
Alamsyah, Malicious JavaScript Detection using Obfuscation Analysis and String Reconstruction Techniques 23

Malicious JavaScript Detection using Obfuscation Analysis and String
Reconstruction Techniques

Alfin Gusti Alamsyah*1, Latius Hermawan2

Department of Informatics, Faculty of Science and Technology, Catholic University of Musi Charitas
Jl. Bangau No.60 Palembang, Sumatera Selatan, Indonesia

Email: 1alfinalamsyahhh@gmail.com, 2tiuz.hermawan@gmail.com

Abstrak. Deteksi Malicious Javascript dengan Analisis Obfuscation dan Teknik String
Reconstruction. Mendeteksi JavaScript berbahaya masih menjadi tantangan yang terus
berlanjut dalam keamanan siber, terutama karena teknik obfuskasi semakin canggih.
Penelitian ini menyajikan kerangka kerja deteksi model ganda yang memisahkan analisis
obfuskasi dan perilaku berbahaya untuk meningkatkan akurasi. Model pertama mendeteksi
skrip yang diobfuskasi menggunakan 20 fitur seperti entropi, rasio string, dan sintaks.
Model kedua mengklasifikasikan kode berbahaya berdasarkan 92 fitur, yang
menggabungkan output dari model pertama dan string yang bermakna secara semantik
yang direkonstruksi melalui teknik baru yang disebut pencarian atomik. Kedua model
tersebut menggunakan algoritma random forest dan dilatih pada set data yang seimbang
dari sampel JavaScript berlabel. Hasil eksperimen menunjukkan kinerja yang tinggi,
dengan model obfuskasi mencapai akurasi 99,1% dan model deteksi berbahaya mencapai
99,52%. Dengan secara eksplisit menangani obfuskasi dan mengintegrasikan rekonstruksi
semantik, pendekatan yang diusulkan menawarkan solusi yang dapat diskalakan dan efektif
untuk mendeteksi ancaman tersembunyi di lingkungan web modern.
Kata Kunci: JavaScript disamarkan, kode berbahaya, pembelajaran mesin, random
forest, rekonstruksi string.

Abstract. Detecting malicious JavaScript remains a persistent challenge in cybersecurity,
particularly as obfuscation techniques become more sophisticated. This study presents a
dual-model detection framework that separates the analysis of obfuscation from malicious
behavior to enhance precision. The first model detects obfuscated scripts using 20 features,
including entropy, string ratios, and syntax. The second model classifies malicious code
based on 92 features, incorporating outputs from the first model and semantically
meaningful strings reconstructed using a novel technique called atomic search. Both
models utilize the random forest algorithm and are trained on balanced datasets of labeled
JavaScript samples. Experimental results demonstrate high performance, with the
obfuscation model achieving 99.1% accuracy and the malicious detection model reaching
99.52%. The proposed approach provides a scalable and effective solution for detecting
hidden threats in modern web environments by clearly addressing obfuscation and
incorporating semantic reconstruction.
Keywords: machine learning, malicious code, obfuscated JavaScript, random forest,
string reconstruction.

1. Introduction

The rapid expansion of internet usage has accelerated technological advancement while
creating an environment conducive to cybercrime. Cyberattacks such as unauthorized access, data
theft, and malicious script injection increasingly target individuals and organizations [1]. As a
dominant client-side scripting language, JavaScript is particularly exploited due to its widespread
use and direct execution in web browsers. Attackers frequently embed malicious JavaScript into
web pages to steal sensitive information or disrupt services, employing sophisticated techniques
like code obfuscation and string manipulation to evade conventional detection systems.

Common attack vectors include Cross-Site Scripting (XSS), SQL injection, and drive-by
downloads, many of which rely on injecting harmful scripts into vulnerable web platforms [2].
Code-sharing environments and websites lacking essential defenses such as sandboxing, Content
Security Policies (CSP), or runtime inspection are especially susceptible [3]. Obfuscated scripts

24 Jurnal Buana Informatika, Volume 16, Nomor 1, April 2025: 23-33

present a greater challenge, as their encoded or fragmented form conceals malicious intent,
limiting the effectiveness of traditional static detection techniques. This growing complexity
demands adaptive security solutions that can analyze not only syntax, but also the semantic
behavior of code.

To address these challenges, this research introduces a machine learning-based detection
framework utilizing the random forest algorithm to identify obfuscated and malicious static
JavaScript embedded in web pages. The proposed system combines two models, one for detecting
obfuscation patterns and another for classifying malicious behavior. The key innovation of this
research is integrating a string reconstruction technique, which restores semantic meaning from
fragmented or encoded strings, enhancing feature extraction and improving detection accuracy.
This study offers a practical and scalable approach to strengthening web application security
against modern obfuscated threats by focusing on client-side scripts and leveraging semantic-
level analysis.

2. Literature Review

The detection of malicious JavaScript has been widely studied due to the increasing
prevalence of client-side attacks such as malware downloads, data theft, and unauthorized
redirects. Several studies have proposed machine learning-based methods to classify JavaScript
code as malicious or benign based on structural and behavioral features. Ndichu et al. [4] utilized
AST representations combined with Doc2Vec embeddings to capture semantic code
relationships, enabling accurate detection of malicious scripts in drive-by download scenarios.
Similarly, Patil [5] extracted 77 static features from web scripts and employed ensemble
classifiers, including random forest and SVM, achieving high accuracy while highlighting the
importance of feature richness. Fang et al. [6] and Song et al. [7] implemented LSTM and Bi-
LSTM models using bytecode and token sequences to capture temporal dependencies and
behavioral patterns in malicious JavaScript. However, these approaches demanded higher
computational resources. Sheneamer [8] further extended this paradigm using a stacked ensemble
of CNN architectures, including VGG, ResNet, and LSTM, to detect vulnerabilities in JavaScript
functions, achieving 98% detection accuracy and demonstrating the viability of deep
convolutional approaches for security-focused static code analysis.

Other researchers explored syntactic and structural representations. Rozi et al. [9]
proposed AST-JS, which enriches malicious webpage detection by leveraging syntax tree features
and SHAP-based interpretability. Mao et al. [10] focused on dynamic behavior modeling by
tracking JavaScript API usage patterns at runtime within hybrid applications, effectively
identifying threats through function call analysis. In contrast, Nguyen et al. [11] adopted an
unsupervised clustering approach for malicious detection without requiring labeled data, offering
flexibility, but limited performance compared to supervised models.

While not inherently malicious, obfuscation is frequently used to conceal malicious
intent. Several studies have addressed this dimension independently. Alazab et al. [12]
categorized standard obfuscation techniques and proposed a feature-based classifier using random
forest, demonstrating effectiveness but with limited semantic understanding. NOFUS [13]
focused on decoding String.fromCharCode() patterns, recovering encoded payloads, but stopping
short of complete malicious classification. JaSt [14] offered a purely syntactic detection approach
using AST tokens and n-grams, efficiently flagging obfuscated scripts but lacking semantic
reconstruction of code behavior. However, as Aebersold et al. [15] highlighted, “it is difficult to
train detectors to be robust versus changes in the way obfuscation is done,” underscoring the
fragility of traditional feature-based classifiers against evolving evasion techniques.

Building on these foundations, this study introduces a novel dual-model framework that
integrates obfuscation detection and malicious code classification. A key contribution is
developing a string reconstruction method, atomic search, which is designed to explicitly decode
and reconstruct fragmented JavaScript strings resulting from obfuscation techniques such as
eval(), String.fromCharCode(), and dynamic concatenations. Unlike prior studies that rely
primarily on surface-level statistical features (e.g., entropy, string length, special characters),
structural patterns (e.g., AST shapes), or behavior simulations, this research focuses on
uncovering the actual behavioral intent embedded within obfuscated scripts.

Alamsyah, Malicious JavaScript Detection using Obfuscation Analysis and String Reconstruction Techniques 25

3. Methodology
This study proposes a dual-model framework for detecting obfuscated and malicious

JavaScript code, leveraging the random forest algorithm. The first model is designed to identify
obfuscation patterns, while the second focuses on classifying malicious scripts. Both models are
trained independently, with the output from the obfuscation detector serving as an input feature
for the malicious classifier. This layered architecture enables early detection of obfuscated content
and improves overall classification accuracy by incorporating semantic insights into code
behavior. It is also further justified by Moog et al. [16] findings, who demonstrated that code
transformations, particularly minification and basic obfuscation, are also widespread in benign
scripts. Such prevalence underscores the importance of separating obfuscation detection from
malicious behavior analysis to reduce false positives and improve precision.

The dataset used in this research consists of publicly available, labeled JavaScript
samples. After standard preprocessing steps, such as cleaning, class balancing, and dataset
splitting, feature engineering was applied to both models. The obfuscation model utilizes 20
features related to syntactic and statistical characteristics, including entropy and keyword
patterns. To enhance this process, a custom Python library called Atomic Search [17] was
developed to reconstruct obfuscated strings into meaningful components. This reconstruction
contributes significantly to the second model by expanding the feature set to 92 dimensions,
capturing low-level patterns and high-level semantics.

Without string reconstruction, heavily obfuscated code may appear benign, leading to
false negatives and reduced generalizability. Additionally, models trained on unreconstructed data
tend to overfit to shallow structural cues, which reduces their effectiveness in real-world scenarios
where obfuscation is deliberately designed to evade detection. Atomic search addresses this by
converting fragmented, encoded code into analyzable semantic units, allowing the model to
capture malicious intent better. Random forest was selected for its ability to handle heterogeneous
features, resistance to overfitting, and interpretability through feature importance metrics [18].
This approach balances accuracy and efficiency compared to deep learning alternatives, making
it well-suited for practical, real-world deployment in web environments.

3.1. Obfuscation Detection

The obfuscation detection process focuses on identifying JavaScript scripts that have been
intentionally modified to obscure their functionality. The model distinguishes obfuscated scripts
from naturally structured ones by analyzing entropy, code length, and syntactic complexity,
providing crucial inputs for subsequent analysis, primarily when obfuscation is used to conceal
malicious activities.

3.1.1. Dataset Preparation

The dataset used for the obfuscation detection task was obtained from PacktPublishing's
publicly available GitHub repository, "Machine-Learning-for-Cybersecurity-Cookbook." It
comprises 3362 client-side JavaScript code samples, 1515 obfuscated and 1847 non-obfuscated
scripts. These samples were curated to represent diverse, real-world obfuscation techniques
typically found in malicious code targeting browsers. Emphasis was placed on including examples
that reflect modern obfuscation strategies, ensuring the dataset's relevance for training a robust
classification model.

26 Jurnal Buana Informatika, Volume 16, Nomor 1, April 2025: 23-33

Figure 1. Example of Obfuscated JavaScript Code

A representative obfuscation pattern is shown in Figure 1, where string literals are stored
in an array and accessed via dynamically computed indices. This technique, known as array
mapping, obfuscates function names and keywords using indirect references such as
_0x4007[0x1a], making the code semantically ambiguous. Often combined with hexadecimal
notation and variable aliasing, this pattern complicates static analysis and masks the script's true
behavior. It is commonly used in malicious JavaScript to evade detection by fragmenting readable
code and concealing high-risk operations.

3.1.2. Feature Extraction & Model Training

Feature extraction played a pivotal role in transforming raw data into actionable insights
for the machine learning model. Table 1 shows 20 distinct features were engineered to capture
the unique characteristics of obfuscated scripts. These features included statistical attributes like
entropy and code length, as well as structural and syntactic indicators such as the frequency of
parentheses, spaces, and alphanumeric characters, alongside ratios of these elements to the overall
code length. The complete table is available at the following link.

Table 1. Feature Extractions of Obfuscation Detection

Fn Feature Description

F1 js_length Total length of JavaScript code.

F2 num_spaces Number of spaces in JavaScript code.

F3 num_parenthesis Number of opening and closing brackets (and).

…. …. ….

F18 ratio_comma Ratio of the number of ‘,’ symbols to the code length (F7 / F1).

F19 ratio_semicolon Ratio of number of ‘;’ symbols to the code length (F8/F1).

F20 entropy_value The entropy value (a measure of diversity) of JavaScript code.

Entropy, as specified in Equation 1, calculated using Shannon's formula, was particularly

significant, as obfuscated scripts generally exhibited higher randomness levels. Additionally,
keyword-based features quantified occurrences of terms like eval and function, which are often
manipulated in obfuscated scripts to disguise malicious intent. These features were standardized
to enhance model performance and ensure compatibility with the algorithm.

𝐻(𝑋) = −∑𝑝(𝑥)

𝑥∈𝑋

⋅ log2(𝑝(𝑥)) (1)

The obfuscation detection model was developed using the random forest algorithm with

100 estimators (n_estimators = 100) and a fixed random seed (random_state = 0) to ensure

https://drive.google.com/file/d/1AIqu0V23qENC759YDUihEsL88dseHKwL/view?usp=drive_link

Alamsyah, Malicious JavaScript Detection using Obfuscation Analysis and String Reconstruction Techniques 27

consistent results. The dataset was divided into 80% for training and 20% for testing, allowing
the model to learn from a substantial portion of the data while enabling reliable evaluation on
unseen samples.

3.2. String Reconstruction Method for Extracting Obfuscated Features
3.2.1. Obfuscation Techniques

String concatenation is a widely used obfuscation technique in which malicious intent is
fragmented across multiple string segments, making static analysis and detection significantly
more difficult. A supplementary dataset has been prepared to provide context for the broader
landscape of obfuscation patterns examined in this study, comprising various obfuscation
techniques commonly found in malicious JavaScript. These include even-index character
extraction, hexadecimal encoding, minified code, noise injection, numeric encoding, scrambled
naming, string concatenation, and Unicode encoding. While these techniques differ in form, many
rely on string concatenation to assemble obfuscated syntax dynamically at runtime. This
reinforces the critical role of string reconstruction in any detection pipeline, as malicious behavior
is often concealed within fragmented code structures. The sample of obfuscated techniques used
in this study is available at the following link.

Figure 2 depicts a string concatenation technique. It serves as a representative illustration
of how such obfuscation techniques are used to hide potentially harmful functionality. In this
example, malicious logic is dispersed across multiple variables or encoded strings and is only
revealed once the code is executed and reassembled in memory. This strategy effectively conceals
API calls, external payloads, or execution logic, bypassing traditional static scanners that cannot
interpret the code’s final assembled form.

Figure 2. Example of Obfuscated Malicious JavaScript Code Using Concatenation

Importantly, not all obfuscation techniques are inherently malicious. Techniques such as

minification are commonly used for performance optimization. However, in the context of this
research, all samples in the dataset are classified as malicious based on behavioral indicators, such
as contacting known malicious URLs, silently downloading or executing malware, or performing
unauthorized actions on the client device. Therefore, classifying a JavaScript sample as malicious
is not solely dependent on the presence of obfuscation, but on its intent and operational behavior,
particularly when such behavior is deliberately concealed through obfuscation.

3.2.2. Atomic Search
To address the detection challenges posed by these obfuscation patterns, this study

introduces atomic search, a lightweight yet effective method for reconstructing obfuscated strings
and extracting semantically meaningful features for downstream malicious code classification.
Atomic search operates through three core functions. The first, extract_atoms, identifies
substrings termed "atoms" within the script based on length and structural heuristics. The
form_molecule function combines these atoms to reconstruct complete, meaningful units such as
function names or key operations (e.g., getElementById, setTimeout). Finally, atomic_search
aggregates the reconstructed components and analyzes their frequency, focusing particularly on
high-risk functions like eval, iframe, and document.write, which often indicate malicious
behavior. This reconstruction challenge is structurally similar to the string reconstruction problem

https://drive.google.com/drive/folders/1Vv-8V9cqZfZCZNbQVTgETOyBRyOn45XS?usp=drive_link

28 Jurnal Buana Informatika, Volume 16, Nomor 1, April 2025: 23-33

described by Acharya et al. [19], where the task is to recover an original string from a multiset of
its substrings, underscoring the combinatorial complexity involved in reassembling semantically
meaningful content from fragmented code.

The reconstruction process within atomic search follows a strategy like a greedy
algorithm, where candidate substrings (atoms) are sequentially selected and combined to form
target strings. This process is analogous to assembling a puzzle; each atom is a piece tested against
a portion of the target word, and when it fits, the algorithm immediately proceeds to the next
matching piece. One key advantage of this approach is its efficiency: mismatches are skipped
early without further processing, avoiding unnecessary computation and improving runtime
performance. This lightweight, greedy-style traversal ensures that only viable reconstruction
paths are followed, making the method both fast and scalable, even when applied to heavily
obfuscated scripts.

The method was validated on 50 obfuscated JavaScript samples and demonstrated strong
performance in accurately recovering critical code elements. To facilitate broader adoption,
atomic search has been published as an installable Python package (pip install atomic_search)
[17]. By generating rich semantic features from obfuscated content, atomic search plays a pivotal
role in bridging obfuscation analysis with malicious code detection, addressing a gap in prior
work that often overlooks string reconstruction, and significantly enhancing the overall
effectiveness of the proposed dual-model framework.

3.3. Malicious Detection

The malicious detection model is designed to classify JavaScript scripts as either benign
or malicious. Building on the obfuscation detection model and atomic search package outputs,
this model integrates 92 features that capture the scripts' syntactic and semantic attributes. By
leveraging these features, the model provides a robust mechanism for identifying threats
concealed within JavaScript code.

3.3.1. Dataset Preparation

The dataset for the malicious detection model comprised 33,434 labelled JavaScript
samples, evenly distributed between benign and malicious classes, with 16,770 malicious and
16,664 benign samples. The dataset was sourced from multiple repositories and APIs to ensure
sample diversity, as shown in Table 2. As discussed in Section 3.2, these samples include various
obfuscation techniques where malicious behavior is often hidden using string fragmentation.
Preprocessing steps included removing duplicates, cleaning invalid entries, and balancing the
dataset to avoid biases during training.

Table 2. Source of Malicious Datasets

Source Malicious Benign

APIs: NPM  

Repo: ZZN0508/JavaScript_Dataset  

Repo: HynekPetrak/malware-jail  

Repo: geeksonsecurity/js-malicious-dataset  

Repo: HynekPetrak/javascript-malware-collection  

Custom Dataset  

3.3.2. Dataset Analysis

To understand the behavioral differences between benign and malicious JavaScript, this
analysis focuses on two key metrics: code length and entropy. As shown in Figure 3, benign
scripts tend to have shorter code lengths, with an intense concentration below 2500 characters,
reflecting standard optimization practices for efficiency and performance. In contrast, malicious
scripts exhibit a more dispersed distribution, frequently spanning lengths between 5000 and
15,000 characters. This pattern suggests using obfuscation and redundancy strategies to increase
complexity and avoid detection. Such disparities in code length provide a strong basis for
distinguishing script types and serve as valuable features in models.

Alamsyah, Malicious JavaScript Detection using Obfuscation Analysis and String Reconstruction Techniques 29

Figure 3. Length Distribution of Benign and Malicious JavaScript Code

Entropy analysis, illustrated in Figure 4, reveals further distinctions. While benign scripts
reach a slightly higher average entropy (4.91 vs. 4.69), they display more consistent distribution
patterns. Malicious scripts, however, show broader entropy variability, with peaks scattered
across lower entropy values indicating structural randomness often introduced through encoding
or obfuscation techniques. This irregularity reflects attempts to conceal malicious logic by
disrupting recognizable patterns. Code length and entropy highlight fundamental differences in
structure and complexity, validating their role as informative features in detecting potentially
harmful JavaScript behavior.

Figure 4. Comparison of Entropy Levels in Benign and Malicious JavaScript

3.3.3. Feature Extractions & Model Training

The malicious detection model was built using 92 engineered features as shown in Table
3, comprising 77 attributes (F2–F78) adapted from prior literature [5] and 15 additional features
(F1, F79–F92) introduced in this study. The referenced features focus on common patterns in
malicious JavaScript, such as eval, iframe, and entropy values, forming a baseline for detection.
The additional features enhance accuracy by incorporating obfuscation indicators, syntactic
ratios, and the binary output from a separately trained obfuscation detection model. The complete
table is available at the following link.
Table 3. JavaScript Features used in literature

Fn Feature Description

F1 obfuscated Whether the script is obfuscated or not

F2 eval_count Number of eval() functions

F3 setTimeout_count Number of setTimeout() functions

…. …. ….

F90 ratio_num_encoding_oper Ratio of encoding operation to code length ((F5 + F6 + F81 + F9) / F23).

F91 ratio_num_url_redirection Ratio of url to the code length ((F3 + F82 + F15 + F83 + F45 + F84) / F23).

https://drive.google.com/file/d/1nxLZSn_58fmTONEUQkupLHptZ3kHYSqr/view?usp=drive_link

30 Jurnal Buana Informatika, Volume 16, Nomor 1, April 2025: 23-33

Fn Feature Description

F92 ratio_num_spesific_func Ratio of num ((F2 + F85 + F86 + F10 + F18 + F20 + F87 + F88) / F23).

All features referenced and newly introduced were extracted through the atomic search

method. This method deconstructs obfuscated strings and identifies semantic components such as
function names and structural keywords. This process quantifies high-risk operations and enables
feature engineering from otherwise hidden code patterns.

The final dataset was used to train a random forest classifier, chosen for its effectiveness
in managing high-dimensional, heterogeneous data. The model integrates key inputs from
obfuscation detection and string reconstruction to identify malicious behavior accurately. A 70:30
training-testing split was applied, and the model was trained using 100 estimators (n_estimators
= 100) with a fixed random seed (random_state = 42) to ensure reproducibility. Combining
obfuscation analysis and malicious code classification, this integrated framework offers a robust
and scalable solution for detecting concealed JavaScript threats.

4. Results and Discussion
4.1. Obfuscation Detection

The obfuscation detection model achieved high performance with 99.1% accuracy. The
random forest classifier demonstrated precision, recall, and F1-score of 0.99 for both obfuscated
and non-obfuscated categories, indicating strong capability to minimize false positives and
accurately identify obfuscated scripts. The confusion matrix showed 366 correctly classified non-
obfuscated samples (four misclassified) and 301 correctly classified obfuscated samples (two
misclassified), confirming the model’s robustness with minimal errors.

In addition to accuracy, runtime efficiency was evaluated using 673 test samples. The
complete detection process was completed in just 0.0092 seconds, with an average inference time
of approximately 0.000014 seconds per file. These results confirm that the model performs
accurately and operates with high computational efficiency, making it suitable for batch
processing or integration into near-real-time security systems.

Overall, the model achieved an accuracy of 99.1%, underlining its effectiveness in
detecting obfuscation in JavaScript code. The combination of high precision, recall, and accuracy
highlights the model's reliability as a powerful tool for identifying obfuscated scripts.

4.2. Malicious Detection

 The malicious detection model, built using the random forest classifier, achieved an
impressive accuracy of 99.52%, reflecting its strong capability to classify JavaScript files as
benign or malicious with minimal errors. This high accuracy demonstrates the model's
effectiveness in learning patterns from the training data and generalizing them to unseen data in
the testing phase, making it a reliable tool for detecting malicious JavaScript files in real-world
environments.

The classification report highlights the model's exceptional performance across key
metrics. Precision for the benign class (0) reached 0.99, while the malicious class (1) achieved
1.00, indicating that the model rarely misclassifies malicious code. Similarly, the recall values of
1.00 for benign and 0.99 for malicious scripts show that the model can accurately identify nearly
all samples in both categories. The F1 score for both classes was 1.00, demonstrating a balanced
trade-off between precision and recall. With an overall accuracy of 1.00, the model is highly
precise and robust in detecting malicious code, exhibiting negligible bias toward any particular
class.

Alamsyah, Malicious JavaScript Detection using Obfuscation Analysis and String Reconstruction Techniques 31

Figure 5. Confusion Matrix for Malicious Detection

The confusion matrix (Figure 5) offered a detailed view of prediction performance. The

model correctly identified 5045 benign files (true negatives) and 4938 malicious files (true
positives). Misclassification was minimal, with only nine benign files incorrectly labeled as
malicious (false positives) and 39 malicious files misclassified as benign (false negatives). The
results confirm the model's reliability, as the number of errors was minimal compared to the total
dataset of 10,031 samples. These rare errors may arise when the syntax is heavily fragmented and
noisy, which can cause the atomic search to miscount specific patterns and result in detection
inaccuracies.

Figure 6. Top 10 Most Important Features for Malicious Detection

Figure 6 showcases the top 10 most important features in the malicious detection model,

ranked by their contribution to the predictions. Among these, the obfuscated feature stands out as
the most significant, highlighting the critical role of code obfuscation in identifying malicious
behavior. This result underscores how obfuscation is frequently employed to increase complexity
and evade detection.

 The second most important feature, plus_count, further supports this finding by revealing
the role of obfuscation techniques such as concatenation, where malicious scripts heavily rely on
the use of the + operator to combine strings, thereby disguising their true functionality. Similarly,
other features such as dot_count, digit_count, and digit_share also align with obfuscation
methods, reflecting the use of complex syntactic structures to obscure code intent. For example,
high dot_count values may indicate a reliance on nested object accesses. At the same time,
digit_count and digit_share suggest an unusual abundance of numeric elements, both consistent
with obfuscation strategies aimed at evading pattern-based detection systems.

In contrast, features such as eval_count provide direct evidence of malicious behavior, as
the eval function is commonly used to execute potentially harmful scripts dynamically. Additional
features like pipe_count and WScript_count point to specific JavaScript functions and command-

32 Jurnal Buana Informatika, Volume 16, Nomor 1, April 2025: 23-33

line scripting capabilities that attackers often leverage to exploit vulnerabilities or execute
unauthorized commands.

The detection pipeline, comprising obfuscation classification, string reconstruction via
atomic search, and malicious code detection using 92 extracted features, achieved an average
processing time of 0.274806 seconds per file. Despite the multi-layered nature of the framework,
this runtime demonstrates a practical balance between semantic depth and computational
efficiency, making it suitable for large-scale or batch-based threat analysis. Overall, the model
effectively integrates obfuscation-related patterns with explicit indicators of malicious behavior.
Leveraging a comprehensive set of syntactic, semantic, and structural attributes consistently
achieves high predictive accuracy in distinguishing malicious scripts.

5. Conclusion

This study proposed a dual-model framework for detecting malicious JavaScript by
addressing two key challenges: obfuscation detection and malicious behavior classification.
Several measures were applied throughout the modeling process to ensure the validity and
generalization of results. The random forest algorithm was selected for its proven resistance to
overfitting through ensemble learning. The dataset was carefully partitioned into separate training
and testing sets to prevent data leakage, and cross-validation was conducted to assess consistency
across different data splits.

These methodological safeguards supported the reliability of the results, with the
obfuscation detection model achieving 99.1% accuracy and the malicious detection model
reaching 99.52%. The dataset contained diverse real-world samples, including complex
obfuscation patterns and index-based array mapping used to conceal malicious operations like
remote code execution and data theft. The atomic search method played a critical role in
reconstructing these obfuscated strings, enabling the extraction of semantically rich features
essential for accurate classification. Further analysis of the top 10 most important features also
confirmed that obfuscation-related attributes, particularly those derived from atomic search and
entropy metrics, contributed the most to accurate classifications.

The dual-model framework presented in this study bridges the gap in existing methods
by addressing obfuscation and maliciousness concurrently. This approach offers a robust solution
for improving cybersecurity in web environments, particularly in mitigating threats posed by
obfuscated and malicious JavaScript scripts. Future research could explore the application of this
framework to other programming languages and real-time detection scenarios, expanding its
scope and utility in dynamic web ecosystems.

References
[1] R. Verma, “Cybersecurity Challenges in the Era of Digital Transformation,”

Transdisciplinary Threads Crafting the Future Through Multidisciplinary Research, vol. 1,
p. 187, 2024.

[2] M. Shema, Hacking Web Apps. San Francisco, CA, USA: Syngress, 2012, doi:
10.1016/C2011-0-07576-2.

[3] Fasna and S. R. Swamy, “Sandbox: A Secured Testing Framework for Applications,”
Journal of Technology & Engineering Sciences, vol. 4, no. 1, Jun. 2020.

[4] S. Ndichu, S. Kim, S. Ozawa, T. Misu, and K. Makishima, “A machine learning approach
to detection of JavaScript-based attacks using AST features and paragraph vectors,” Applied
Soft Computing, vol. 84, p. 105721, Aug. 2019, doi: 10.1016/j.asoc.2019.105721.

[5] D. R. Patil and J. B. Patil, “Detection of malicious JavaScript code in web pages,” Indian
Journal of Science and Technology, vol. 10, no. 19, pp. 1–12, Jun. 2017, doi:
10.17485/ijst/2017/v10i19/114828.

[6] Y. Fang, C. Huang, L. Liu, and M. Xue, “Research on malicious JavaScript detection
technology based on LSTM,” IEEE Access, vol. 6, pp. 59118–59125, Jan. 2018, doi:
10.1109/access.2018.2874098.

[7] X. Song, C. Chen, B. Cui, and J. Fu, “Malicious JavaScript detection based on bidirectional
LSTM model,” Applied Sciences, vol. 10, no. 10, p. 3440, May 2020, doi:
10.3390/app10103440.

Alamsyah, Malicious JavaScript Detection using Obfuscation Analysis and String Reconstruction Techniques 33

[8] A. Sheneamer, “Vulnerable JavaScript functions detection using stacking of convolutional
neural networks,” PeerJ Computer Science, vol. 10, 2024, doi: 10.7717/peerj-cs.1838.

[9] M. F. Rozi, S. Ozawa, T. Ban, S. Kim, T. Takahashi, and D. Inoue, “Understanding the
influence of AST-JS for improving malicious webpage detection,” Applied Sciences, vol.
12, no. 24, p. 12916, Dec. 2022, doi: 10.3390/app122412916.

[10] J. Mao et al., “Detecting malicious behaviors in JavaScript applications,” IEEE Access, vol.
6, pp. 12284–12294, Jan. 2018, doi: 10.1109/access.2018.2795383.

[11] N. H. Son and H. T. Dung, “Malicious Javascript Detection based on Clustering
Techniques,” International Journal of Network Security & Its Applications, vol. 13, no. 6,
pp. 11–21, Nov. 2021, doi: 10.5121/ijnsa.2021.13602.

[12] A. Alazab, A. Khraisat, M. Alazab, and S. Singh, “Detection of obfuscated malicious
JavaScript code,” Future Internet, vol. 14, no. 8, p. 217, Jul. 2022, doi: 10.3390/fi14080217.

[13] B. G. Zorn, B. Livshits, and C. Seifert, “NOFUS: Automatically Detecting’
String.fromCharCode(32) "ObFuSCateD ".toLowerCase() ‘JavaScript Code,” Microsoft
Research Technical Report, MSR-TR-2011-57, Jan. 2011. [Online]. Available:
https://www.researchgate.net/publication/215448536.

[14] A. Fass, R. P. Krawczyk, M. Backes, and B. Stock, “JaSt: Fully Syntactic Detection of
Malicious (Obfuscated) JavaScript,” Lecture Notes in Computer Science, vol. 10885, pp.
303-325, 2018.

[15] K. Kryszczuk, S. Aebersold, S. Paganoni, B. Tellenbach, and T. Trowbridge, “Detecting
Obfuscated JavaScripts using Machine Learning,” The Eleventh International Conference
on Internet Monitoring and Protection (ICIMP 2016), Valencia, Spain, May 2016. [Online].
Available: https://www.researchgate.net/publication/321805699.

[16] M. Moog, M. Demmel, M. Backes, dan A. Fass, "Statically Detecting JavaScript
Obfuscation and Minification Techniques in the Wild," in 2021 51st Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), 2021, hlm. 569-580,
doi: 10.1109/DSN48987.2021.00065.

[17] A. G. Alamsyah, Atomic Search. [Online]. Available: https://pypi.org/project/atomic-search.
[18] L. Breiman, “Random Forest,” Machine Learning, vol. 45, no. 1, pp. 5–32, Jan. 2001, doi:

10.1023/a:1010933404324.
[19] J. Acharya, H. Das, O. Milenkovic, A. Orlitsky, and S. Pan, “String Reconstruction from

Substring Compositions,” SIAM Journal on Discrete Mathematics, vol. 29, no. 3, pp. 1340–
1371, Jan. 2015, doi: 10.1137/140962486.

