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Abstrak. Pada penelitian ini dikembangkan suatu metode baru yaitu hybrid firefly
algorithm-ant colony optimization (hybrid FA-ACO) untuk menyelesaikan masalah
traveling salesman problem (TSP). ACO memiliki komputasi terdistribusi sehingga dapat
mencegah konvergensi dini dan FA memiliki kemampuan konvergensi yang cepat dalam
pencarian solusi. Untuk memperbaiki solusi dan mempercepat waktu konvergensi,
digunakan metode kombinasi. Pendekatan kombinasi ini meliputi pencarian solusi dengan
FA dan pencarian global dengan ACO. Solusi lokal dari FA dinormalisasi dan digunakan
untuk menginisialisasi feromon untuk pencarian global ACO. Hasil dari hybrid FA-ACO
dibandingkan dengan FA dan ACO. Hasil penelitian menunjukkan bahwa metode yang
diusulkan dapat menemukan solusi yang lebih baik tanpa terjebak lokal optimum dengan
waktu komputasi lebih pendek.

Kata kunci: Traveling Salesman Problem, Firefly Algorithm, Ant Colony Optimization,
metode hybrid.

Abstract. In this paper, we develop a novel method hybrid firefly algorithm-ant colony
optimization for solving traveling salesman problem. The ACO has distributed
computation to avoid premature convergence and the FA has a very great ability to
search solutions with a fast speed to converge. To improve the result and convergence
time, we used hybrid method. The hybrid approach involves local search by the FA and
global search by the ACO. Local solution of FA is hormalized and is used to initialize the
pheromone for the global solution search using the ACO. The outcome are compared with
FA and ACO itself. The experiment showed that the proposed method can find the solution
much better without trapped into local optimum with shorter computation time.

Keywords: Traveling Salesman Problem, Firefly Algorithm, Ant Colony Optimization,
hybrid method.

1. Introduction

The traveling salesman problem (TSP) is a problem in combinatorial optimization
studied in operational research, computational mathematics, and artificial intelligence. It can be
described simply: a salesman need to find the shortest tour of visiting a set of cities and return to
starting city such that each city is visited exactly once. An exact solution can be obtained by
finding the possibility of all existing solutions. When a large number of cities is given, it will be
hard to get the exact solution, thus, the TSP is NP hard problem. There has not been a reliable
method to ensure the optimal solution.

Many methods have been developed to solve TSP such as branch and bound (Land and
Doig, 1960), Lin Kernighan local search (Lin & Kernighan, 1973), heuristic search (Jiang et al.,
2005), and dynamic programming (Jellouli, 2001). Besides, there are meta-heuristic methods
have been proposed, such that GA (Braun, 1991), PSO (Clerc, 2004), ACO (Dorigo et al.,
1996), and FA (Jati & Suyanto, 2011). These minimization problems of meta-heuristic methods
allow solutions to be found closer to the optimum but with high cost in time.
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One of meta-heurisctic methods is Ant Colony Optimization (ACO). ACO is an
algorithm that mimics the behavior of ant colonies. ACO was first developed to solve TSP.
ACO has distributed computation to avoid premature convergence. But, the more number of
cities, the more number of ants and iterations required. Therefore, it converges to the optimal
solution slowly.

Several methods are proposed to improve the convergence time of ACO method.
Hlaing and Khine (Hlaing & Khine, 2011) adopted candidate set strategy and a dynamic
updating rule to improve the convergence time of conventional ACO. While Hassan, et al
(Hassan, et al., 2013) proposed a method that uses the concept of ant colony system together
with the parallel search of genetic algorithm to obtain the optimal solution quickly for larger
TSP problems.

Another method to solve TSP is using Firefly Algorithm (FA). FA is based on the
flashing behavior of fireflies. On the application of TSP, each firefly represents one permutation
solution. Each firefly moves toward a brighter firefly. Since, a firefly moves with no direction,
FA easily trapped into local optimum.

In this regards to improve results and convergence time for solving TSP, we developed
a practical combination strategy for two evolutionary algorithms (FA-ACO) based on the ant
colony algorithm (ACO) and firefly algorithm (FA). FA is used for local search because of its fast
convergence time to find the local solution. While ACO is used for global search to avoid the local
optimum and find the optimal solution based on the local solutions by FA. In this way, we not only
avoid local optimum situation but also get the better result with faster convergence time.

2. Traveling Salesman Problem

TSP can be stated formally as follows (Lenstra & Rinnooy, 1975). Given a finite set of
cities N and element of distance matrix cij(i,j ¢ N) be the distance from city-i to city-j. The
objective function is formulated by Equation (1), where z runs over cyclic permutation of N and
7(i) is k-th city reached by the salesman from city-i. If N={1,2,...n} then an equivalent
formulation is Equation (2), where v runs over all permutation of N and v(k) is k-th city of a
tour.

min,. > ¢, (1)
ieN
n—1

min (Iz_l: Cv(i)v(i+1) + Cv(n)v(l)} (2)

3. Firefly Algorithm

Firefly algorithm (FA) is a meta-heuristic optimization algorithm and nature-inspired
algorithm based on the flashing behavior of fireflies. FA was first developed by Yang (Yang,
2010) for solving continuous optimization problem. FA has adapted by discretizing to solve
permutation problem. The evolutionary discrete firefly algorithm (EDFA) has been developed
for solving TSP by Jati and Suyanto (2011).

FA uses the following three idealized rules: (1) All firefly are unisex. (2) Attractiveness
is proportional to their brightness and decreases as the distance increases. For any two flashing
fireflies, the less bright one will move towards the brighter one. If there is no brighter one, then
a firefly will move randomly. (3) The brightness (light intensity) of a firefly depends on the
objective function.

The intensity of the light emitted by fireflies is affected by distance and the light
absorption by air. Light intensity will decrease if the distance is farther. Similarly, the air will
also absorb the light so that the light intensity will decrease again. These two factors that cause
fireflies limited vision.
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Figure 1 illustrated fireflies’s movement. Each firefly represents one different solution
initially. The closer to the optimum solution, the brighter the light emmited by fireflies. A firefly
moves toward the brightest one. In the end, fireflies gather at the same solution.
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Figure 1. Illustration of fireflies’ movement

3.1. Representation of firefly

A firefly represents one permutation solution of TSP as illustrated in Figure 2. In the
representation, an element of an array represents a city and the index represents the order of a
tour.

[3]4]2]8]9]7]5]10]1]6] City
1 2 3 4 5 6 7 8 9 10 Order
Figure 2. Permutation representation of TSP solution

3.2. Light intensity

Light intensity is a value that represents the objective function of a problem. Since the
objective function of TSP is to find a route with minimum distance, the light intensity is the
invers of total distance produced by a firefly. A firefly which has less distance route, will have a
brighter light intensity. Light intensity of a firefly x is calculated as Equation (3).

1
~ totaldistance(x)

I(x) ©))

3.3. Distance

The distance between firefly-i and firefly-j can be defined as the number of different
edges between them. The distance can be calculated by using Equation (4), where r is the
distance between any two fireflies, A is the total number of different edges between two
fireflies, and N is the number of cities. Equation (4) scales r in the interval [0,10] (Jati, et
al,, 2013). In Figure 3, four edges 2-8, 8-9, 9-7, 5-10 in firefly-i do not exist in firefly-j. By
using Equation (4), we get the distance between firefly-i and firefly-j is 4.

r=A 10 @)
N

firefly-i |34 [2[8]9]7[5]10]1]6]

firefly-j [3]4[2[7]5]9]8]10]1]6]

Figure 3. Permutation representation of TSP solution

3.4. Attractiveness

The attractiveness of firefly-j seen by firefly-i 5(i,j) can be any monotonic decreasing
function shown as Equation (5), where f(i,j) is the attractiveness of a firefly when seen by other
firefly at distance r, f is the brightness (light intensity) of a brighter firefly, and v is a fixed light
absorption coefficient.
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3.5. Light Absorption

Light absorption coefficient y determine how fast the convergence of EDFA. It also
determines the characteristics of the problems. If y—0, then $(i,j) = fo. Thus, the attractiveness
of a firefly will not decrease when viewed by another. Whereas if y—oo, then the attractiveness
of a firefly will be close to zero. In this case, a firefly cannot be seen. Hence, the selection of y
plays an important role because it will affect the attractiveness of fireflies. In the EDFA, the
coefficient y is in the interval [0.01, 0.15] (Jati, et al., 2013).

3.6. Movement
The movement of a firefly-i attracted to another more attractive firefly-j is determined

by Equation (6), where X; is the step that must be taken by firefly-i to move toward firefly-j and
A is the total number of different edges between two fireflies i and j.

x, =random(, A) (6)

Since a firefly in EDFA has no direction to move and represents a permutation solution,
it moves using inversion mutation. Thus, it does not deform the previous permutation. This
movement makes existing solutions in the firefly are changed. Each firefly will move using
inversion mutation for m times. It means, each firefly has m new solutions. After p fireflies
move and produce pm new solutions, then the p best fireflies will be selected as the new
population.

Figure 4 shows the inversion mutation of a firefly. Point P, is start point of the inversion
mutation. If a firefly moves randomly, P; is determined randomly. If a firefly move towards
another, P1 is determined by the first different edges of both fireflies.

Py
firefly-i [ 3[4 2[8]9]7[5]10]1]6]

|
firefly-i© |34/ 2[5[7]9]8[10]1]6|

Figure 4. Inversion mutation with length movement (step) = 3

4. Ant Colony Optimization

Ant Colony Optimization (ACO) is an optimization algorithm that mimics the
behaviorof ant colonies. ACO was first developed by Dorigo (Dorigo, et.al, 1996) to find the
shortest path. In the ACO, a total of m ants cooperate and communicate using pheromones. In
order to solve TSP, each artificial ant has the following characteristics: (1) Ant chooses the city
that will be visited based on the probability function called transition rules. The function
depends on the cities distance and the amount of trail present on the connecting edge. (2) Ant is
not allowed to visit the same city before a tour is completed. This will be controlled by the tabu
list. (3) When an ant finish a tour, it lays a trail of pheromones on each edge (i, j) which have
been visited.

Ants use substances called pheromones in communication among individuals. Ants
would leave pheromones on the ground thus marking the path with pheromones trail. When
there are other ants running randomly, the ants will be able to detect pheromones trail and
decide a way that will be passed through the magnitude of probability. Then, the ants also left a
trail of pheromones that magnifies the pheromone levels on the path. The more number of ants
follow the trail, the more attractive the trail to be followed. Probability ants choose the path
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increase with the number of ants before choosing the path. Figure 5 represents the ants’
movement.

Figure 5. Illustration of ants’ movement

4.1. Transition rule

Each ant is placed in a random departure city. Ants will visit one by one city using
transition rule and produce a tour. Given N is the set of cities that N = {1, 2, ..., n} and m be the
total number of ants. Probability for ant-k from the city-i to city-j is defined as Equation (7),
where zj (t) is the intensity of trail on edge (i,j) at time t, visibility #;; is the inverse distance (7ij=
1/d;;) and Uy is the set of cities that have not been visited by ant-k.

[Tij (t)}a [Uu (t)]ﬁ
py =1 2. [ 7 (t)]a 77 (1)

uely

,jeu
TR ™

0, otherwise

The visited cities of each ant are saved in the tabu list. When a tour is completed, the
tabu list is used to compute the ant's current solution. The tabu list is then emptied and the trail
intensity is updated using global pheromone update rule.

4.2. Pheromone update

The pheromone update rule includes the evaporation on all edges and the addition of
pheromones on the edges that are part of the tour. The shorter tour is produced, the more
pheromones left by ants on the edges. It implies the edges with a lot of pheromones would be
more desirable in the next tours.

After each ant produces a tour of n cities, the intensity of trail will be updated with the
global pheromone update rules defined as Equation (8), where p is the coefficient such that (1-

p) represents the evaporation of trail between time t and t+n, and Ari‘; is the quantity of

pheromones laid by ant-k on the edge (i, j) is formulated by Equation (9), where Q is a
constant and L is the tour length of ant-k. The shortest route found by the ants is saved and the
tabu list is emptied to save the cities on the next tour. This process will be repeated until
maximum condition.



60 Jurnal Buana Informatika, Volume 7, Nomor 1, Januari 2016: 55-64

T (t+n)=pTij (t)+ZATilJ< :
k=1
k Q ifantk uses (i, j)
At =1 L !
0, otherwise

5. Hybrid FA-ACO

To minimize the time of convergence which is due to the high number of the agents and
iterations, we proposed a hybrid method with the combination of FA and ACO with a lower
number of ants and fireflies as possible. In this method, FA plays as local search and ACO used
to find the global solution. FA is implemented to find a local solution because the FA has fast
convergence capability.

Figure 6 shows the phase of the proposed method and explained as follows. Firstly, FA
is implemented to find p local solutions of pm + p solutions. The local solutions is obtained by
generating p random firefly as first population. Then, calculate the attractiveness of each firefly
when seen by another firefly. Before that, calculate the light intensity and the distance between
two fireflies. Each firefly finds the most attractive firefly and moves toward. A firefly will move
m times using inversion mutation. Finally, there are pm + p solutions. Choose p best fireflies
from pm + p solutions as a hew population for next iteration.

Local search by FA

Generate p random fireflies |

Calculate the light intensity L Global search by ACO
- = Normalization and
of each firefly S T
‘ Initialization Initialization phase
L
Calculate the distance ) l Normalization of local solution | [
between two fireflies l | Each ant makes the tour |
l Initialization of pheromone
Find the most attractive ‘ | Update trail
firefly for each firefly
Find the most attractive
firefly for each firefly

Figure 6. Phase of proposed method

Secondly, in the end of FA’s iteration, there will be p local solutions. From the p local
solutions, do normalization by finding g different representations of firefly as candidate tours.
Fireflies which have the same permutation solution will be counted as a single solution. Then,
set initial trail of pheromone by adding the pheromone on the edges which are part of the q
candidate tours. Edges that belong to best solution normalization will get the most pheromone
addition. Edges on second best solution get less pheromone than the first one. Thus, the most
frequently passed edges on candidate tour will get the most pheromone addition. This initial
trail will be used to run ACO. By setting the initial trail, it will be minimize the agents and
iterations for ACO. Third, ACO implemented to find the global solution. The output is the
shortest tour. The pseudocode of the proposed method is shown as Code 1.
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Code 1. Pseudocode hybrid FA-ACO for TSP

Input:
FA: p number of fireflies, light absorption y, m moves.

k
ACO: n number of ants, parameter o, B, p coefficient, Q constant, Z&Tu —-0

Begin
% Local search by FA
Generate p random fireflies.
Calculate light intensity of p fireflies based on the objective function.
Repeat
temp = p firefly;
Calculate the distance of two fireflies using Equation (4);
Find attractiveness varies at distance r using Equation (5);
for i = 1 to p do (p fireflies)
Get most attractive firefly j, where i#j
if there is most attractive firefly j, move firefly i toward j for m times; add
solution to temp;
else move firefly i random for m times; add solution to temp;
end
end
Evaluate new solution and update light intensity;
Rank the fireflies in temp and select p best firelies.
until (stopping condition is satisfied)
% initialize pheromone for ACO based on the best solution found by FA
Add pheromone on each edge of p firefly.
% Global search by ACO
Place n ants on n city
While (stopping condition is not satisfied)
for k = 1 to n do
Place the starting town of ant-k on tabu k(1)
end
repeat
for k = 1 to n do
Choose city-j with probability in Equation (7)
Move ant-k to the city j
Insert city j in tabux(s)
end
until tabu list is full (tabux(n))
for k = 1 to n do
Move the ant-k from tabux (n) to tabux(l)
Compute the length Lx of the tour described by ant-k
Calculate pheromone addition produced by ant-k
end
Update the shortest tour found

k
Update trail set ATij :0

Empty all tabu list
end
Print the shortest tour
End

6. Experimental Results

The experiment is examined for four TSP instances obtained from TSPLIB. The type of
TSP instances in TSPLIB is based on Euclidian distances, wherein a TSP instance provides
some cities with their coordinates. The number in the name of an instance represents the number
of provided cities. For example, ulysses16 provides 16 cities with their coordinates.

The experiment is implemented using Matlab and run on computer with specification
Processor Intel(R) Core(TM) i7 CPU 2.20 GHz and 4.00 GB RAM. Table 1 and Table 2 present
the result of FA, ACO, and hybrid FA-ACO applied to the problems. The results reported are
averaged after running the experiment 10 times.

In order to evaluate the performance of the proposed method, we compare the solution
obtained by the method with best solution from dataset. From Table 1, hybrid FA-ACO obtains
the nearest solution to the best solution for ulyssesl6, oliver30, berlin52, and pr76. For
ulysses16, oliver30, berlin52, hybrid FA-ACO get the exact solution. It is noticed that hybrid
FA-ACO vyield better solution than FA and ACO for all problems.
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Table 1. Comparison of best solution known hybrid FA-ACO with FA and ACO

Problem Best Best solution known
Solution FA ACO Hybrid FA-ACO
ulysses16 6859 6870 6909 6859
oliver30 412 412 412 412
berlin52 7542 7718 7570 7542
pr76 108159 129550 117174 110337

Table 2. Comparison hybrid FA-ACO with FA and ACO. Results are averaged over 10 runs.

Problem FA ACO Hybrid FA-ACO
Average Average Average Average Average Average
solution computation time solution computation time solution computation time

ulysses16 6981.4 1.30057 6925.5 5.8429 6890 3.61989

oliver30 434.1 1.39531 4164 7.6767 415 3.98507

berlin52 85494 8.4653 7720.1 78.053 7719.8 23.8794

pr76 137561.3 15.2506 118951.9 126.709 115339.5 46.1076

Table 2 shows the average solution and average time converge after running the
experiments 10 times. From Table 2, average solution by FA is higher than ACO. To the fact
that FA is easily trapped into local optimum. Meanwhile, hybrid FA-ACO get the lowest
average solution for all problems. Related to average computation time, hybrid FA-ACO runs
faster than ACO, but slower than FA.

For oliver30 problem, the parameter settings are described as follows: light absorption y
=005 a=1 =5 p =005 and Q = 100. For running FA, we used 7 fireflies with 7
movements and 700 iterations. For runnning ACO, 30 ants and 500 iterations are required.
While for hybrid FA-ACO, the local search by FA needs 4 fireflies with 4 movements and 400
iterations, the global search by ACO requires 20 ants and 300 iterations.

Figure 7 shows the comparison of convergence time among three methods for oliver30
problem and more detailed shown as Figure 8. FA has the fastest time convergence but the
worst solution while hybrid FA-ACO get the best solution and faster convergence time than
ACO. It means that FA has fast speed to converge but easy trapped into local optimum. These
results clearly showed that hybrid FA-ACO can find the solution much better without trapped
into local optimum with shorter computation time.

1000 T T T T T T T T T
— = —Hybrid FA-ACO
FA

ACO
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800 —
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Figure 7. Comparison of convergence time for oliver30
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Figure 8. More detailed comparison of convergence time for oliver30

7. Conclusion

In this paper, we presented the hybrid FA-ACO method for solving the traveling
salesman problem. The proposed method tries to combine FA for local search and ACO for
global search. The local solution obtained by FA is used to initialize the pheromone for global
search by ACO. The goal is to minimize the time of convergence with minimum number of the
agents and iterations.

The experiment results showed that the hybrid FA-ACO is able to provide the better
solution than FA and ACO. In our experiment, the proposed method can find the best solution
without trapped into local optimum. In addition, it performs well with shorter computation time.
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