned, 
with 3538 student face images for training, and 372 for testing. Researchers used the CNN VGG-16 
architecture. The accuracy obtained from this study was 86.3%. Researchers then increased the amount of 
training data through face capture via video, and the level of accuracy increased to 98.1%. 

Moon et al. trained CNN to recognize a person's face at different distances [31]. The used dataset is 
a dataset formed by the researchers themselves, with 12 individuals, and 270 images for each individual. 
Everyone's faces in the dataset are taken from 1-meter to 9 meters, with 30 images taken at each distance. 
The average level of accuracy obtained from this study was 88.9%. 

Zheng et al. made a face recognition using the Deep Convolutional Neural Network and the Vector 
of Locally Aggregated Descriptor (VLAD) feature encoding [32]. The CNN was trained using the CASIA-
WebFace dataset and tested using the IJB-A and JANUS CS2 datasets. Data augmentation was used to add 
to the dataset by turning the image in the dataset horizontally. The highest accuracy achieved in face 
verification testing is 97.90% using the IJB-A dataset, and 96.66% using the JANUS CS2 dataset. The 
highest level of accuracy achieved in face identification testing was 96.4% using the IJB-A dataset, and 
96.90% using the JANUS CS2 dataset. 

Hu et al. used 3 Convolutional Neural Networks arranged in parallel and proposed a Diversity 
Combination method for face recognition [33]. Inception-ResNet-v1 was used as the basic architecture of 
CNN. The three CNNs were used for feature extraction, and diversity combination is a strategy used to 
adaptively adjust the weight value in each CNN and make joint classification decisions. VGG2-Face, MS-
Celeb-1M, and CAISA WebFace were used to train the CNN. Face matching testing was performed using 
CASIA NIR-VIS 2.0 and Oulu-CASIA NIR-VIS dataset. The accuracy level obtained was 98.9% using the 
CASIA NIR-VIS 2.0 and 99.8% using the Oulu-CASIA NIR-VIS dataset. 

Binti Mat Kasim et al. used CNN to recognize faces [34]. The research focuses on celebrity face 
recognition. The author used three types of CNN architecture, which are ordinary CNN, AlexNet, and 
GoogLeNet. The purpose of the three architectures is to find out and compare the accuracy obtained from 
each architecture. The dataset used for training is the CelebFaces dataset. When tested, CNN could get 
99.72% accuracy, while AlexNet and GoogLeNet managed to achieve an accuracy level of 100%. 

Bendjillali et al., in their research, compared three types of architecture VGG16, ResNet50, and 
Inception-v3 [35]. The Viola-Jones algorithm is used to detect the face. The authors increased the contrast 
of the training image to determine the impact given to the accuracy of face recognition. The contrast 
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enhancement method used is Modified Contrast Limited Adaptive Histogram Equalization (M-CLAHE). 
Testing is done using Extended Yale B and CMU PIE datasets. The results obtained in testing using the 
Extended Yale B are the accuracy of face recognition with VGG16 is 97.28%, ResNet50 is 98.35%, and 
Inception-v3 is 99.44%. In testing using the CMU PIE, the accuracy of face recognition with VGG16 is 
97.41%, ResNet50 is 99.53%, and Inception-v3 is 99.89%. 

Nam et al. proposed a Pyramid-Based Scale-Invariant Convolutional Neural Network (PSI-CNN) 
model [36]. The method is used to overcome the problem of input image scale, for CNN to recognize faces 
on low-resolution images, therefore increasing the performance of CNN. Training is carried out using the 
CASIA WebFace database. Evaluation is done using the LFW database, which is a standard dataset for 
face recognition evaluation. Besides, the authors tested it with a private CCTV dataset. The results 
obtained are that the model has a face matching accuracy level of 98.87%. 

Chandran et al. used CNN and Multi-Class Support Vector Machine (SVM) to recognize children's 
faces [37]. The architecture created is based on VGG-Face. The SVM Multiclass is used as a substitute for 
Softmax. The authors made the face database used for training and testing. The database contains 846 faces 
of children with 43 individuals. The test results show that the level of accuracy achieved is 99.41%. 

Khan et al. used a Convolutional Neural Network to detect and recognize faces [38]. Region 
Proposal Network which is part of the R-CNN that is used for object detection, is used by researchers to 
detect faces in images. The dataset used for training is LFW, and the authors used the data augmentation 
method by reversing each image in the dataset. The accuracy achieved was 97.9%. 

Hu et al. proposed a method for increasing the number of images in the dataset through image 
synthesis [4]. Two CNN architectures are used to test the resulting accuracy. The first architecture is 
named CNN-S, and the second architecture is named CNN-L. CNN-L has more layers than CNN-S The 
dataset used for training is LFW and CASIA NIR-VIS 2.0. The test results show the highest accuracy 
obtained using CNN-L, which is 95.77% using the LFW dataset and 85.05% using the CASIA NIR-VIS 
2.0 dataset. 

Ding proposed a CNN model called Trunk-Branch Ensemble CNN (TBE -CNN) for video-based 
face recognition [39]. The model was designed to be able to extract additional information from the face 
holistically, and facial parts took around facial components. The TBE-CNN model is based on GoogLeNet. 
The researcher used the CASIA-WebFace database for training. Data augmentation such as the horizontal 
reversal and adding Gaussian noise was used. The test was carried out using the PaSC, COX Face, and 
YouTube Faces databases. Up to 98% accuracy was achieved using the PaSC database, 94.96% accuracy 
was achieved using the YouTube Faces database, and 99.33% accuracy was achieved using the COX Face. 

Zangeneh et al. used two CNNs to map face images with a high and low resolution into 4096 
common space dimensions using nonlinear transformations [40]. The model used is based on the VGGnet 
model. The two models are FECNN and SRFECNN. Model training uses the PubFig, UMIST, YALE B, 
AT&T, and FERET datasets. Testing is done using LFW, MBGC, and FERET face datasets. The accuracy 
obtained using the FERET dataset reached 92.1%; using LFW the accuracy reached 76.3%, and using the 
MBGC the accuracy reached 68.64%. The level of accuracy is based on the use of low-resolution images. 

Yang et al. proposed a face matching method named SR-CNN [41]. The study combines Rotation-
Invariant Texture Features (RITF), Scale-Invariant Feature Transform (SIFT), and Convolutional Neural 
Network (CNN). Testing and training are done using the LFW dataset. The results obtained reached 
98.98%. The combination of RITF, SIFT, and CNN provides an increase in the level of accuracy of face 
matching. 

Singh and Om used CNN to recognize the face of a newborn baby [42]. The CNN architecture used 
is very simple, consisting of 2 convolutional layers, two pooling layers, and a fully connected layer. The 
CNN was trained using the IIT (BHU) database. The database contains the faces of newborn babies with 
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different poses, such as normal facial conditions, crying, and falling asleep. The highest level of accuracy 
achieved was 91.03% in normal facial conditions. 

Ríos-Sánchez et al. compared four CNN models, FaceNet, OpenFace, gb2s_Model1, and 
gb2s_Model2 [43]. All models are based on GoogLeNet, with the last two models being made by 
researchers. The four models are used to recognize faces with only one sample for each person. The goal is 
to determine the accuracy of face recognition when the amount of available data is very small. The LFW 
database is used to train the gb2s_Model1 and gb2s_Model2. The test was carried out using Extended Yale 
B, ORL, BioID, EUCFI, PrintAttack, gb2sµMOD_Face_Dataset, gb2sTablet, gb2s_Selfies, and 
gb2s_IDCards database. The last three databases are private. The result shows the highest False Match 
Rate (FMR) and False Non-Match Rate (FNMR) is using OpenFace. 

Zhou et al. used ResNet-face18, which is a CNN model for face recognition, and modification of 
ResNet [44]. The research introduces a Softmax function named double additive margin Softmax loss 
(DAM-Softmax), and they use CASIA-WebFace to train the model. CFP-FP, CALFW, and CPLFW 
datasets were used to test the model. Researchers compared three types of Softmax functions, namely 
Softmax, AM-Softmax, and DAM-Softmax. The highest accuracy level is obtained using DAM-Softmax. 
The accuracy achieved is 90.17%, 82.08%, and 93.26%, using CALFW, CPLFW, CFP-FP, respectively. 

Another research used three different CNN models, namely MTCNN, self-designed CNN, and 
IFaceNet [45]. MTCNN is used to detect faces in an image. The self-designed CNN is used to determine 
whether the face in the image is fake or not. IFaceNet is used to recognize faces that are otherwise not fake. 
The IFaceNet is a modification of FaceNet. CNN was trained using a private dataset called NenuLD. CNN 
has an accuracy of 99.8% in determining whether a face is fake or not. The accuracy of face recognition 
obtained is also high, which is 99.7%. The researcher states that the total accuracy of the proposed system 
is 99.5%. 

Son et al. used CNN in making face recognition systems for attendance via CCTV [46]. The models 
used are MTCNN, FaceNet, and ArcFace. MTCNN is used to detect faces. The researcher wants to 
compare the use of FaceNet and Arc Face to extract features. For the face classification process, the 
researchers tested four methods, namely Linear SVM, RBF-SVM, Gaussian Naïve Bayes, and Weighted-
KNN. The use of W-KNN produces the highest level of accuracy compared to the three. The dataset used 
is the face of students taken manually by the author. The highest level of accuracy is achieved by 
combining ArcFace with W-KNN, which is 91.3% in the test dataset. 

Li et al. in their research used Multi-CNN and Bayes probability to recognize faces [47]. Detection 
of facial components (eyes, eyebrows, nose, mouth) is done using the Active Shape Model (ASM). CNN is 
then used to extract features from each facial component. Bayes probability is then used to match faces. 
The dataset used for training and testing is private. The test results showed that the proposed method 
obtained an Equal Error Rate (EER) of 0.51, a False Positive Rate of 0.08, and a True Positive Rate of 
0.92. 

Song et al., in their research, proposed a CNN model for extracting features on the face [48]. The 
model is named IE-CNN. IE-CNN can extract unique internal features (eye, nose, and mouth) and external 
features (location of internal features on the head, chin, and ears) from the face. The training was carried 
out using the CASIA-WebFace database. LFW and CASIA-WebFace are used as test database. The results 
of Top1 and Top5 accuracy obtained in LFW are 98.86% and 99.20%, respectively. Furthermore, Top1 
and Top5 accuracy obtained at CASIA-WebFace were 84.92% and 93.31%, respectively. 

Ma et al. proposed a Local Binary Pattern (LBP) Guiding Pooling (G-RLBP) mechanism [49]. The 
mechanism can reduce the feature map's size and reduce the impact of noise in the image. The use of G-
RLBP has advantages compared to the pooling layer that is generally used. The CNN architecture used is 
based on Alexnet, ZF-5net, and GoogLeNet. G-RLBP is used instead of the pooling layer while CASIA-
WebFace is used as a training database. ORL and AR databases are used as test databases. The Nearest 
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Neighbor classifier is used to classify faces. The highest level of accuracy obtained by using Alexnet using 
ORL databases reached 92.74%, and ZF-5net reached 87.68%. The highest level of accuracy obtained in 
the AR database using Alexnet reaches 69.44%, and ZF-5net reaches 72.52%. GoogLeNet produces an 
accuracy rate of up to 93.54% using the ORL database, and 76.17% using the AR database. 

Nimbarte and Bhoyar discussed one of the problems in face recognition, which is increasing one's 
age [50]. If a person's face stored in the database changes due to aging, it is worried that the face 
recognition system cannot recognize that person's face. Researchers proposed a CNN architecture to 
overcome this problem. CNN is used as a feature extractor, and SVM is used to classify faces. FGNET and 
MORPH (Album II) datasets are used to train and test the model. The accuracy level obtained using the 
FGNET dataset is 76.5%, and 92.5% using the MORPH (Album II) dataset. 

Kamencay et al. compared the performance of CNN with Principal Component Analysis (PCA), 
Local Binary Patterns Histograms (LBPH), and K-Nearest Neighbor (K-NN) in face recognition [51]. The 
database used in the study is the ORL database. The highest face recognition accuracy was obtained using 
CNN, which is up to 98.3%. While the level of accuracy obtained using PCA, LBPH, and K-NN is 85.6%, 
88.9%, and 81.4%, respectively. By using CNN, the level of accuracy obtained is very high. 

Simόn et al. proposed a method to improve face recognition [52]. The study introduces multimodal 
facial recognition using CNN. CNN is combined with Local Binary Patterns (LBP), Histograms of Gabor 
Ordinal Measures, Haar features, and Histograms of Oriented Gradients. The RGB-D-T database is used in 
training and testing. Data augmentation is used to reproduce training data. The results obtained are that by 
combining the old-fashioned features, CNN can improve facial recognition performance using the RGB-D-
T database. 

Zeng et al. proposed a method called the traditional and deep learning method (TDL) to recognize 
faces that only use a sample per individual in training (single sample per person or SSPP) [53]. In the 
research, the authors used a Convolutional Neural Network model for face recognition. The CNN model 
used is based on lightened CNN. Lightened CNN has been trained using the CASIA-WebFace database. 
Four databases were used in this study, namely AR face, Extend Yale B, FERET, and LFW face database. 
The accuracy level reached 100% using AR face, 88.3% using the Extend Yale B, 93.9% using the FERET 
database, and 74% using the LFW database. 

Chen et al. [54] tested two CNN models, namely DCNNS and DCNNL. The DCNNL model is 
based on the AlexNet architecture, while the DCNNS is based on the architecture in the study by Chen et 
al. [55]. DCNN-based face detection was also used in this study. The model is the Deep Pyramid 
Deformable Parts Model for Face Detection (DP2MFD). The study used IJB-A and JANUS CS2 
databases. The accuracy rate in the study reached 98.8% using the IJB-A dataset, and 98.6% using the 
JANUS CS2 dataset. 

Chen et al., in their study, proposed a CNN with deep transformation learning [56]. The method 
increases the robustness and degree of discrimination of the extracted features. In the study, face detection 
and face marker detection were performed using MTCNN and Dlib. The datasets used for training are 
FaceScrub, cad2000, and CASIA-Web face. Tests were carried out by researchers using the LFW and IJB-
A datasets. The test results show that the accuracy rate obtained using LFW is 99.16%, and identification 
using IJB-A is 93.1%. 

Ling et al. proposed a method called Attention-Based Convolutional Neural Network (ACNN) that 
can distinguish facial features embedding [57]. The proposed method aims to increase the ability to 
distinguish possessed by Convolutional Neural Network such as ResNet-50 and ResNet-101. The research 
used ResNet as a basic architecture, specifically ResNet-50 and ResNet-101. Databases used for training 
include CASIA-WebFace and MS-Celeb-1M. Then the researchers used the Labeled Faces in the Wild 
(LFW) database, Age Database (AgeDB), and Celebrities in Frontal Profile (CFP) for validation. 
MegaFace database is used for testing. The accuracy of using a validation database is 99.83% using LFW, 
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98.57% using AgeDB, and 95.85% using CFP. The identification accuracy level results using MegaFace 
are 88.74% using the ACNN-Res50 and 98.35% using the ACNN-Res-101. Then the accuracy of 
verification is 91.12% using the ACNN-Res50 and 98.42% using the ACNN-Res101. 

Khan et al. discussed making a student attendance recording system using face recognition [58]. The 
proposed system is expected to replace the manual and biometric attendance system, which takes a long 
time to record attendance. Researchers use YOLO v3 to detect faces and the Microsoft Azure face API to 
recognize detected faces. Researchers chose to use the YOLO algorithm because the processing is faster 
than R-CNN. A database containing students’ faces is used to recognize faces. Twenty photos are taken 
from each student. The level of accuracy is obtained when the system is tested up to 100%. The result 
indicates that the proposed system can be used as a substitute for the manual recording system. 

The work of Nakajima, Moshnyaga, and Hashimoto compared the performance of two facial 
recognition approaches [59]. The two approaches are CNN and Local-Binary Pattern Histograms. Both 
approaches were experimented on Raspberry-Pi and were trained using a private dataset consisting of 12 
classes. Each class consists of 50 facial images. The number of images used for training is 540 images, and 
60 images are used for verification. The CNN achieved the highest accuracy of 100% and average 
accuracy of 96%. In contrast to CNN, the highest accuracy achieved by the LBP is 76%, while the average 
accuracy is 64%. Therefore, the study concludes that the CNN achieved more robust recognition than the 
LBP. 

Hussain et al. proposed an authentication system for the medical and healthcare area using face 
recognition [60]. The proposed system is comprised of face detection, extraction of facial features, and 
classification. The face detection was done using the Haar cascade technique. Three methods were 
compared in the facial features extraction: pre-trained ResNet-50, VGG-16, and the Linear Binary Pattern 
Histogram (LBPH). Lastly, the Support Vector Machine (SVM) was utilized for classification. A total of 
8422 face images of 100 individuals were used, of which 70% were used for training, 15% for testing, and 
15% for validation. The performance of each method was compared. The ResNet-50 + SVM could achieve 
an accuracy of 99.56%, VGG-16 + SVM achieved 98.49%, while the LBPH achieved an accuracy of 
98.47%. Hence, the ResNet + SVM achieved the highest accuracy. 

 Farhi, Abbasi, and Rehman proposed a face recognition-based identity management system for 
office and academic environments [61]. The proposed system comprises face detection, facial features 
extraction, and classification. The work utilized MTCNN for face detection purposes and the well-known 
FaceNet to extract the facial features. Like the work of [60], the classification process was done using the 
Support Vector Machine (SVM). The authors experimented with different angles, distances, and 
illumination in their work. The proposed system could achieve 97.1% - 98.8% accuracy with face 
positioning from -15 to +15-degree angle. In normal light conditions and a distance of 4-5 meters, the 
proposed system achieved 98% to 99% accuracy. However, in low light conditions, the accuracy achieved 
is lower, 96.47%. 

Xing, Wang, and Zheng proposed a VGG-16 with an improved pooling method for face recognition 
[62]. The work utilizes image size normalization and de-averaging operation to preprocess the image data. 
Furthermore, Gabor Wavelet Transform-based image enhancement was used to reduce noise in the image, 
while histogram homogenization was used to reduce the effect of light shadow in the image. The improved 
pooling method proposed in their work is the improved stochastic pooling, which enhances the 
generalization of the network and abstraction process. Face detection was carried out using the 
combination of Harr and Adaboost and the deep learning-based Faster R-CNN. The proposed method was 
experimented with using the self-built and LFW dataset. The resulting accuracy reached 97.2%.  

Akter et al. proposed a framework to detect autistic children through facial recognition [63]. The 
facial recognition was done through improved transfer learning using pre-trained CNN models. The pre-
trained CNNs used in their work are DenseNet121, ResNet50, VGG16, VGG19, MobileNet-V1, and 
MobileNet-V2. Besides using the pre-trained CNN, the work experimented with several machine learning 
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classifiers, such as Adaboost, k-Nearest Neighbor (kNN), Decision Tree, Logistic Regression, Gradient 
Boosting, Naïve Bayes, Support Vector Machine, Multi-layer Perception, and Random Forest. The pre-
trained models were modified by adding three Batch Normalization layers and two fully connected layers 
before the output layer. The dataset used is facial images of normal and autistic children with 2936 images. 
The highest accuracy achieved was 91% on the test set using the improved MobileNet-V1. The authors 
used k-means clustering for classifying binary sub-types of autism and achieved 92.10% using the 
improved MobileNet-V1. 

The work of Gwyn, Roy, and Atay compared the performance of popular deep learning network 
architectures for face recognition [64]. The architectures used in their work are AlexNet, Xception, 
Inception V2 and V3, ResNet50 and ResNet101, VGG16, and VGG19. Training those models was done 
using the LFW image dataset, with 4788 images of 423 individuals. Several dataset splitting strategies for 
training and testing were carried out, which are 80/20 split, 70/30 split, and 60/40 split. VGG-16 achieved 
the highest accuracy among other models, 84% on an 80/20 split, while AlexNet, Xception, Inception v2, 
Inception v3, ResNet50, ResNet101, and VGG19 achieved 61%, 52%, 68%, 67%, 71%, 72%, and 80%, 
respectively. 

In the Covid-19 pandemic, the challenge to facial recognition emerges because people must wear 
face masks. Several works have tried to address this problem. Talahua et al. proposed a facial recognition 
system that could recognize a person even when using a face mask [65]. The system utilized OpenCv for 
facial detection, MobileNetV2 handles the face mask-wearing recognition. FaceNet handled the face 
recognition task as the facial features extractor and feedforward multilayer perceptron used for 
classification. A total of 13,359 images were used for training face recognition. The highest accuracy 
achieved is 99.52% for facial recognition with a mask and 99.96% without a mask. 

Deng et al. proposed a facial recognition algorithm to recognize a masked face based on large 
margin cosine loss called MFCosface [66]. In their work, MTCNN was utilized for face detection, and the 
base architecture used is the Inception-ResNet-v1, and the proposed large margin cosine loss was used to 
train the model. VGGFace2_m was used to train the model, while CASIA-FaceV5_m, LFW_m, RMFD, 
and MFR2 were used for testing. Some faces from the datasets are generated with a mask. The accuracy 
achieved on LFW_m, CF_m, MFR2, RMFD is 99.33%, 97.03%, 98.50%, 92.15%, respectively.  

Ullah et al. proposed a unified framework for mask detection and masked facial recognition [67]. 
The authors made a custom CNN called DeepMaskNet, which comprises 17 layers, including the input and 
classification layers. A largescale called masked detection and masked facial recognition (MDMFR) was 
used for training and testing the model. The DeepMaskNet achieved 100% accuracy in face mask detection 
and 93.33% in face recognition, outperforming other state-of-the-art models. 

Song et al. proposed the Spartan Face Mask Detection and Facial Recognition system to address the 
challenge of mask detection, mask type classification, mask position classification, and identity recognition 
that emerged during the Covid-19 pandemic [68]. The proposed system utilized the MTCNN to detect 
faces in an image, FaceNet to extract embedded facial features, and Support Vector Machine and XGBoost 
as the classifiers for the facial recognition scope. The training and testing were done using a total of 2000 
images. The accuracy achieved using the FaceNet + SVM is 97% on the test set and 100% on the training 
set, while the FaceNet + XGBoost is 88% on the test set and 100% on the training set. 

Table 1. Summary of CNN-based Face Recognition Research 

Research CNN Model Face Database Accuracy 
Zafar et al. [2] B-DCNN EUROCOM Kinect, AT&T 98.1% - 100% 

Peng et al. [5] GoogLeNet CASIA NIR 96.02% - 100% 

Ben Fredj et al. [29] CNN CASIA-WebFace, LFW, YTF 96.83% - 99.2% 

Pei et al. [30] VGG-16 Private 86.3% - 98.1% 

Moon et al. [31] CNN Private 88.9% 

Zheng et al. [32] DCNN + VLAD CASIA-WebFace, IJB-A, 96.4% - 97.90% 
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Research CNN Model Face Database Accuracy 
JANUS CS2 

Hu et al. [33] 
Inception-ResNet-v1 + 

Diversity Combination 

VGG2-Face, MS-Celeb-1M, 

CAISA WebFace, CASIA 

NIR-VIS 2.0, 

Oulu-CASIA NIR-VIS 

98.9% - 99.8% 

Binti Mat Kasim et al. [34] 
CNN, AlexNet, 

GoogLeNet 
CelebFaces 99.72% - 100% 

Bendjillali et al. [35] 
VGG16, ResNet50, 

Inception-v3 
Extended Yale B, CMU PIE 97.28% - 99.89% 

Nam et al. [36] PSI-CNN 
CASIA WebFace, LFW, 

CCTV (private) 
98.87% 

Chandran et al. [37] VGG-Face Private 99.41% 

Khan et al. [38] CNN LFW 97.9% 

Hu et al. [4] CNN LFW, CASIA NIR-VIS 2.0 85.05% - 95.77% 

Ding [39] GoogLeNet 
CASIA-WebFace, PaSC, COX 

Face, YTF 
94.96% - 99.33% 

Zangeneh et al. [40] VGGnet 
PubFig, UMIST, YALE B, 

AT&T, FERET, LFW, MBGC 
68.64% - 92.1% 

Yang et al. [41] CNN LFW 98.98% 

Singh and Om [42] CNN IIT(BHU) 91.03% 

Ríos-Sánchez et al. [43] 
FaceNet, OpenFace, 

GoogLeNet 

Extended Yale B, ORL, 

BioID, EUCFI, PrintAttack, 

gb2sµMOD_Face_Dataset, 

gb2sTablet, gb2s_Selfies, 

gb2s_IDCards 

- 

Zhou et al. [44] ResNet-face18 
CASIA-WebFace, CFP-FP, 

CALFW, CPLFW 
82.08% - 93.26% 

Liu et al. [45] FaceNet NenuLD (Private) 99.5% 

Son et al. [46] FaceNet, Arc Face Private 91.3% 

Li et al. [47] Multi-CNN Private - 

Song et al. [48] IE-CNN LFW, CASIA-WebFace 84.92% - 99.20% 

Ma et al. [49] 
Alexnet, ZF-5net, 

GoogLeNet 

CASIA-WebFace, ORL, 

AR face 
69.44% - 92.74% 

Nimbarte and Bhoyar [50] CNN FGNET, MORPH (Album II) 76.5% - 92.5% 

Kamencay et al. [51] CNN ORL 98,3% 

Simόn et al. [52] CNN RGB-D-T - 

Zeng et al. [53] CNN 
AR face, Extend Yale B, 

FERET, LFW 
74% - 100% 

Chen et al. [54] CNN, AlexNet IJB-A, JANUS CS2 98.6% - 98.8% 

Chen et al [56] CNN 
FaceScrub, cad2000, CASIA-

Webface, LFW, IJB-A 
93.1% - 99.16% 

Ling et al. [57] ResNet 

CASIA-WebFace, 

MS-Celeb-1M, LFW, AgeDB, 

CFP, MegaFace 

88.74% - 98.35% 

Khan et al. [58] 
YOLO v3, Microsoft 

Azure Face API 
Private 100% 

Nakajima, Moshnyaga, 

and Hashimoto [59] 
CNN and LBP Private 

CNN: 100% (avg. 96%) 

LBP: 76% (avg. 64%) 

Hussain et al. [60] 

ResNet-50 + SVM, 

VGG-16 + SVM, 

LBPH 

Private 

ResNet-50 + SVM: 99.56% 

VGG-16 + SVM: 98.49% 

LBPH: 98.47% 

Farhi, Abbasi, and 

Rehman [61] 
FaceNet + SVM Private 96.47% - 99% 

Xing, Wang, and Zheng 

[62] 

VGG-16 with improved 

stochastic pooling 
LFW and Self-Built 97.2% 

Akter et al. [63] Improved MobileNet-V1 Facial images of normal and 91% 
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Research CNN Model Face Database Accuracy 
autistic children 

Gwyn, Roy, and Atay [64] 

AlexNet, Xception, 

Inception v2, Inception 

v3, ResNet50, ResNet101, 

VGG16, VGG19 

LFW 52% - 84% 

Talahua et al. [65] 
MobileNetV2 + 

feedforward MLP 
Private 99.52% - 99.96% 

Deng et al. [66] 
Inception-ResNet-v1 with 

large margin cosine loss 

VGGFace2_m, CASIA-

FaceV5_m, LFW_m, RMFD, 

and MFR2 

92.15% - 99.33% 

Ullah et al. [67] Deepmasknet (CNN) MDMFR 93.33% 

Song et al. [68] 
FaceNet + SVM, FaceNet 

+ XGBoost 
Private 

FaceNet + XGBoost: 88%, 

FaceNet + SVM: 97% 

 

5. Face Recognition Database 
Face database is important in face recognition. The face database contains face images that can be used to 
train the Convolutional Neural Network. There are a variety of face databases that are available online and 
can be downloaded by researchers or developers who need them. Table 2 lists the databases used in several 
studies to train and test facial recognition, along with their information. 

Table 2. Face Recognition Databases 

Name Description 
Labeled Faces in the Wild (LFW) [29] 13,233 images from 5,749 individuals 

VGGFace2 [69] 3.31 million images from 9,131 individuals 

MS-Celeb-1M [70] 10 million images from 100 thousand individuals 

FaceScrub [71] 141,130 images from 695 individuals 

FERET [72] 14,126 images from 1199 individuals 

CASIA-WebFace [73] 494,414 images from 10,575 individuals 

CMU Multi-PIE [72] 41,368 images from 68 individuals 

YouTube Faces (YTF) [29] 3,425 videos from 1,595 individuals 

ORL (AT&T) [2] 400 gray images with 40 individuals 

EURECOM Kinect (KinectFaceDB) [74] 936 RGB images with 52 individuals 

CASIA NIR 3,940 images from 197 individuals 

IJB-A & JANUS CS2 [32] 5,712 images and 2,085 videos from 500 individuals 

Oulu-CASIA NIR-VIS [33] 480 images from 80 individuals 

CelebFaces [34] 200,000 images from 40 individuals 

Extended Yale B [43] 16,128 images from 28 individuals 

PaSC [39] 2,802 videos from 265 people 

COX Face [39] 1,000 images and 3,000 videos from 1,000 individuals 

PubFig [40] 58,797 images of 200 individuals 

UMIST [40] 564 images from 20 individuals 

YALE B [40] 5,760 images from 10 individuals 

FERET [40] 14,126 images from 1,199 individuals 

MBGC [40] 147 images from 147 individuals 

IIT(BHU) [42] 2,100 images from 210 individuals 

BioID [43] 1,521 images from 23 individuals 

EUCFI [43] 7,900 images from 395 individuals 

PrintAttack [43] 1,400 images from 38 individuals 

AR Face [53] 4,000 images from 126 individuals 

FGNET [50] 1,002 images from 82 individuals 

MORPH Album II [50] 55,000 images from 13,000 individuals 

Cad2000 [75] 160,000 images from 2,000 individuals 

Celebrities in Frontal Profile (CFP) [57] 7,000 images from 500 individuals 

AgeDB [57] 16,488 images from 568 individuals 

MegaFace [57] More than 1 million images from 690,000 individuals 
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The table above shows that the images used for training and testing are very large. The use of many 
images is done so that CNN can learn more about variations in human faces. Through learning about 
human faces' variations, CNN will understand the various patterns. Training by using many face images 
makes CNN have a high degree of accuracy. 

 
6. Conclusion 
This survey discusses face recognition based on the Convolutional Neural Network. Face recognition is 
one of the challenges in pattern recognition and computer vision and one of the many studies conducted in 
recent years. Several studies have been discussed trying to find renewal for face recognition. The renewed 
face recognition proposed various kinds of architecture used, modifying the images in the dataset or 
combining several methods. The main goal is to obtain a high level of accuracy so that the face recognition 
system has a high performance. This survey also discusses some face databases used in several studies. 
The face databases available have data from hundreds of images to millions. It is hoped that through this 
survey, readers can gain additional knowledge about face recognition based on Convolutional Neural 
Networks. 
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