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Abstract. Since their inaugural releases in 2007, Google’s Android and Apple’s iOS have grown 

to dominate the mobile OS market share. Currently, they jointly possess over 99% of the global 

market share with Android being the leading mobile Operating System of choice worldwide, 

controlling close to 70% of the market share. Mobile devices have enabled the exponential growth 

of a plethora of mobile applications that play key roles in enabling many use cases that are pivotal 

in our daily lives. On the other hand, access to a large pool of potential end users is available to 

both legitimate and nefarious applications, thus making mobile devices a burgeoning target of 

malicious applications. Current malware detection solutions rely on tedious, time-consuming, 

knowledge-based, and manual processes to identify malware. This paper introduces BarkDroid, a 

novel Android malware detection technique that uses the low-level Bark Frequency Cepstral 

Coefficients audio features to detect malware. The initial results obtained show that Bark 

Frequency Cepstral Coefficients have high discriminative capabilities to achieve accurate 

preditions. BarkDroid achieved 97.9% accuracy, 98.5% precision, an F1 score of 98.6%, and 

shorter execution times. 

Keywords: Android malware detection, malware classification, bark frequency cepstral 

coefficients. 

 

1. Introduction 

Mobile devices have become an indispensable part of our daily lives. They have caused a paradigm shift 

in the way people used to live, learn, communicate, collaborate, and conduct business. Despite the fact 

that they only started in 1973, their proliferation has been so rapid that it was estimated that the number of 

people using mobile devices had reached 6.3 billion by 2021. This number is projected to rise to 7.7 

billion in 2027 [1]. 

Since their advent in the early 70’s, mobile devices have taken enormous leaps and bounds to 

introduce feature sets and functionalities that puts them on par with, if not exceeding, handheld 

computers. Advances in electronics, cutting-edge technologies, and the maturity of operating system 

ecosystems have led to mobile devices incorporating many advanced functionalities that were previously 

thought to be only possible with computers. Additionally, the rapid evolution of mobile devices from the 
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initially bulky and expensive device which could only make calls, to the present-day smartphone that has 

been miniaturised and is jam-packed with advanced features, has been partly due to the ever-growing use 

cases and user expectations [2]. 

At the core of the mobile device sits the operating system (OS), which acts as an intermediary 

between the mobile device hardware and users. Its main responsibilities include managing device 

hardware, and software and providing utilities and interfaces that enable users to interact with mobile 

devices. As far as mobile operating systems are concerned, Google’s Android and Apple’s iOS are the 

most successful operating systems [1]. 

Since their inaugural releases in 2007, Google’s Android and Apple’s iOS have grown to dominate 

the mobile OS market share. Currently, they jointly possess over 99% of the global market share with 

Android being the leading mobile Operating System of choice worldwide, controlling close to 70% of the 

market share [2]. Mobile devices have enabled the exponential growth of a plethora of mobile 

applications that play key roles in enabling many use cases which are pivotal in our daily lives. This 

means mobile applications have become a forte of the mobile phone ecosystem. On the other hand, 

mobile applications have also become the Achilles heel because the ability to access a large pool of 

potential end users is not only available to legitimate applications, but also to malicious ones. The term 

malware refers to any software that deliberately infects and causes harm to computing systems. 

If we can track the historical malware patterns, it can be noted that attackers have always preferred 

targeting popular platforms to maximise their chances. This means that in their unprecedented attack 

campaigns and sophistication, hackers also play the numbers game. They cast their net as wide as 

possible, hoping to compromise as many as possible. Consequently, it is unsurprising that although all 

mobile operating systems have been attacked by malware, Android has been the lucrative primary target 

for malware attacks. Android is reported to host roughly 99% of known mobile malware and is the focus 

of most research efforts in mobile malware detection [1], [2]. It used to be the Microsoft Windows 

operating system on personal computers; now, it is Android. Unfortunately, the permission system meant 

to be the first line of defence in the Android system has been ineffective. The assumption was that users 

will scrutinise the permissions that an app will request at installation and only allow them when 

necessary. However, this was never due to the users' naivety, lack of knowledge, and unsuspecting nature 

[3]. 

Android malware can steal, corrupt, or delete user data causing stress and financial loss. According 

to Symantec 2019 [4], even though around 24000 malicious mobile apps are blocked daily, a sizeable 

number still managed to find ways to bypass detection. Malware developers have been generating new 

malware using techniques such as module reuse and automated generation tools. For several decades, 

antivirus solutions have been the defacto malware mitigation strategy. Traditionally, such solutions have 

primarily been reactive. They rely on known fixed string patterns or signatures to detect malware [5]. 

With signature-based malware detection solutions, applications are scanned while searching a database 

for predefined matching patterns. The sheer number of applications that have successfully bypassed such 

systems is testimony that this countermeasure is ineffective. Not only because it does not give zero-day 

insurance, but it also does not scale very well in the face of the astronomical rate of malware generation 

per day. 

Malicious applications pose an enormous security threat to mobile devices. Current malware 

detection solutions generally rely on time-consuming, knowledge-based, and manual processes to identify 

malware. This has serious shortcomings, especially against new and unknown malware. Signature-based 

malware solutions are not able to detect modern malware that uses packing and smart coding techniques 

such as polymorphism, metamorphism, and other evasive techniques that quickly change the malware 

behaviours and generate a large number of new variants which are predominantly variants of existing 

malware. 
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As we more and more rely on mobile devices that have become hosts for our sensitive data and 

applications, there is a need to develop new intelligent malware detection systems that besides detecting 

known attacks also have the ability to provide zero-day insurance. Such systems should be able to cope 

with the scale and complexity of malware applications being generated every day. 

 
2. Literature review 

Several previous works have investigated different android malware detection techniques [5]. Static and 

dynamic analysis techniques have been used in literature to ascertain whether an android app is malicious 

or not [6].  

2.1. Static analysis 

Several static features have been proposed in literature. These include: 

• Requested permissions – is the first line of defence provided by the Android operating system to 

restrict access to data and actions that the app can perform [6]–[10]. Permissions are a major 

source of malware infection [11], [12] [13], [14]. Studies that use permissions for malware 

detection generate attribute feature vectors from the AndroidManifest.xml file where a one is 

assigned if the permission is present; otherwise, a zero is assigned [15], [16][17]–[19]. Other 

studies use text classification techniques such as Term Frequency-Inverse Document Frequency 

[6]. Researchers have noted that malicious applications tend to request many dangerous 

permissions [15], [18]. 

• Hardware components – access to the hardware is explicitly declared in the manifest file. Some 

hardware components are red flag signs, for instance, GPS, mic, and Internet should be viewed 

with scrutiny [20], [21] 

• API calls and Intents – unnecessary access to sensitive resources can be a sign of malevolent 

intentions, for example getDeviceId() – IMEI  [12], [14] [21], [22].  

• Opcode sequences - Android applications are generally developed in Java and then compiled and 

converted to the optimised Dalvik bytecode, an executable format for Android applications. 

Dalvik bytecode of compiled applications can be used to distinguish malware from benign 

applications. Most works have disassembled the Dex to extract the opcodes and then use the n-

grams of opcodes in machine learning analysis [22]–[24]. 

2.2. Dynamic analysis 

Dynamic malware analysis techniques that have been used in literature include: 

• Resource utilisation – Resource usage is monitored whilst the installed app is being tested. This 

includes CPU, memory, network usage, API calls, and energy consumption [25], [26].  

• System calls – researchers have used agent-based systems to collect system calls and generate 

unique signatures or text sequences that can be used for malware detection [27], [28]. 

 

While there exists some prior work that utilises static features such as acoustic signals and images 

[4], [29], [30] to analyse and detect malware, there remain a number of issues that should be explored in 

future research [31]. This work is still very limited quantity-wise and in its infancy stage, but it should be 

noted that no negative result have been reported up to now, to suggest that there is no value in further 

exploration. As an illustration of current limitations related to this use of static features, the researchers 

that have looked at using APKs to detect malware, in most instances, have only used the dex file for their 

analysis. This neglects the other files that offer opportunities for generating more discriminative features 

that can be used to improve overall detection accuracy. Moreover, they only utilise the typical audio 
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features, Mel-frequency cepstral coefficients (MFCC), which represent the short-term power spectrum of 

the generated malware audio signal [31].  

Evidence from recent studies suggests that machine learning can be used as a viable solution for 

malware classification [33], [34]. Android malware detection using machine learning is a complex task 

due to the ever-changing malware evasion techniques and the lack of well-defined features which can be 

used to distinguish the various android applications with high fidelity [29]. Despite there being a body of 

work that has been used to find the best way of classifying android malware, it remains unknown which 

feature set is the best. It is generally agreed that malware detection is an undecidable problem which 

warrants ongoing research efforts. 

 

3. Research Method 

The raw Android Application Package is an archive that contains various components of the android 

application and is not suitable to be directly fed to machine learning algorithms for automatic analysis and 

prediction. Each Android Application Package carries components such as libraries, methods, classes, 

certificates, assets, resources, and configuration files that make it functional. The variances in the content, 

nature, and compositions of these components make the unique characteristics of each android 

application. Selecting appropriate distinguishable characteristics from the raw Android Application 

Package is an open area of research. In order to improve accuracy and reduce the number of false 

positives in android malware detection, strategies are needed for discarding irrelevant details and only 

selecting relevant information. Such relevant features should possess stable and effective discriminative 

characteristics that will enable machine learning algorithms to distinguish between various types of 

android applications.  

The research reported in this study is inspired by similar work in the audio engineering field [35], 

[36]. Our work treats an android application as a signal modeled so that it carries unique characteristics 

that can be analysed using Automated Signal Recognition techniques. At the low level, an android 

application is simply translated into a series of ones and zeros. This has similar characteristics to signals 

such as audio which is a sequence of sounds translated to a series of ones and zeros to represent the 

oscillating longitudinal waves. Such waveform representation renders itself nicely for automatic analysis 

and processing in digital systems.  

From a high-level point of view, this study employed a simple two-phase machine learning life 

cycle that uses data engineering as the first phase, followed by model engineering. Data engineering is 

concerned with building systems and processes for raw data ingestion, storage, wrangling, feature 

creation, and transforming into formats useful for analysis. On the other hand, model engineering is an 

iterative process of writing, executing, and tuning machine learning models. A graphical description of 

the procedure is presented in Figure 1. 

 

• Step 1: Dataset is collected and unzipped into respective folders 

• Step 2: The dataset is cleaned to de-duplicate and remove corrupted APK files 

• Step 3: Data exploration and validation are performed to ascertain the distribution of the different 

samples contained in the dataset 

• Step 4: Using algorithm 1 given below, traverse through all the folders and subfolders in the 

dataset to convert APK files into WAV files. The output of this step is a novel malware audio 

dataset that can be used by the research community to carry out further analysis. 

• Step 5: Like the raw APK file that is not suitable for feeding directly as input into automatic 

recognition systems, wav files are also unsuitable. There is a need for an intermediary step that 

will extract relevant information analysable by acoustic models. Because the generated audio 

signals exhibited characteristics that are similar to those seen in noisy signals, such as the 

../../../../:w:/g/personal/tarwireyip_unizulu_ac_za/Ecq_CZEs-VpMuryCwIvIwm4BvAl63CIakXBBwRCNhz3S-A
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Watkins Marine Mammal Sound Database, there is a need to consider features that exhibit 

superior noise robustness. This study uses the bark-frequency cepstrum coefficients algorithm 

highlighted in figure 2 to extract features. This algorithm segments the waveform and uses a 

combination of low and high pass filters to bark frequency cepstrum.  

 

 

Figure 1. Proposed methodology architecture diagram 

 

Bark Frequency Cepstrum is the short-time power spectrum representation of a signal based on the linear cosine 

transform of a log spectrum on a non-linear Bark scale of frequency [35], [36]. Figure 2 shows the block diagram 

for the bark-frequency cepstrum coefficients algorithm. The bark frequency is calculated as shown in 

equations (1) and (2) [35]. 

 

                                        (1) 

 

   (2) 

Where f is the waveform’s linear frequency in hertz and fbark is the resultant frequency in bark. 
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Algorithm 1:  Transforming APK to Audio 

Input:   APK Dataset directory: DAPK = { dapk1, dapk2, …, dapkn) 

Result:  WAV Dataset directory: DWAV = { dwav1, dwav2, …, dwavn} 

 

For all  dapki  ∈ DAPK  do:   {Where dapki includes all level sub folders} 

  For all apks ∈ dapki  do:  

  Read apk into memory 

  Binarize APK (Covert into a series of ones and zeros) 

  Put the bits into 16bit groups 

  Write the resultant oscillating longitudinal wave to a .wav file in dwavi  

 End for 

End for 

 

Pre-emphasis is applied to the audio signal as a filter to compensate for the average spectral shape. 

Windowing is used to split the input signal into short enough temporal segments, which do not allow 

enough time for the properties of the signal to change in each segment [35]. To determine the perceived 

loudness of frequencies at given sound pressure levels, the outputs of the bark scale filter banks are 

weighted according to the Fletcher Munson or equal loudness curve. The signal is compressed using the 

logarithmic function and passed through the discrete cosine transform, a time-frequency transform 

operation for decorrelating sequentially correlated data [36]. 

 

• Step 6: The resultant dataset of extracted features is split into training, validation, and testing sets. 

• Step 7: Models are created, trained, and validated to learn the intrinsic patterns that can be used to 

distinguish between malicious and benign android application package files. The train and 

validation phases are iteratively repeated until optimal performance levels have been obtained. 

This phase includes hyperparameter optimisation. 

• Step 8: The generalisability of the trained classifier is tested when it is used to make predictions 

on data it has never seen before. This data comes from the testing set. 

3.1. Datasets 

We use the CICMalAnal2017 [32] and CICMalDroid 2020 [33] [34] datasets provided by the Canadian 

Institute for Cybersecurity. The CICMalDroid 2020 dataset consists of 17341 android application 

packages collected from several sources such as Contagio blog, AMD, Maldozer, and other recent and 

sophisticated datasets collected until 2018. The dataset covers five broad categories of android malware. 

Details of the datasets are given in tables 1 and 2. 
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Figure 2. Bark-Frequency Cepstrum Coefficients algorithm block diagram [36] 

 

Table 1. CICMalAnal2017 dataset. 

Category Description 
Number of 

samples 

Number of 

resultant 

audio 

samples 

Adware This unwanted program works by repeatedly 

displaying pop-up adverts on the mobile screen to 

generate revenue for its authors. 

104 104 

Ransomware The malware encrypts the victims’ files and demands a 

ransom to restore access. 

101 101 

Scareware Is a form of malware that uses social engineering to 

manipulate victims into buying malicious software. 

112 112 

SMSmalware This malware utilises short messaging services and 

other mobile messaging services to exploit mobile 

devices. It sends malicious SMSes and intercepts 

109 109 
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SMSes to steal passwords, online banking details, and 

other information from infected devices. 

Benign These are legitimate applications that were scanned 

with VirusTotal to certify that they are not malicious. 

1 700 1 648 

TOTAL  2 126 2 074 

 

Table 2. CICMalDroid2020 dataset. 

Category Description 
Number of 

samples 

Number of 

resultant 

audio 

samples 

Adware Same as in table 1. 1 515 1 514 

Banking Malware Infiltrate mobile devices to attempt to convince users 

to divulge sensitive banking details such as credit card 

number, login username, password, or pin. In most 

cases, the apps are designed as a trojan that will send 

the exploited data to the cybercriminal. 

2 506 2 504 

SMS Malware As provided in the previous table  4 822 4 821 

Mobile Riskware These are legitimate applications that are potentially 

risky because they leave users and systems vulnerable 

to legal risks and data and application exploits. For 

example, they might expose vulnerabilities that 

cybercriminals might exploit to access the kernel and 

misuse programs to exfiltrate data. 

4 362 3 904 

Benign As provided in the previous table 4 042 4 039 

TOTAL  17 247 16 783 

 

4. Result and Discussion 
In this section, we present the experimental results of the proposed method. It should be noted that the 

discussion will be preliminary and focused on assessing how promising our method is. A more detailed 

interpretation of every single result will be the focus of future papers. 

After downloading the CICMaldroid2020 and CICMalAnal2017 datasets, 97.3% and 97.6% of the 

samples were successfully converted to the .wav audio format, respectively. The remaining samples were 

discarded because they were either corrupted or duplicates. On average, converting CICMaldroid2020 

apks to audio took 21 minutes, whereas CICMalAnal2017 took 5 minutes and 34 seconds. Bark-

frequency cepstrum coefficient features were generated from the audio files for analysis. The sample data 

in Figure 3 shows the generated audio files and their corresponding extracted bark frequency features. 

We implemented the proposed strategy on a 1.80GHz Intel(R) Core (TM) i7-8565U CPU laptop 

with 24 GB RAM. The code to implement the machine learning pipeline discussed above was developed 

using TensorFlow and Python. In the experiment, 23 machine learning classifiers were implemented for 

performance evaluation. These include extra trees, Gaussian Process, Multi-Layer Perceptron, Bayesian 
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Network, Passive Aggressive, Support Vector Machine, AdaBoost, Random Forest, KNeighbors, and 

Decision Tree. 

   

 

 

 

 

 

 

 

 

                                                   (a)  (b)  

Figure 3. Sample Data (a) Malware waveforms, (b) Benign waveforms 

4.1. Classification performance 

4.1.1. CICMalAnal2017 

To comprehensively measure how accurately bark-frequency cepstral coefficients can be used to classify 

android applications, classification accuracy, precision, recall, and area under the curve are calculated. 

Moreover, the train and test times are also calculated to estimate the complexity of the algorithms. The 

following table shows the results of the malware detection and classification experiments on the 

CICMalAnal2017 dataset using an 80 – 20 % split. 

Table 3. CICMalAnal2017 performance results. 

Classifier used 
Test 

Accuracy 
Precision Recall 

F1 

Score 
AUC 

Train 

Time [s] 

Test 

Time [s] 

RandomForest 0.9325 0.8434 0.8235 0.8333 0.8921 2.4956 0.0642 

CatBoost 0.9301 0.8500 0.8000 0.8242 0.8818 4.0229 0.0034 

ExtraTrees 0.9277 0.8873 0.7412 0.8077 0.8585 0.1654 0.0194 

LGBM 0.9253 0.8293 0.8000 0.8144 0.8788 0.1860 0.0141 

Bagging 0.9229 0.8354 0.7765 0.8 0.8685 0.1464 0.0023 

XGB 0.9157 0.7976 0.7882 0.7929 0.8684 0.6426 0.0034 

GaussianProcess 0.9157 0.8906 0.6706 0.7651 0.8247 2.6927 0.0171 

XGBRF 0.9108 0.8333 0.7059 0.7805 0.8348 0.2434 0.0038 

Gradient 

Boosting 

0.9108 0.8000 0.7529 0.7643 0.8522 0.6347 0.0013 

DecisionTree 0.9060 0.7738 0.7647 0.7285 0.8536 0.0358 0.0005 

KNeighbors 0.9012 0.7558 0.7647 0.7602 0.8505 0.0042 0.0306 
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Classifier used 
Test 

Accuracy 
Precision Recall 

F1 

Score 
AUC 

Train 

Time [s] 

Test 

Time [s] 

SVC 0.8988 0.8525 0.6118 0.7529 0.7922 0.2593 0.0101 

MLP 0.8988 0.8413 0.6235 0.7123 0.7966 2.2036 0.0006 

AdaBoost 0.8988 0.8209 0.6471 0.7152 0.8053 0.2455 0.0095 

LinearSVC 0.8747 0.7619 0.5647 0.7134 0.7596 0.0704 0.0003 

Logistic 

RegressionCV 

0.8747 0.7538 0.5765 0.6533 0.7640 1.3264 0.0003 

NuSVC 0.8627 0.6429 0.7412 0.6395 0.8176 0.1992 0.0069 

RidgeCV 0.8627 0.7593 0.4824 0.6707 0.7215 0.0109 0.0003 

SGD 0.8458 0.6567 0.5176 0.6885 0.7240 0.0073 0.0003 

BernoulliNB 0.8410 0.6173 0.5882 0.5899 0.7471 0.0028 0.0006 

Passive 

Aggressive 

0.8386 0.8000 0.2824 0.6024 0.6321 0.0023 0.0003 

Perceptron 0.8241 0.6500 0.3059 0.416 0.6317 0.0024 0.0002 

GaussianNB 0.8193 0.5735 0.4588 0.5098 0.6855 0.0020 0.0006 

4.1.2. CICMaldroid2020 

The following table shows the results of the malware detection and classification experiments on the 

CICMaldroid2020 dataset using an 80 – 20 % split. 

Table 4. CICMaldroid2020 performance results. 

MLA used 
Test 

Accuracy 
Precision Recall 

F1 

Score 
AUC 

Train 

Time [s] 

Test 

Time [s] 

RandomForest 0.9787 0.9840 0.9885 0.9862 0.9669 18.1183 0.2386 

ExtraTrees 0.9784 0.9851 0.9870 0.986 0.9681 0.7067 0.0742 

CatBoost 0.9739 0.9809 0.9854 0.9832 0.9601 6.1896 0.0169 

KNeighbors 0.9728 0.9820 0.9828 0.9824 0.9607 0.0420 0.1974 

XGB 0.9725 0.9805 0.9839 0.9822 0.9587 2.0600 0.0060 

LGBM 0.9719 0.9805 0.9831 0.9818 0.9583 0.2125 0.0076 

Bagging 0.9686 0.9782 0.9812 0.981 0.9535 1.1242 0.0073 

MLP 0.9636 0.9766 0.9762 0.9765 0.9484 17.4428 0.0026 

GradientBoosting 0.9609 0.9733 0.9762 0.9748 0.9425 5.3028 0.0062 

GaussianProcess 0.9594 0.9758 0.9716 0.9737 0.9448 377.1062 0.8963 
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XGBRF 0.9571 0.9746 0.9697 0.9722 0.9418 1.5513 0.0065 

SVC 0.9553 0.9727 0.9693 0.9721 0.9384 7.2397 0.2970 

DecisionTree 0.9526 0.9658 0.9732 0.971 0.9279 0.2303 0.0007 

AdaBoost 0.9464 0.9620 0.9690 0.9655 0.9193 1.2990 0.0272 

Logistic 

RegressionCV 

0.9464 0.9644 0.9663 0.9654 0.9225 1.4583 0.0004 

LinearSVC 0.9449 0.9640 0.9648 0.9644 0.9211 0.5492 0.0008 

Perceptron 0.9426 0.9618 0.9640 0.9629 0.9168 0.0119 0.0006 

SGD 0.9417 0.9657 0.9586 0.9626 0.9213 0.0631 0.0005 

RidgeCV 0.9233 0.9431 0.9586 0.9508 0.8809 0.0227 0.0005 

Passive 

Aggressive 

0.9055 0.9712 0.9046 0.9362 0.9067 0.0207 0.0006 

BernoulliNB 0.8993 0.9179 0.9552 0.9348 0.8322 0.0059 0.0011 

NuSVC 0.8981 0.9247 0.9452 0.9222 0.8416 6.1177 0.1409 

GaussianNB 0.6799 0.9458 0.6215 0.7501 0.7501 0.0082 0.0016 

 

The tables 3 and 4 above show the performance statistics of the various models that were evaluated in this 

study. The tables are sorted by the testing accuracy column.  A summary of the relevant top performing 

algorithms is given below: 

• Accuracy: Random Forest, extra trees and catboost algorithms achieved the top 3 test accuracy 

scores in both datasets. The highest scores achieved are 97.9%, 97.8%, and 97.4%, respectively.  

• Precision: Extra Trees achieved the highest score of 98.5%, followed by random forest which 

had 98.4%. 

• Recall: Random forest accomplished the highest recall rate of 98.9 whereas extra trees was 

second with 98.7%. 

• F1 Score: Random forest was the best with an f1 score of 98.62%, followed by extra trees which 

had 98.6%.  

• ROC Score: Extra trees achieved the best score of 96.8%, followed by random forest, which had 

96.7%. 

• Generally, it was observed that ensemble algorithms performed well in the malware classification 

task while the GaussianNB was the worst performing in all experiments. Furthermore, most fast 

algorithms in terms of processing speed, did not have good results to warranty consideration. 

The figure below shows highlights of the top 3 performing algorithms over the two experimental datasets. 
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Figure 4. Performance results of the top 3 algorithms 

The table 5 below ranks the models column-wise by identifying the best model according to each 

performance metric. 

Table 5. CICMaldroid2020 performance ranking results. 

Classifier  used Test Accuracy Precision F1 Score AUC Train Time [s] Test Time [s] 

RandomForest 1 2 1 2 22 21 

ExtraTrees 2 1 2 1 11 18 

CatBoost 3 4 3 4 19 16 

KNeighbors 4 3 4 3 6 20 

XGB 5 5 5 5 16 11 

LGBM 6 6 6 6 8 15 

Bagging 7 7 7 7 12 14 

MLP 8 8 8 8 21 10 

GradientBoosting 9 11 9 10 17 12 

GaussianProcess 10 9 10 9 23 23 

XGBRF 11 10 11 11 15 13 

SVC 12 12 12 12 20 22 

DecisionTree 13 14 13 13 9 6 

AdaBoost 14 18 15 17 13 17 

LogisticRegressionCV 15 16 14 14 14 1 

LinearSVC 16 17 16 16 10 7 

Perceptron 17 19 17 18 3 4 

SGD 18 15 18 15 7 3 

RidgeCV 19 21 19 20 5 2 

PassiveAggressive 20 13 20 19 4 5 

BernoulliNB 21 23 21 22 1 8 

NuSVC 22 22 22 21 18 19 

GaussianNB 23 20 23 23 23 9 
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Figure 5. Precision-Recall Graphs of the top algorithms 

Based on the highest test accuracy results, the top five models are Random Forest, Extra Trees, CatBoost, 

KNeighbors, and XGBClassifier. In the precision-recall graphs shown in figure 5, these algorithms have 

high precision and recall rates, meaning they returned many correctly labelled results. While the 

differences between the performance metrics of random forest and extra trees are minimal, if one 

considers the resource limitations of mobile devices, the extra trees algorithm is probably the better 

choice because of shorter train and test times. Furthermore, it also has a better precision score, meaning it 

has the highest ratio of malicious applications that are correctly classified. By looking at the two datasets 

that were used for experimentation, it can also be observed that the highest accuracy achieved improved 

by around 4.62% by utilising a slightly bigger dataset. It should be noted that the dataset used is 

substantially smaller than the bigger datasets used in the research field. The achieved results evidently 

show that bark-frequency cepstral coefficients are promising static features for malware detection. 

5. Conclusion 

This paper proposes an android malware detection system that uses acoustic signals and Bark Frequency 

Cepstral Coefficients as malware features. To the best of our knowledge, this is the first study to 

introduce such features for malware detection. Twenty three machine learning algorithms were used to 

evaluate the efficiency of the proposed system. As this research has shown, bark frequency cepstral 

coefficients proved highly discriminative in android malware detection reaching an average precision of 

99%. 
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