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Abstrak. Buah-buahan seperti pisang dan mangga dipanen setelah mencapai tingkat
kematangan tertentu. Secara tradisional, petani mengandalkan pemeriksaan manual untuk
menentukan kematangan, yang merupakan proses yang melelahkan, memakan waktu,
mahal, dan subjektif. Penelitian ini mengusulkan pendeteksi kematangan buah pisang dan
mangga otomatis menggunakan teknologi visi komputer. Pisang dan mangga yang
dideteksi dibagi menjadi dua kelas, yakni matang dan belum matang. Arsitektur YOLOVS
digunakan sebagai pendeteksi. Tiga varian YOLOvS, YOLOvSn, YOLOvVSs, dan
YOLOvSm, diinvestigasi kinerjanya. Hasil penelitian menunjukkan bahwa YOLOvVSs
mencapai kinerja keseluruhan tertinggi, dengan recall 0,9991 dan mean Average Precision
(mAP) 0,8897. Sementara YOLOvSm mencapai presisi tertinggi yaitu 0,9995, YOLOvSn
muncul sebagai model terkecil, sehingga cocok untuk digunakan pada perangkat dengan
sumber daya terbatas.

Kata Kunci: mangga, pisang, visi komputer, YOLOVS

Abstract. Fruits like bananas and mangoes are harvested after reaching a specific ripeness
stage. Traditionally, farmers rely on manual inspection to determine ripeness, a process
that can be tedious, time-consuming, expensive, and subjective. This work proposes an
automatic bananas and mangoes ripeness detector utilizing computer vision technology.
The detected bananas and mangoes fall into two classes: ripe and unripe. The state-of-the-
art YOLOVS architecture serves as the core of the detector. Three YOLOVS variants,
YOLOvSn, YOLOVSs, and YOLOv8m, were investigated for their performance. Results
show that YOLOVSs achieved the highest overall performance, 0.9991 recall, and a mean
Average Precision (mAP) of 0.8897. While YOLOv8m achieved the highest precision of
0.9995, YOLOV8n is the most miniature model, making it suitable for deployment on devices
with limited resources.
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1. Introduction

Fruits are essential to a healthy diet, providing humans with vital nutrients for growth and
overall well-being [1]. The quality of the fruits produced must meet a good standard and be
maintained at a high standard, as it is crucial from the economic value perspective [2]. Plenty of
fruits are sold in the market, such as bananas, mango, watermelon, dragon fruit, pear, pineapple,
and melon. The harvested fruits are then sold to a market, store, or food factory for further
consumption. Traditionally, the farmers determine the ripeness of the fruits manually [1], [3].
However, the problems that arise in determining the ripeness manually are that the job is tedious,
time-consuming, expensive, and on some subjective to the examiner [2], [4], [5], [6]. To tackle
these problems, it is imperative to build an automated ripeness of fruit classifier using state-of-
the-art technology.

Over the years, computer vision has found its way to tackle various tasks, including
agriculture, related explicitly to fruit ripeness [2], [3], [4], [7]. Computer vision consists of three
main tasks: image classification, object detection, and object segmentation. These tasks are
accomplished by utilizing deep learning models, such as the renowned Convolutional Neural
Network (CNN) [8], [9]. A variety of Convolutional Neural Network architectures have been
proposed since the first LeNet to the likes of VGGs, MobileNets, EfficientNets [9], and You Only
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Look Once (YOLO) [10]. The latter currently holds the state-of-the-art status as an object detector
architecture and has been applied for various purposes.

Deep learning has emerged as a powerful computer vision technique for fruit detection in
images and videos. This technology enables the localization and classification of fruits, with
applications ranging from ripeness recognition and yield prediction, automation in harvesting
robots, fruit quality assessment, and fruit estimation and counting [4]. Computer vision offers a
valuable approach to several aspects of fruit production, including determining ripeness,
harvesting, and counting. One key benefit of this technology is its non-destructive nature [6],
eliminating potential damage to the fruit. Additionally, computer vision enables automation [4],
streamlining these processes and improving efficiency.

Among the variety of fruits, this work appoints two specific fruits, banana and mango.
After rice, maize, and wheat, bananas rank as one of the vital crops for human consumption
worldwide and are widely consumed across Africa, Latin America, and Asia [6]. Banana ripeness
can be determined through manual visual inspection. However, a non-destructive approach must
be made through computer vision [6], [11]. Another fruit known commercially is the mango fruit
[12]. The ripeness of mango can be visually known; however, manually classifying the ripening
stage of mango can lead to inconsistencies [13].

This work proposes an automatic system for assessing the ripeness of bananas and
mangoes using the cutting-edge YOLO architecture. This approach enables non-destructive and
automated ripeness assessment by developing a model to detect and identify fruit type and
ripeness stage. The object detection architecture used in this work is the current YOLOVS,
specifically investigating light architectures, such as YOLOv8n, YOLOvS8s, and YOLOvS8m.
These light architectures offer the potential for deployment on resource-constrained devices such
as Raspberry Pi.

2. Literature Review

Research on applying computer vision to the agricultural sector has been done throughout
the years to determine fruit maturity. Worasawate et al. developed a supervised and unsupervised
machine learning approach to evaluate the maturity stage of one of the mango varieties called
“Nam Dok Mai Si Tong” [12]. To visually represent the distribution of biochemical information
regarding mangoes and identify potential outliers, the authors employed the k-means
unsupervised learning algorithm. Subsequently, the authors leveraged three supervised machine
learning techniques commonly used in mango ripeness stage classification: Feedforward
Artificial Neural Network (FANN), Support Vector Machine (SVM), and the Gaussian Naive
Bayes (GNB). The GNB, SVM, and FANN achieved an average accuracy of 73%, 75%, and 85%,
respectively. Saragih and Emanuel proposed a method for classifying the ripeness of bananas
based on images using the MobileNet V2 and NASNetMobile models. [14]. The methodology
employed in their research was utilizing transfer learning by fine-tuning both previously trained
models. The findings demonstrate that the MobileNet V2 model has attained a remarkable
accuracy of 96.18% in correctly determining the maturity phases of bananas. Xiao et al. proposed
a maturity stage identification of apple fruit using Transformers and YOLOS architecture [15].
The best model achieved by YOLO, although the transformer, specifically the Swin Transformer,
achieved a fast detection rate. The average precision of the YOLOvVS model is above 0.999.

Xiao et al. proposed the identification of apple and pear ripeness using YOLOVS5 [7]. In
their work, they incorporated transformers into the YOLO model. Four YOLOVS variations were
investigated: YOLOvS5s, YOLOv5m, YOLOvVSI, and YOLOv5x. The YOLOvSs achieved the
highest of 0.9995 in terms of AP50 and 0.9390 in terms of AP50-95. The YOLOv5m, YOLOvSI,
and YOLOv5x achieved a higher result in terms of AP50, which is 0.9996; however, with a
different result in terms of AP50-95: The YOLOv5m achieved 0.9540, YOLOvVS5I achieved
0.9850, and YOLOv5x achieved 0.9770. Novian et al. [16] investigated using deep learning to
detect palm oil fruit bunch (FFB). The overall performance of four distinct deep learning
architectures was compared: InceptionV2, ResNet50, ResNet101, and Inception ResNet V2.
These architectures are convolutional neural networks (CNNs) known for their effectiveness in
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image recognition and object detection tasks. The results were promising, with all four models
achieving F1 scores exceeding 80%. Notably, InceptionV2 and ResNet50 performed
exceptionally well, reaching a peak F1 score of 90%.

In the work of Xu et al., a YOLO-based model was proposed to detect the Jujube fruit
and determine its ripening state [4]. The focus of the proposed model was to be lightweight yet
still maintain the robustness of the model. A dataset consisting of 1959 was used to train each
model. The proposed model (YOLO-Jujube) achieved 88.8% average precision (AP),
outperforming YOLOv3, YOLOv4, YOLOVS5s, and YOLOvV7. Xiao et al. proposed an approach
to determine the maturity of fruits, specifically apple and pear fruits, using the YOLOvV8 model
[17]. The authors investigated three varieties of YOLOVS, which are YOLOv8n, YOLOv8m, and
YOLOVS8x. The results show that the highest mAP50-95 are 0.993, 0.994, and 0.993, respectively,
while all models achieved mAP50 of 0.995. Those results were achieved after training the models
for 100 — 200 epochs.

The previous works have shown that the deep learning approach for object detection was
successful when applied to detecting fruit and determining ripeness. However, several aspects can
be improved from the previous works, such as the work of [15], the environment in which the
apple fruit placed was under control. In real-world cases, the fruit exists on a plantation with
varying backgrounds. Previous works incorporated various object detection models. However,
investigation is needed against newer state-of-the-art models, as the newer models offer better
performance than the last. Although the work of Xiao et al. [17] utilized the YOLOVS, one of the
investigated models is the largest in the YOLOvVS variety, the YOLOv8x. Using a large model
limits the model being deployed on a resource-constrained computer. For those reasons, this work
investigates the use of YOLOVS, specifically the lightweight variations, such as YOLOv8n,
YOLOVS8s, and YOLOv8m.

3. Research Method
3.1. Dataset

Training a model requires a dataset that shows the model in which a banana or mango is
considered unripe and ripe. This work employs an existing dataset called the “Mango and Banana
Dataset” [18]. The dataset consists of four classes: raw, raw mango, ripe banana, and ripe mango.
Five thousand colored images have been categorized into training and testing. The training group
comprises 80% of the total images, while the test group comprises 20%. Figure 1 displays a
selection of samples collected from the dataset.

Ripe and Unripe Banana Ripe and Unripe Mango

Figure 1. Samples of the ripe and unripe bananas and mangoes from the dataset [18]

As shown in Figure 1, the images were taken under various indoor or outdoor lighting
conditions. This reflects the real-world scenarios in which a model is required to detect the banana
or mango in varying lighting conditions. The dimension of each image is 640 x 480 pixels with
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corresponding metadata that specifies the bounding box coordinates for each fruit within the
image. Both training and testing images underwent preprocessing steps to ensure the size
complied with the model. The process consists of resizing, specifically to the size of 640 x 480
pixels. Data augmentations are applied to the training images to increase the variety and the ability
to generalize better.

Data augmentation is one of the techniques used to produce a variation of training images,
thus significantly increasing the number of training images and preventing the model from
overfitting during training [19]. Data augmentation is crucial to training a model, as it will
introduce variations to banana and mango within an image, thus creating a robust model. This
work uses several augmentation techniques, such as horizontal and vertical flipping, rotation,
blurring, noise, and brightness. Each method was implemented randomly to the image. Figure 2

displays the outcomes of augmentation.
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Figure 2. Samples of augmentation were applied to the training set [18] with the
corresponding bounding boxes

As shown in Figure 2, an image was transformed into several variations through
augmentation. The purple boxes indicate the object of interest in each image, which is the raw or
ripe bananas and mangoes. As we applied the transformations to each image in the dataset, the
resulting pictures grew more extensive from the original 5000 images into 8000 images, with a
total of 8,096 annotations. This was all accomplished using the Roboflow platform. The following
Figure 3 shows the overall annotation heatmap of the dataset.

Figure 3. Annotation heatmap of the mango and banana detection dataset

The annotation heatmap shown in Figure 3 shows that the mango or banana objects
contained in the dataset are mainly located in the center of the image. However, the blue-colored
areas indicate that several images contain mango or banana objects that deviate from the image’s
center. This suggests that the mango or banana’s location within the dataset image varies.

3.2. Method

Computer vision has continuously improved over the years to tackle three main tasks:
image classification, object detection, and object segmentation [20]. This work aimed to develop
an object identification model to identify raw or ripe bananas and mangoes accurately. Object
detection aims to accurately determine the location and identity of a particular object inside an
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image or frame from a webcam [20]. The output of object detection is in the form of bounding
boxes that specify the spatial coordinates of the object of interest. Object detection has found
widespread applications in various fields, including industry [20], [21], and agriculture [22].

Various deep learning architectures were suggested to address the object detection
challenge [8], [9]. The models that are used for object detection are from the early OverFeat to
the rise of Spatial Pyramid Pooling net (SPP-net), Region-based CNN, Single-Shot Multibox
Detector (SSD), Faster R-CNN, Fast R-CNN, and the renowned You Only Look Once model
(YOLO) [9]. The latter has gone through various improvements since its inception in 2015. The
initial YOLO architecture suggested by Redmon et al. treated detecting objects as a regression
problem and partitioned the image into a grid of squares [10]. The YOLO object detection
algorithm has rapidly evolved, with numerous versions released to improve accuracy, speed, and
model size. Newer models like YOLOv4, YOLOvV6, and YOLOVS prioritize efficiency and tackle
various computer vision tasks like classification, detection, and segmentation [10]. The recent
addition to the YOLO family was the YOLOVS, released in the early 2023 [23]. YOLOVS has
reached state-of-the-art status and can tackle the three main tasks of computer vision:
classification, detection, and segmentation. YOLOVS also offers variations of the model, ranging
from the most miniature model, YOLOvS8n, to the largest model, YOLOvS8x. The structure of
YOLOVS is shown in Figure 4.
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Figure 4. YOLOVS structure
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In this work, the YOLOvVS8 was selected as the architecture to detect banana and mango
fruits based on their ripeness, considering it the newest object detection model. The comparison
of performance and inference speed between YOLOVS and the previous version has become
another supporting factor in deciding on the YOLOvS8 model. This work investigates the
performance between three YOLOVS variations, namely YOLOv8n, YOLOvS8s, and YOLOv8m.
Their size primarily drove the selection of those models. YOLOv8n to YOLOv8m are relatively
small, with a base size of 6 MB, 21 MB, and 50 MB, respectively. Despite being small, these
models have achieved higher performance than the previous YOLO models. Resource efficiency
gives the possibility of those models intended for deployment on a device with limited resources,
such as the Raspberry Pi.

As shown in Figure 4, YOLOVS is partitioned into three components: the backbone, neck,
and head. These components extract, fuse multiple features, and produce prediction outputs [21].
The primary function of the feature extraction network is to extract distinct scale features from
images generated by the C2f and SPPF modules. The C2f module decreases the number of
convolutional layers in the network by one, compared to the original C3 module, resulting in a
lighter model. SPPF streamlines the network layers by leveraging SPP (spatial pyramid pooling)
to remove unnecessary operations and enhance the speed of feature fusion. The detection layer
accurately forecasts the targets’ positions, categories, confidence ratings, and details.

Evaluating how well the model performed involved utilizing metrics such as Precision,
Recall, as well as mean Average Precision (mAP) [8], [9]. In object detection, precision represents
the ratio of accurately recognized objects to a model’s total number of detections. In contrast,
recall represents the proportion of all actual objects (ground truths) that were correctly detected.
Finally, mean Average Precision (mAP) summarizes the overall detection performance across all
object classes. It is calculated by averaging the Average Precision (AP) scores obtained
individually per class. These AP scores consider both precision and recall for each class [9].
Equations 1, 2, and 3 show the Recall, Precision, and mAP formula. TP represents the proportion
of actual positive cases, FN represents the proportion of false negative cases, and FP represents
the proportion of false positive cases.

TP TP

Recall = = 1
TP+FN all ground truths ( )
. . TP TP
Precision = = - )
TP+FP all detections
1
mAP = %L, AP; 3)

4. Results and Discussion

This work investigates the performance of three YOLOv8 models. Three models were
chosen for comparison: YOLOv8n (YOLOv8 nano), YOLOv8s (YOLOvS small), and
YOLOv8m (YOLOv8 medium). These models represent the more minor YOLOVS variants, with
base sizes of 6 MB, 21 MB, and 50 MB for YOLOv8n, YOLOv8s, and YOLOv8m, respectively.
These models could be deployed using resource-constrained devices, such as Raspberry Pi. Each
model was trained for 200 epochs, with AdamW selected as the optimizer and a learning rate of
107, following the work of [24] and [25], as the results in those works proved satisfactory. The
training was done using a Tesla P100 GPU in the Kaggle workspace. The performance
comparison of each model is shown in Figure 5.

The results in Figure 5 show that YOLOv8n improves consistently for 100 and reaches
the maximum precision of 0.9991 on the training data for the remaining 100 epochs. In terms of
recall, the YOLOVS8n fluctuates for more than 100 epochs. The recall stabilizes for almost 70
epochs before improving significantly to the maximum of 0.999 and a sudden drop at the end.
Regarding mAP50, YOLOv8n improves for the first 20 epochs, reaches its maximum of 0.995,
and stays stagnant for the remaining epochs until 200 epochs. Finally, the mAP50-95 metric
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exhibits fluctuations throughout the training process. However, it demonstrates an incremental
increase, achieving a peak score of 0.8854.

The YOLOv8s model exhibits consistent improvement in precision for all object classes,
reaching a peak of 0.9994 after exceeding 100 epochs. However, a slight decline is observed at
the very end of training. Regarding recall, the model demonstrates improvements throughout
training, punctuated by occasional drops. Notably, two significant drops occur during the process.
Despite these fluctuations, recall ultimately reaches a maximum of 0.9991 after 100 epochs.
Unfortunately, the recall did not improve for the remainder of the training. The mAP50 metric for
YOLOVS8s initially exhibits fluctuations during the early stages of training. However, after
surpassing 30 epochs, the curve stabilizes, reaching a peak of 0.995. Lastly, the mAP50-95
improves for the course of training. However, a significant drop occurred after the 90" epoch.
After the drop, the metric improved for the rest of the training and achieved a maximum of 0.8897.

YOLOv8n
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Figure 5. Performance comparison between YOLOv8n, YOLOvVS8s, and YOLOv8m in
precision, recall, mAP50, and mAP50-95

The last model is the YOLOv8m, and the training process can be observed in Figure 4.
Similar to the previous experiments, the model fluctuated during the training course. However,
the training did not last for 200 epochs; it only lasted for 161 epochs, stopped by the EarlyStopping
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method, as there is no further improvement. The maximum precision achieved by YOLOvV8m is
higher than the previous models, 0.9995, after training for 60 epochs. Conversely, the recall
attained a maximum of 0.9985 after training for 20 epochs, which is faster than the previous
experiments using YOLOv8n and YOLOvS8s. Like the YOLOv8n models, the mAP50 reaches
stability only after several epochs, reaching the maximum of 0.995. In terms of mAP50-95, the
graph shows stable improvement with a slight drop in the middle of the training. However,
YOLOvV8m achieved a maximum of 0.888 in mAP50-95, which is lower than the previous
YOLOVS8s. The training results show that each model achieved acceptable performance, with
minimum difference.

Row_Banano 0.87

f_Bono

Rau na. 0 40}
Raw_Banana 0.6 Ripe_Banana 0.52

Raw_Baana 0.46

Raw_Baana 0.38

(e) (d)

Figure 5. Results of detecting banana or mango based on the ripening stage on the image
(2)[26], (b)[18], (¢)[27], and (d)[28]

The model detects mango or banana in this last section on an image. The model used is
the YOLOv8n. The model receives the image as an input to detect bananas or mangoes in an
image. However, before further processing, the image is resized into 640 x 640 pixels, as this is
the size specified while training the model; this stage is known as a pre-processing stage. The
resized image is then fed into the model. The YOLOv8 model will then process the input image
using the layers within, and lastly, the model will generate the coordinate of bounding boxes of
the detected mangoes or bananas and the respective label. Figure 5 shows the results of using the
YOLOVS8n for several pictures. The pictures were taken from the test set in [18], while others
were taken from Unsplash (Figure 5 (a) [26], Figure 5 (c) [27], and Figure 5 (d) [28]). The fruits
are positioned under varying conditions, such as near or further from the camera. The detection
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results show that the YOLOv8n model can detect raw or ripe bananas and mangoes inside the test
images. The confidence of each detection is acceptable as most objects differ from the training
set. Although the model achieved satisfactory results, there are several drawbacks. In Figure 5 (a)
[26], the model couldn’t detect a clipped mango on the top left, right, or middle. In Figure 5 (c)
[27], the model couldn’t detect one of the ripe mangoes and falsely identified one on the top right
as a ripe banana. Lastly, in Figure 5 (d), the model falsely detects unripe bananas as ripe. These
results indicate potential areas for improvement in the model to address its shortcomings.
Expanding the dataset to include a wider variety of banana and mango shapes (e.g., clipped,
stacked) and encompassing different mango or banana varieties would likely enhance detection
accuracy. Additionally, modifications to the model could be explored to improve its ability to
detect small objects, such as fruit located farther from the camera.

5. Conclusions

This work proposes a detector for identifying the ripeness stage of bananas and mangoes.
Three YOLOV8 models (YOLOv8n, YOLOVS8s, and YOLOv8m) were trained on a mango and
banana dataset. All models achieved promising concerning mean Average Precision (mAP),
recall, and precision. YOLOv8m achieved the highest accuracy (0.9995), followed by YOLOv8s
(0.9994) and YOLOvV8n (0.9991). YOLOvS8s achieved the highest recall (0.9991), followed by
YOLOV8n (0.9990) and YOLOV8m (0.9985). In terms of mAP, YOLOvS8s again performed best
(0.8897). Notably, the models exhibited minimal performance differences across most metrics.

In terms of size, YOLOvS8n is the smallest, with satisfactory performance compared to
the YOLOvS8s and YOLOv8m, thus offering its possibility to be deployed on resource-constrained
devices. The YOLOvVS8n was used to detect several test images. However, the analysis identified
some areas for improvement with YOLOvVS8n during real-world testing. These included occasional
false positives (misidentifying objects) and limitations in detecting clipped fruit or fruit positioned
farther from the camera. These findings highlight potential areas for further research. Expanding
the dataset with various images, including clipped fruit and varying distances, could improve
detection accuracy. Additionally, exploring model modifications to enhance small object
detection capabilities is warranted.
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