Diversitas Ikan pada Ekosistem Terumbu Karang di Perairan Pulau Menjangan, Taman Nasional Bali Barat

Fish Diversity on Coral Reef Ecosystem in Menjangan Island Water, National Marine Park of Western Bali

Rusman Hernowo, Djamarto*, dan Namastra Probosunu

Jurusan Perikanan, Fakultas Pertanian, Universitas Gadjah Mada
Jln. Flora, Bulaksumur, Yogyakarta 55281
E-mail: lely4192@yahoo.com *Penulis untuk korespondensi

Abstract

The objective of the research was to study the diversity of reef fishes and coral reef density in Menjangan island waters, National Marine Park of Western Bali. The study was conducted from late April to early May 2012 in the waters of Menjangan Island. The number of stations for observation was determined at 8 locations based on different habitats. Fish sampling and measurement of environmental conditions was undertaken by diving at isodepth depth of 3 and 10 m. The species and number of fishes that occupied in the range of 2.5 m along the 50 m of line transect were identified and counted by Underwater Visual Census method. Reef fish species was identified directly in situ. Covering area and species of coral were recorded by Line Intercept Transect method. Types of coral reefs growth under transects were recorded, while the covering area of coral reef was calculated using life form report (LF program 5.1). The data was analyzed based on biological indices. The results showed that the fish diversity index (H) ranged from 0.8499 to 2.1360, uniformity (E) between 0.36 and 0.73 and dominance index (C) ranged from 0.163 to 0.647. The total of reef fish was found as many as 5753 individual comprised of 62 genera from 32 families, while fish abundance (D) ranging from 0.756 to 2.680 individual/m². The most number and dominant family were found in type of major fish which was present among stations. Covering of coral was range from 0.66 to 67.34%, which was classified into moderate to good condition.

Keywords: diversity, fish, coral reef, Menjangan Island, Bali

Abstrak

Kata kunci: keragaman, ikan, terumbu karang, Pulau Menjangan, Bali

Diterima: 08 Oktober 2012, disetujui: 18 Februari 2013
Diversitas Ikan pada Ekosistem Terumbu Karang

Pendahuluan

Wilayah perairan Indonesia kaya sumberdaya alam yang terdiri atas beberapa tipe ekosistem, salah satunya adalah ekosistem terumbu karang. Luas terumbu karang di perairan Indonesia mencapai 51.000 km² atau sekitar 18% dari total luas terumbu karang yang ada di dunia (Burke dkk., 2002). Ekosistem terumbu karang terdapat di perairan tropis yang dibatasi oleh suhu isotherm permukaan laut 20°C (Pandolfi, 2011). Terumbu karang tumbuh dan berkembang optimal pada perairan bersuhu 23–25°C, salinitas 32–35% serta cukup penetrasi cahaya pada perairan yang jernih dengan kedalaman kurang dari 25 m (Suharsono, 1996). Batas suhu tinggi yang mampu ditoleransi terumbu karang sampai dengan kisaran 36–40°C dan salinitas 42%.

Sebaran ikan karang sangat berkaitan erat dengan sebaran spasial dan kondisi lingkungan ekosistem terumbu karang. Ikan muda yang akan menetap pada ekosistem terumbu karang sebarannya sangat terbatas yang berkaitan dengan kebutuhan kondisi habitat yang spesifk (Wen dkk., 2013). Ekosistem terumbu karang sangat rentan terhadap berbagai gangguan dari alam atau aktivitas manusia. Kondisi ekosistem terumbu karang di beberapa kawasan telah mengalami kerusakan pada berbagai level disebabkan oleh berbagai faktor antara lain pemanasan global, pencemaran yang berasal dari darat dan laut, penangkapan ikan menggunakan bom dan penggunaan alat tangkap yang tidak ramah lingkungan (Pandolfi, 2011). Akibatnya terumbu karang mengalami kerusakan dan ikan tidak dapat hidup dengan baik di dalam ekosistem terumbu karang (Wen dkk., 2013).

Ikan karang merupakan kelompok ikan yang hidup dilingkungan terumbu karang dan mempunyai ketergantungan pada ekosistem terumbu karang sebagai tempat hidup dan aktivitas lainnya. Terdapat hubungan yang erat antara ikan karang dan terumbu karang, sehingga mobilitas ikan karang relatif rendah yaitu hanya di sekitar karang. Ikan karang sangat mutlak membutuhkan terumbu karang yang baik dan sehat sebagai tempat mencari makan, berlingkung, dan berkembang biak. Ikan karang menjadikan terumbu sebagai tempat berlingkung, memijah, dan mencari makan, sehingga keberadaan ikan karang secara kualitas dan kuantitas dapat dijadikan sebagai bioindikator kondisi ekosistem terumbu karang (Campbell dan Pardeide, 2006). Ikan karang mempunyai warna yang beraneka ragam dan daerah jelajahannya hanya di sekitar terumbu karang. Ikan karang dapat dikelompokkan menjadi tiga berdasarkan status pemanfaatan pada perikanan hangat yaitu major, target, dan indikator. Komposisi yang normal untuk tiga kelompok ikan tersebut dalam area karang yang sehat berkisar 60:30:10, tetapi variasi komposisi di lokasi perairan karang berbeda (Djamali dan Darsono, 2005).

Pulau Menjangan yang berada di dalam kawasan Taman Nasional Bali Barat (TNBB), merupakan salah satu kawasan di Indonesia yang memiliki ekosistem terumbu karang dan merupakan kawasan wisata yang sering dikunjungi oleh wisatawan dari dalam dan luar negeri. Kawasan Pulau Menjangan memiliki kontur bawah laut berupa drop off dan goa-goa bawah laut sehingga kaya habitat dan jenis ikan. Kondisi ini menyebabkan banyak
ditemukan aneka jenis ikan dari ikan kelompok herbivor, carnivor, omnivor, dan kelompok lainnya. Pada saat ini di beberapa bagian karang yang landai, sebagian karangnya telah mengalami kerusakan yang disebabkan oleh berbagai faktor. Terumbu karang yang rusak akan memengaruhi keragaman jenis ikan yang ada, sehingga perlu dilakukan penelitian terhadap keanekaragaman ikan yang ada sebagai dasar pengelolaan ekosistem terumbu karang yang akurat.

Metode Penelitian

Lokasi dan waktu sampling

Penelitian dilakukan di Pulau Menjangan yang merupakan salah satu pulau yang ada di Taman Nasional Bali Barat. Waktu sampling dilakukan dari akhir bulan April sampai awal bulan Mei 2012 selama 12 hari. Lokasi sampling berdasarkan kekhasan habitat dan kondisi ekologisnya ditetapkan sebanyak 8 stasiun (Gambar 1), pada kawasan di sekitar Pulau Menjangan. Tempat penelitian dipilih di daerah yang memiliki kopadatan terumbu karang tergolong tinggi, sehingga memungkinkan kepadatan ikan yang melimpah pada daerah tersebut. Pengambilan data penelitian dilakukan hanya satu kali tanpa adanya pengulangan, karena dalam waktu yang singkat diyakini tidak akan ada perubahan habitat yang signifikan.

Gambar 1. Lokasi Penelitian di perairan Pulau Menjangan sebanyak 8 stasiun (S1-S8) ditetapkan berdasarkan karakteristiknya. Kondisi ekologis di sekeliling selatan pulau lebih bervariasi sehingga jumlah stasiun lebih banyak dengan jarak yang lebih dekat.

Biota Vol. 18 (1), Februari 2013 13
Tatalaksana penelitian

Penetapan stasiun penelitian dilakukan dengan survei bawah air menggunakan snorkeling untuk mengetahui kondisi perairan secara umum, kemudian menetapkan posisi stasiun pengamatan menggunakan GPS (Global Position System) berdasarkan karakter habitat dan ekologis tiap-tiap stasiun. Pengambilan data menggunakan perahu motor tempel, alat selam, alat tulis bawah air, rol meter, reflektometer, dan termometer. GPS digunakan untuk menetapkan posisi astronomis lokasi penelitian, kamera digital untuk mengambil data visual dan buku identifikasi ikan karang untuk mendapatkan data kualitatif jenis ikan. Data kuantitatif ikan dihitung dengan metode Belt Transect sedangkan penutupan terumbu menggunakan metode LIT (Line Intercept Transect) (English dkk., 1994).

Analisis data

\[
\text{Tutupan (\%)} = \frac{\text{Panjang total seluruh kategori karang hidup}}{\text{Panjang total transek}} \times 100
\]

Kriteria persentase penutupan karang hidup dikategorikan buruk bila berkisar 0,0%-24,9%, sedangkan 25,0%-49,9%, baik 50,0%-74,9% dan sangat baik 75,0%-100%.

Data jumlah individu dan jenis ikan yang diperoleh dianalisis kuantitatif untuk melihat struktur komunitas ikan yang meliputi kelimpahan (D), keanekaraan jenis (H'), kesaragaman (E) dan dominansi (C) yang dihitung menurut Odum (1998).

Indeks Kelimpahan (D) merupakan jumlah ikan karang yang ditemukan pada suatu stasiun pengamatan per satuan luas transek pengamatan dihitung dengan formula berikut:

\[
D = \frac{N_i}{A}
\]

Keterangan:
N = Jumlah individu ikan pada stasiun pengamatan ke-i
A = Luas transek pengamatan (50 x 5) m

Indeks keanekaraan jenis dihitung dengan formula:

\[
H' = -\sum \left(\frac{n_i}{N} \right) \ln \left(\frac{n_i}{N} \right)
\]

Keterangan :
ni = jumlah individu genus ke-i
N = Jumlah total individu seluruh genera

Indeks ini berdasarkan kaidah yang dikemukakan Shannon-Wiener (Odum, 1998) yang digunakan untuk mengetahui keanekaraan jenis biota perairan. Berdasarkan indeks ini dapat diduga kestabilan komunitas biota air. Klasifikasi nilai indeks adalah 0–4,6. Jika nilai indeks < 1 atau mendekati 0, diduga komunitas ikan dalam kondisi tidak stabil atau kondisi lingkungan mendapat tekanan dari luar atau tingkat berat. Jika nilai indeks 1–3, dapat diartikan bahwa komunitas ikan sedang atau kondisi lingkungan mendapat
tekanan pada tingkat sedang. Jika nilai indeks > 3, dapat diartikan komunitas ikan stabil atau kondisi lingkungan tidak mengalami tekanan dari luar sehingga kondisinya masih alami. Tekanan dari luar bisa berupa intensitas penangkapan, berwujud bahan polutan, limbah, atau perubahan lingkungan.

Indeks keseragaman jenis (E) dihitung dengan formula:

$$H = \frac{H'}{H_{maks}} = \frac{H'}{\ln S}$$

Keterangan:
- H_{maks} = Indeks keseragaman maksimum
- S = jumlah jenis

Indeks keseragaman dapat memberi informasi kemerataan sebaran jenis ikan. Keseragaman antarspesies rendah bila nilai E=0, sedangkan bila nilai E=1 maka keseragaman spesies relatif seragam. Nilai E antara 0 dan 1 menunjukkan kecenderungan keseragaman spesies antara rendah dan tinggi. Indeks dominansi (C) dihitung dengan formula berikut:

$$C = \sum \left(\frac{n_i}{N} \right)^2$$

Indeks dominansi digunakan untuk mengetahui ada tidaknya jenis yang mendominasi perairan. Indeks dominansi berkisar antara 0–1. Apabila nilai indeks mendekati 1 ada kecenderungan bahwa suatu spesies mendominasi komunitas tersebut. Jenis yang dominan merupakan jenis yang mampu beradaptasi terhadap lingkungan yang tertekan.

Hasil dan Pembahasan

Lingkungan perairan mempunyai pengaruh terhadap kehidupan organisme yang hidup di dalamnya. Parameter lingkungan selama kegiatan penelitian disajikan pada Tabel 1.

Secara umum kondisi lingkungan perairan di Pulau Menjangan cukup stabil. Suhu air berkisar 29–31°C dan tidak terjadi stratifikasi suhu yang signifikan hingga dasar perairan. Salinitas antara 30–31% kecuali pada lokasi Pos 1 berkisar 32–34%. Arus air pada lokasi Anchor Wreck, Bat Cave, dan Temple Point relatif kencang dengan kecepatan >0,10 m/det, sedangkan lokasi lainnya beraras lebih lemah dengan kecepatan <0,07 m/det. Nilai pH yang didapat berkisar antara 6,49–6,97. Kecerahan air baik sehingga penetrasi cahaya matahari mencapai dasar perairan.

Tabel 1. Parameter lingkungan perairan pada tiap stasiun penelitian.

<table>
<thead>
<tr>
<th>Lokasi</th>
<th>CG</th>
<th>TP</th>
<th>BC</th>
<th>P2</th>
<th>CP</th>
<th>P1</th>
<th>EG</th>
<th>AW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kedalaman (m)</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Suhu (°C)</td>
<td>30</td>
<td>30</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>30</td>
<td>30</td>
<td>29</td>
</tr>
<tr>
<td>Salinitas (%)</td>
<td>30</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>34</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>pH</td>
<td>6,78</td>
<td>6,76</td>
<td>6,97</td>
<td>6,66</td>
<td>6,87</td>
<td>6,75</td>
<td>6,62</td>
<td>6,77</td>
</tr>
<tr>
<td>Arus (m/det)</td>
<td>0,03</td>
<td>0,14</td>
<td>0,17</td>
<td>0,05</td>
<td>0,06</td>
<td>0,06</td>
<td>0,06</td>
<td>0,13</td>
</tr>
<tr>
<td>Kecerahan (m)</td>
<td>31</td>
<td>28</td>
<td>27,2</td>
<td>22</td>
<td>22,8</td>
<td>30</td>
<td>19</td>
<td>27</td>
</tr>
<tr>
<td>Kedalaman (m)</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Suhu (°C)</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>30</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>29</td>
</tr>
<tr>
<td>Salinitas (%)</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>31</td>
<td>30</td>
<td>32</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>pH</td>
<td>6,60</td>
<td>6,82</td>
<td>6,93</td>
<td>6,86</td>
<td>6,67</td>
<td>6,49</td>
<td>6,62</td>
<td>6,73</td>
</tr>
<tr>
<td>Arus (m/det)</td>
<td>0,03</td>
<td>0,14</td>
<td>0,17</td>
<td>0,05</td>
<td>0,06</td>
<td>0,06</td>
<td>0,06</td>
<td>0,13</td>
</tr>
<tr>
<td>Kecerahan (m)</td>
<td>31</td>
<td>28</td>
<td>27,2</td>
<td>22</td>
<td>22,8</td>
<td>30</td>
<td>19</td>
<td>27</td>
</tr>
</tbody>
</table>

Keterangan lokasi: CG=Coral Garden, TP=Temple Point, BC=Bat Cave, P2=Pos 2, CP=Cave Point, P1=Pos 1, EG=Ell Garden, AW=Anchor Wreck. Notasi keterangan lokasi pada tabel berikutnya sama dengan Tabel 1.
Diversitas Ikan pada Ekosistem Terumbu Karang

Terdapat variasi nilai tutupan terumbu karang antara stasiun satu dan stasiun yang lainnya. Tutupan terumbu karang di perairan Pulau Menjangan secara keseluruhan berkisar 0,66–67,34% yang tergolong dalam kategori buruk hingga baik. Tutupan terumbu karang tiap stasiun pengamatan disajikan dalam Tabel 2.

Nilai tutupan terumbu karang hidup yang berada pada kedalaman 3 m berkisar 6–67,3%, sedangkan pada kedalaman 10 m berkisar 13,0–59,1%. Persentase penutupan terumbu karang tertinggi di perairan Pulau Menjangan terdapat di lokasi Anchor Wreck pada kedalaman 3 m, sedangkan persentase penutupan terumbu karang paling rendah terdapat di lokasi Ell Garden pada kedalaman 3 m. Sebagian besar terumbu karang di perairan Pulau Menjangan mengalami kematian, tetapi ada 2 lokasi yang tidak ditemukan kematian terumbu karang yaitu di Bat Cave dan di Temple Point.

Lokasi Anchor Wreck memiliki penutupan terumbu karang yang baik dan daerahnya memiliki habitat yang masih alami, perairan yang jernih dan intensitas cahaya matahari yang tinggi. Terumbu karang pada lokasi Anchor Wreck mendapatkan cahaya matahari yang berkecukupan dan kondisi perairan yang baik sehingga terumbu karang tumbuh dengan baik.

Data komunitas ikan pada kedalaman 3 m dan 10 m memiliki nilai yang ber variasi antara stasiun satu dan yang lainnya. Data komunitas ikan terdiri atas jumlah suku, indeks kelimpahan (D, individu/m²), indeks keanekaragaman (H'), keseragaman (E) dan Dominansi (C) disajikan pada Tabel 3.

Jumlah suku ikan pada kedalaman 3 dan 10 m masing-masing berkisar 14–20. Jumlah suku paling sedikit di stasiun Bat Cave pada kedalaman 3 dan 10 m, sedangkan paling tinggi di stasiun Anchor Wreck dan Stasiun P1. Indek kelimpahan (individu/m²) ikan pada kedalaman 3 m berkisar 0,83–1,50, sedangkan pada kedalaman 10 m berkisar 0,76–2,68. Kepadatan ikan pada kedalaman 10 m sebanyak 40% lebih melimpah daripada kedalaman 3 m.

Tabel 2. Tutupan karang (%) pada tiap stasiun pengamatan.

<table>
<thead>
<tr>
<th>Kedalaman (m)</th>
<th>Tutupan (%)</th>
<th>CG</th>
<th>TP</th>
<th>BC</th>
<th>P2</th>
<th>CP</th>
<th>P1</th>
<th>EG</th>
<th>AW</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Karang Hidup</td>
<td>31,5</td>
<td>36,6</td>
<td>6,7</td>
<td>39,5</td>
<td>43,2</td>
<td>66,5</td>
<td>0,6</td>
<td>67,3</td>
</tr>
<tr>
<td></td>
<td>Karang Mati</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>3,9</td>
<td>0,0</td>
<td>5,6</td>
</tr>
<tr>
<td></td>
<td>Biotik</td>
<td>11,2</td>
<td>10,9</td>
<td>17,2</td>
<td>32,1</td>
<td>15,9</td>
<td>2,8</td>
<td>2,5</td>
<td>20,4</td>
</tr>
<tr>
<td></td>
<td>Abiotik</td>
<td>57,3</td>
<td>52,5</td>
<td>76,2</td>
<td>28,4</td>
<td>40,9</td>
<td>26,9</td>
<td>96,9</td>
<td>6,7</td>
</tr>
<tr>
<td>10</td>
<td>Karang Hidup</td>
<td>48,4</td>
<td>29,3</td>
<td>59,1</td>
<td>13,0</td>
<td>25,0</td>
<td>30,7</td>
<td>43,5</td>
<td>59,1</td>
</tr>
<tr>
<td></td>
<td>Karang Mati</td>
<td>0,5</td>
<td>0,0</td>
<td>0,0</td>
<td>0,9</td>
<td>2,2</td>
<td>2,1</td>
<td>2,7</td>
<td>6,5</td>
</tr>
<tr>
<td></td>
<td>Biotik</td>
<td>10,2</td>
<td>35,9</td>
<td>1,3</td>
<td>19,3</td>
<td>11,4</td>
<td>7,4</td>
<td>4,8</td>
<td>8,9</td>
</tr>
<tr>
<td></td>
<td>Abiotik</td>
<td>41,0</td>
<td>34,8</td>
<td>39,6</td>
<td>66,8</td>
<td>61,4</td>
<td>59,8</td>
<td>49,0</td>
<td>25,6</td>
</tr>
</tbody>
</table>

Tabel 3. Jumlah suku ikan, kelimpahan, keanekaragaman, keseragaman, dan dominansi pada tiap-tiap stasiun di kedalaman 3 dan 10 m.

<table>
<thead>
<tr>
<th>Kedalaman (m)</th>
<th>Parameter</th>
<th>CG</th>
<th>TP</th>
<th>BC</th>
<th>P2</th>
<th>CP</th>
<th>P1</th>
<th>EG</th>
<th>AW</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Jumlah suku</td>
<td>16</td>
<td>19</td>
<td>14</td>
<td>18</td>
<td>15</td>
<td>20</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Kelimpahan (D, Ind/m²)</td>
<td>0,83</td>
<td>1,50</td>
<td>1,50</td>
<td>1,22</td>
<td>1,08</td>
<td>1,36</td>
<td>1,18</td>
<td>1,00</td>
</tr>
<tr>
<td></td>
<td>Keanekaragaman (H')</td>
<td>1,32</td>
<td>1,50</td>
<td>1,50</td>
<td>1,17</td>
<td>0,90</td>
<td>1,39</td>
<td>1,04</td>
<td>1,48</td>
</tr>
<tr>
<td></td>
<td>Keseragaman (E)</td>
<td>0,51</td>
<td>0,57</td>
<td>0,57</td>
<td>0,44</td>
<td>0,36</td>
<td>0,53</td>
<td>0,39</td>
<td>0,53</td>
</tr>
<tr>
<td></td>
<td>Dominansi (C)</td>
<td>0,45</td>
<td>0,35</td>
<td>0,35</td>
<td>0,56</td>
<td>0,65</td>
<td>0,45</td>
<td>0,61</td>
<td>0,44</td>
</tr>
<tr>
<td>10</td>
<td>Jumlah suku</td>
<td>16</td>
<td>19</td>
<td>14</td>
<td>18</td>
<td>15</td>
<td>20</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Kelimpahan (D, Ind/m²)</td>
<td>1,74</td>
<td>2,68</td>
<td>0,76</td>
<td>1,58</td>
<td>1,48</td>
<td>1,90</td>
<td>2,34</td>
<td>1,40</td>
</tr>
<tr>
<td></td>
<td>Keanekaragaman (H')</td>
<td>1,33</td>
<td>1,94</td>
<td>0,85</td>
<td>1,75</td>
<td>1,30</td>
<td>2,14</td>
<td>1,57</td>
<td>1,94</td>
</tr>
<tr>
<td></td>
<td>Keseragaman (E)</td>
<td>0,52</td>
<td>0,67</td>
<td>0,41</td>
<td>0,63</td>
<td>0,51</td>
<td>0,73</td>
<td>0,58</td>
<td>0,67</td>
</tr>
<tr>
<td></td>
<td>Dominansi (C)</td>
<td>0,38</td>
<td>0,27</td>
<td>0,61</td>
<td>0,29</td>
<td>0,40</td>
<td>0,16</td>
<td>0,30</td>
<td>0,22</td>
</tr>
</tbody>
</table>
Nilai indeks keanekaragamanannya (H') berkisar antara 0,8499–2,1360 yang menandakan keanekaragamanannya rendah sampai sedang. Keanekaragaman ikan paling rendah dengan nilai indeks 0,8499 terdapat pada lokasi Bat Cave kedalaman 10 meter, sedangkan nilai indeks keanekaragaman tertinggi terdapat pada lokasi Pos 1 kedalaman 10 m dengan nilai indeks keanekaragaman 2,1360. Indeks kesaragaman (E) paling rendah terdapat di Cave Point kedalaman 3 meter dengan nilai 0,36 yang menandakan bahwa komunitas ikan pada lokasi tersebut tertekan (0 < E ≤ 0,5). Indeks kesaragaman (E) paling tinggi terdapat di Pos 1 pada kedalaman 10 m dengan nilai 0,73. Indeks dominansi (C) berkisar antara 0,163–0,647 tergolong dalam dominansi rendah–tinggi. Nilai indeks dominansi tertinggi terdapat di Cave Point pada kedalaman 3 m dan terendah di Pos 1 kedalaman 10 m. Semakin tinggi nilai dominansi maka akan dapat memengaruhi kestabilan ikan dalam komunitasnya dan kesaragamannya.

Kelompok ikan mayor memiliki nilai persentase paling tinggi sebesar 86,60% dengan total cacah individu sebanyak 4982 ekor, disusul kelompok ikan target sebesar 10,29% dengan total cacah individu sebanyak 592 ekor. Kelompok ikan indikator memiliki nilai persentase paling kecil yaitu 3,11% dengan total cacah individu sebanyak 179 ekor.

Berdasarkan sukunya, kelompok ikan mayor memiliki nilai tertinggi yaitu 68,75% dengan 22 suku, sedangkan kelompok ikan target memiliki nilai persentase 28,13% dengan 9 suku dan persentase terkecil, yaitu kelompok ikan indikator yaitu 3,12% dengan 1 suku saja dari Chaetodontidae. Kelompok ikan mayor memiliki nilai persentase tinggi karena ikan yang termasuk major grup merupakan kelompok ikan terbesar dari ikan penghuni terumbu karang, umumnya hidup menggerombol.

Kecepatan arus berkisar antara 0,03–0,17 m/dt tergolong rendah hingga kuat. Arus berperan pada transportasi nutrien dan gas terlarut serta material lain yang sangat penting bagi terumbu dan ikan karang. Perbedaan pemanasan menyebarbkan perbedaan tekanan udara sehingga menimbulkan gerakan udara dari tekanan tinggi menuju ke tekanan rendah yang dikenal sebagai angin. Gerakan angin akan mendorong permukaan air bergerak sesuai dengan arah dongaran, semakin kuat dongaran
Diversitas Ikan pada Ekosistem Terumbu Karang

air maka arus yang ditimbulkan semakin besar (Wolanski, 2001). Adanya arus samodra akan mempengaruhi kecepatan arus laut lokal. Kecepatan arus paling lemah terdapat di Coral Garden karena lokasinya terlindung oleh bukit, sedangkan paling kuat di Bat Cave yang karena berbatasan langsung dengan laut lepas sehingga cenderung memiliki arus yang besar.

Kecerahan air berkisar antara 19–31 m sehingga penetrasi cahaya matahari dapat mencapai dasar perairan tempat terumbu karang tumbuh dan berkembang. Kecerahan air tergolong baik dan dapat dikatakan perairannya jernih. Intensitas cahaya matahari sangat mempengaruhi pertumbuhan terumbu karang (Supriharyono, 2007) karena mempengaruhi aktivitas fotosintesis zooxantela yang bersimbiosis dengan hewan karang. Pada perairan yang jernih memungkinkan penetrasi cahaya dapat memenbus sampai pada lapisan yang sangat dalam, sehingga binatang karang juga dapat hidup pada perairan yang cukup dalam.

Nilai tutupan terumbu karang hidup berkisar 0,66–67,34 yang menunjukkan ekosistem terumbu karang berada pada kondisi buruk hingga baik. Persentase tutupan terumbu karang pada kedalaman 10 m relatif lebih baik dari pada kedalaman 3 m. Persentase penutupan terumbu karang tertinggi terdapat di Anchor Wreck pada kedalaman 3 m, sedangkan paling rendah terdapat di Ell Garden pada kedalaman 3 m. Anchor Wreck meliputi penutupan terumbu karang yang baik karena tidak mengalami gangguan oleh pengunjung, jernih sehingga intensitas cahaya matahari mencapai dasar. Pertumbuhan karang hermatipik juga tergantung pada kondisi fisik-kimia lingkungannya. Hal ini sesuai pada lokasi Anchor Wreck, terumbu karang mendapatkan cahaya matahari yang berkecukupan dan kondisi perairan yang baik sehingga terumbu karang tumbuh dengan baik pula. Pertumbuhan terumbu karang sangat dipengaruhi oleh kecukupan nutrien, intensitas sinar matahari, kondisi lingkungan yang baik dan tidak terganggu oleh aktivitas manusia (Wolanski, 2001).

Keaneckaragamananya ikan berkisar 0,8499–2,1360 menunjukkan tingkat keaneckaragaman rendah hingga sedang. Keaneckaragaman ikan paling rendah terdapat di Bat Cave pada kedalaman 10 m, sedangkan paling tinggi terdapat di Pos 1 pada kedalaman 10 m. Kemelimpahan ikan berkisar antara 0,756–2,680, paling rendah terdapat di Bat Cave pada kedalaman 10 m, sedangkan tertinggi di Temple Point juga pada kedalaman 10 m. Keaneckaragaman dan kemelimpahan ikan karang pada kedalaman 10 m cenderung lebih tinggi daripada kedalaman 3 m. Indeks keaneckaragaman dan kemelimpahan ikan karang dipengaruhi oleh kuantitas individu dan jenis ikan yang ditemukan diterumbu karang. Populasi ikan yang tinggi dipengaruhi oleh kondisi lingkungan yang baik, ketersediaan makanan yang cukup, ketersediaan tempat berlindung dan sedikit predasi (Jones dkk., 2002). Kehadiran ikan di suatu terumbu karang dipengaruhi oleh persentase tutupan karang, relung dan fase ikan dalam hidupnya (Bell dan Galzin, 1984) sehingga pada tutupan terumbu karang yang tinggi akan tersedia relung dan pakan yang lebih banyak, akibatnya akan ditemukan kelimpahan ikan lebih tinggi.

Indeks keseragaman ikan pada kategori rendah hingga sedang, yang menunjukkan komunitas ikan secara ekologis pada kondisi
tertekan tingkat sedang, karena tutupan terumbu karang yang rendah sehingga terdapat jenis ikan tertentu yang mendominansi. Indeks dominansi menunjukkan adanya dominansi jenis tertentu dari tingkat rendah hingga sedang. Komunitas ikan pada kedalaman 10 m cenderung lebih beragam dan lebih rendah tingkat dominansi oleh jenis tertentu. Semakin tinggi nilai dominansi maka akan dapat memengaruhi kestabilan ikan dalam komunitasnya dan keseragamannya (Odum, 1998).

![Diagram Komposisi ikan target, indikator dan mayor berdasarkan jumlah individu (A) dan suku (B)](image)

Gambar 2. Komposisi ikan target, indikator dan mayor berdasarkan jumlah individu (A) dan suku (B)

Simpulan

Di kawasan terumbu karang Pulau Menjangan TN Bali Barat, tutupan terumbu karang berada pada kisaran 0,66–67,34% atau pada kondisi rendah sampai baik. Nilai indeks keanekaragaman ikan berkisar 0,8499–2,1360, indeks keseragaman berkisar 0,36–0,73 dan indeks dominansi berkisar antara 0,163–0,647. Jumlah ikan yang ditemukan sebanyak 5753 ekor, terdiri 88 spesies, berasal dari 62 genus dan 32 suku. Komposisi jenis ikan didominansi oleh ikan mayor baik dalam hal kelimpahan individu maupun sukunya yang berasal dari suku Pomacentridae, Labridae, dan Acanthuridae. Kelimpahan ikan per m² pada kedalaman 3 m berkisar 0,83–1,50, sedangkan pada kedalaman 10 m berkisar 0,76–2,68. Pada kedalaman 10 m cenderung lebih melimpah dan beragam daripada kedalaman 3 m. Kekayaan jenis ikan karang sangat terkait dengan keragaman variasi habitat, sedangkan kelimpahan ikan karang sangat ditentukan oleh kondisi terumbu dan lingkungannya.

Ucapan Terima Kasih

Penulis mengucapkan terima kasih kepada LPPM-UGM yang telah mendanai penelitian ini melalui anggaran hibah penelitian kolaborasi Dosen-Mahasiswa Tahun 2012. Ucapan terima kasih juga disampaikan kepada teman-teman "unyi" unit selama Universitas Gadjah Mada Yogyakarta yang telah membantu dari persiapan hingga pelaksanaan sampling di laboratorium alam, dan kepada
sementara yang telah banyak membantu kelancaran penelitian dan penulisan makalah.

Daftar Pustaka

