Content Based Image Retrieval Berdasarkan Fitur Low Level: Literature Review


  • Rahmad Hidayat
  • Agus Harjoko
  • Anny Kartika Sari




Content-based Image Retrieval (CBIR) is an image search process by comparing the image features sought by the images contained in the database. Low-level features in the image are commonly used in CBIR is the color, texture, and shape. This article conducts a review of journals related to CBIR, particularly research based on low-level features. The journals are then classified based on the color space, features and feature extraction methods. The results show that the color space often used is the RGB and HSV due to their compatibility with the hardware and human perception of color. The features most often used in CBIR is the color feature. This is due to the fact that color features can easily and quickly be extracted. The most often used method to extract the color feature is the color histogram, the most common method used to extract texture features is the gray level co-occurence matrix, and the method most widely used to extract the shape feature is canny edge.

Keywords: CBIR, color, texture, shape.



Content based Image Retrieval (CBIR) merupakan proses pencarian gambar dengan membandingkan fitur-fitur yang terdapat pada gambar yang dicari dengan gambar yang terdapat dalam basis data. Fitur-fitur low level pada gambar yang biasa digunakan dalam CBIR adalah warna, tekstur, dan bentuk Artikel ini melakukan tinjauan terhadap penelitian-penelitian yang berkaitan dengan CBIR, khususnya penelitian yang berbasis pada fitur low level. Penelitian-penelitian tersebut kemudian diklasifikasikan berdasarkan ruang warna, fitur dan metode ekstraksi fitur. Hasil tinjauan menunjukkan bahwa ruang warna yang sering digunakan adalah RGB dan HSV karena dianggap cocok dengan hardware dan persepsi manusia terhadap warna. Adapun fitur yang paling sering digunakan dalam CBIR adalah fitur warna. Hal ini disebabkan fitur warna mudah dan cepat diekstraksi. Metode yang paling sering digunakan untuk mengekstraksi fitur warna adalah histogram warna, metode yang paling sering digunakan untuk mengekstraksi fitur tekstur adalah gray level co-occurence matrix, dan metode yang paling banyak digunakan untuk, mengekstraksi fitur bentuk adalah canny edge.

Kata kunci: CBIR, warna, tekstur, bentuk.


Alamdar, F., & Keyvanpour, M. (2012). A New Color Feature Extraction Method Based on Dynamic Color Distribution Entropy of Neighborhoods. arXiv Preprint arXiv:1201.3337, 8(5), 42–48.

Ali, N., Bajwa, K. B., Sablatnig, R., & Mehmood, Z. (2015). Image retrieval by addition of spatial information based on histograms of triangular regions. Computers and Electrical Engineering, 54, 539–550.

Bagri, N., & Johari, P. K. (2015). A Comparative Study on Feature Extraction using Texture and Shape for Content Based Image Retrieval. International Journal of Advanced Science and Technology, 80, 41–52.

Bansal, A. K., & Mathur, S. (2013). Feature Extraction in Content Based Image Retrieval : A Review. International Journal of Engineering Research and Applications (IJERA) (February), 55–61.

Charles, Y. R., & Ramraj, R. (2015). A novel local mesh color texture pattern for image retrieval system. AEU - International Journal of Electronics and Communications, 70(3), 225–233.

Chaudhari, R. dan Patil, A. M. 2012. Content Based Image Retrieval Using Color and Shape Features. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering. Vol 2. hal 131-137.

Duan, G., Yang, J., & Yang, Y. (2011). Content-Based Image Retrieval research. Physics Procedia, 22, 471–477.

Dubey, R. S., Choubey, R., & Bhattacharjee, J. (2010). Multi feature content based image retrieval. International Journal on Computer Science and Engineering, 2(6), 2145-2149.

Ee, P., & Report, P. (2008). Histogram-Based Color Image Retrieval. Image (Rochester, N.Y.), 1–21.

Fakhfakh, S., Tmar, M., & Mahdi, W. (2015). Image Retrieval Based on Using Hamming Distance. Procedia Computer Science, 73(Awict), 320–327.

Fayez, M., Safwat, S., & Hassanein, E. (2016, July). Comparative study of clustering medical images. In SAI Computing Conference (SAI), 2016 (pp. 312-318). IEEE.

Gagaudakis, G., & Rosin, P. L. (2003). Shape measures for image retrieval. Pattern Recognition Letters, 24(15), 2711–2721.

Gevers, T., & Smeulders, A. W. M. (1999). Content-based image retrieval by viewpoint-invariant color indexing. Image and Vision Computing, 17(7), 475–488.

Goyal, N., & Singh, N. (2014). A Review on Different Content Based Image Retrieval Techniques Using High Level Semantic Features, International Journal of Innovative Research in Computer and Communication Engineering, 2(7), pp.4933–4938.

Gupta, N. (2011). Comparative Study of Different Low Level Feature Extraction Techniques for Content based Image Retrieval, International Journal of Computer Technology and Electronics Engineering (IJCTEE), 1(1), 39–42.

Han, J. W., & Guo, L. (2003). A shape-based image retrieval method using salient edges. Signal Processing: Image Communication, 18(2), 141–156.

Hastuti, I., Hariadi, M., dan Purnama, I. 2009. Content Based Image Retrieval Berdasarkan Fitur Bentuk Menggunakan Metode Gradient Vector Flow Snake. Seminar Nasional Informatika. Vol 4. hal 140-147.

Huang, M., Shu, H., Ma, Y., & Gong, Q. (2015). Content-based image retrieval technology using multi-feature fusion. Optik, 126(19), 2144–2148.

Huang, P. (2004). Design of a two-stage content-based image retrieval system using texture similarity. Information Processing & Management, 40(1), 81–96.

Huang, P. W., & Dai, S. K. (2003). Image retrieval by texture similarity. Pattern Recognition, 36(3), 665–690.

Iqbal, K., Odetayo, M. O., & James, A. (2012). Content-based image retrieval approach for biometric security using colour, texture and shape features controlled by fuzzy heuristics. Journal of Computer and System Sciences, 78(4), 1258–1277.

Jain, Y. K. (2014). Content- based Image Retrieval Approach using Three Features Color, Texture and Shape, 97(17), 1–8.

Jasani, D., Patel, P., Patel, S., Ahir, B., Patel, K., & Dixit, M. (2015). Review of Shape and Texture Feature Extraction Techniques for Fruits, International Journal of Computer Science and Information Technologies, 6(6), 4851–4854.

Joshi, K. D., Bhavsar, S. N., & Sanghvi, R. C. (2014). Image Retrieval System Using Intuitive Descriptors. Procedia Technology, 14, 535–542.

Khokher, A., Gobindgarh, M., & Gobindgarh, M. (2008). Content-based Image Retrieval : Feature Extraction Techniques and Applications, International Journal of Computer Applications® (IJCA) 9–14.

Lin, C.-H., Chen, R.-T., & Chan, Y.-K. (2009). A smart content-based image retrieval system based on color and texture feature. Image and Vision Computing, 27(6), 658–665.

Liu, G.-H., & Yang, J.-Y. (2013). Content-based image retrieval using color difference histogram. Pattern Recognition, 46(1), 188–198.

Liu, M., Yang, L., & Liang, Y. (2015). A chroma texture-based method in color image retrieval. Optik, 126(20), 2629–2633.

Long, F., Zhang, H., dan Feng D. D. 2003. Fundamentals Of Content-Based Image Retrieval. Multimedia Information Retrieval and Management. Berlin. Springer Heidelberg.

Madhavi, K. V., Tamilkodi, R., & Sudha, K. J. (2016). An Innovative Method for Retrieving Relevant Images by Getting the Top-ranked Images First Using Interactive Genetic Algorithm. Procedia Computer Science, 79, 254–261.

Maheshwari, M., Motwani, M., & Silakari, S. (2013). New Feature Extraction Technique for Color Image Clustering. International Journal of Computer Science and Electronics Engineering (IJCSEE), 1(1).

Meshram, S. P., Thakare, A. D., & Gudadhe, S. (2016). Hybrid Swarm Intelligence Method for Post Clustering Content Based Image Retrieval. Procedia Computer Science, 79, 509–515.

Meskaldji, K., Boucherkha, S., & Chikhi, S. (2009). Color quantization and its impact on color histogram based image retrieval accuracy. 2009 1st International Conference on Networked Digital Technologies, NDT 2009, 515–517.

Mukhopadhyay, S., Dash, J. K., & Das Gupta, R. (2013). Content-based texture image retrieval using fuzzy class membership. Pattern Recognition Letters, 34(6), 646–654.

Pradesh, A., & Pradesh, A. (2011). Color and Texture Features for Content Based Image Retrieval, 2(August), 1016–1020.

Pun, C. M. (2003). Rotation-invariant texture feature for image retrieval. Computer Vision and Image Understanding, 89(1), 24–43.

Raghuwanshi, G., & Tyagi, V. (2016). Texture image retrieval using adaptive tetrolet transforms. Digital Signal Processing, 48, 50–57.

Rani, S., Rajani, N., & Reddy, S. (2012). Comparative Study on Content Based Image Retrieval, International Journal of Future Computer and Communication 1(4), 366–368.

Saad, M. (2008). Low-level color and texture feature extraction for content-based image retrieval. Final Project Report, EE K, 381, 20-28.

Sakhare, S. V., & Nasre, V. G. (2011). Design of feature extraction in content based image retrieval (CBIR) using color and texture. International Journal of Computer Science & Informatics, 1(II).

Scholar, P. G. (2015). New Feature Descriptor. International Conference on Circuit, Power and Computing Technologies, 2, 114–120.

Singha, M dan Hemachandran, K. 2012. Content Based Image Retrieval using Color and Texture. Signal & Image Processing : An International Journal (SIPIJ). Vol 6. hal 95-103.

Shi, D., Xu, L., & Han, L. (2007). Image retrieval using both color and texture features. The Journal of China Universities of Posts and Telecommunications, 14(October), 94–99.

Singh, C., & Kaur, K. P. (2016). A fast and efficient image retrieval system based on color and texture features. Journal of Visual Communication and Image Representation, 41, 225-238.

Srivastava, D., Wadhvani, R., & Gyanchandani, M. (2015). A Review: Color Feature Extraction Methods for Content Based Image Retrieval. International Journal of Computational Engineering & Management, 18(3), 9-13.

Verma, B., & Kulkarni, S. (2004). A fuzzy-neural approach for interpretation and fusion of colour and texture features for CBIR systems. Applied Soft Computing Journal, 5(1), 119–130.

Verma, M., & Raman, B. (2015). Center symmetric local binary co-occurrence pattern for texture, face and bio-medical image retrieval. Journal of Visual Communication and Image Representation, 32, 224–236.

Verma, M., Raman, B., & Murala, S. (2015). Local extrema co-occurrence pattern for color and texture image retrieval. Neurocomputing, 165, 255–269.

Vimina, E. R., & Jacob, K. P. (2013). Content Based Image Retrieval Using Low Level Features of Automatically Extracted Regions of Interest, Journal of Image and Graphics 1(1), 7–11.

Wang, X.-Y., Yu, Y.-J., & Yang, H.-Y. (2011). An effective image retrieval scheme using color, texture and shape features. Computer Standards & Interfaces, 33(1), 59–68.

Yang, H.-Y., Li, Y.-W., Li, W.-Y., Wang, X.-Y., & Yang, F.-Y. (2014). Content-based Image Retrieval using Local Visual Attention Feature. Journal of Visual Communication and Image Representation, 25(6), 1308–1323.

Yang, H.-Y., Xu, N., Li, W.-Y., Li, Y.-W., Niu, P., & Wang, X.-Y. (2015). Color image representation using invariant exponent moments. Computers & Electrical Engineering, 46, 273–287.

Yoo, H.-W., Park, H.-S., & Jang, D.-S. (2005). Expert system for color image retrieval. Expert Systems with Applications, 28(2), 347–357.

Yue, J., Li, Z., Liu, L., & Fu, Z. (2011). Content-based image retrieval using color and texture fused features. Mathematical and Computer Modelling, 54(3–4), 1121–1127.

Zhang, C., & Huang, L. (2014). Content-Based Image Retrieval, 1–10.

Zhang, D., & Lu, G. (2004). Review of shape representation and description techniques. Pattern Recognition, 37(1), 1–19.

Zhang, M., Zhang, K., Feng, Q., Wang, J., Kong, J., & Lu, Y. (2014). A novel image retrieval method based on hybrid information descriptors. Journal of Visual Communication and Image Representation, 25(7), 1574–1587.

Zheng L. 2005. Automated Feature Extraction and Content-Based Retrieval of Pathology Microscopic Images Using K-Means Clustering and Code Run-Length Probability Distribution. PhD thesis, University of Pittsburgh.

Zheng, X., Tang, B., Gao, Z., Liu, E., & Luo, W. (2016). Study on image retrieval based on image texture and color statistical projection. Neurocomputing, 215, 217–224.