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Abstrak. Pentingnya Pemilihan Fitur untuk Klasifikasi Berbagai Penyakit. Kinerja 
machine learning dalam klasifikasi penyakit sangat bergantung pada pemilihan fitur yang 
tepat. Penelitian ini mengeksplorasi metode seleksi fitur—Boruta dan Recursive Feature 
Elimination (RFE)—dengan model ensemble seperti Random Forest, Decision Tree, 
Gradient Boosting, LightGBM, dan XGBoost menggunakan data Electronic Health 
Records (EHR). Hasil menunjukkan bahwa kombinasi Boruta dan LightGBM 
menghasilkan akurasi tertinggi sebesar 99%. Seleksi fitur meningkatkan presisi dengan 
fokus pada variabel relevan dan menghapus yang tidak perlu. Analisis lebih lanjut 
menunjukkan fitur seperti Red Blood Cells, Insulin, Heart Rate, dan Cholesterol sangat 
mempengaruhi klasifikasi penyakit tertentu. Temuan ini menyoroti pentingnya seleksi fitur 
dalam klasifikasi multi-penyakit dan analisis data medis, serta meningkatkan efisiensi 
sistem machine learning. Penelitian selanjutnya disarankan untuk mengembangkan metode 
seleksi fitur yang lebih fleksibel dan menguji model pada dataset penyakit yang lebih 
beragam. 
Kata Kunci: seleksi fitur, pembelajaran mesin, diagnosis penyakit, akurasi klasifikasi 
 
Abstract. The performance of machine learning in disease classification heavily depends 
on effective feature selection. This study explores feature selection methods—Boruta and 
Recursive Feature Elimination (RFE)—with ensemble models like Random Forest, 
Decision Tree, Gradient Boosting, LightGBM, and XGBoost using Electronic Health 
Records (EHR) data. Results show that combining Boruta with LightGBM achieves the 
highest accuracy of 99%. Feature selection enhances precision by focusing on relevant 
variables and removing unnecessary ones. Further analysis reveals that features such as 
Red Blood Cells, Insulin, Heart Rate, and Cholesterol significantly influence the 
classification of specific diseases. These findings highlight the importance of feature 
selection in multi-disease classification and medical data analysis, improving the efficiency 
of machine learning systems. Future research should develop more flexible feature selection 
methods and test models on diverse disease datasets. 
Keywords: feature selection, machine learning, disease diagnosis, accuracy performance  

 
1. Introduction 

Electronic Health Records (EHR) are crucial in advancing machine learning applications 

in the medical field, especially in disease classification. EHRs provide detailed and complex 

patient data, which is essential for building accurate and reliable disease diagnosis models  

[1][2][3]. With the vast amount of real-time and historical health information, EHRs help machine 

learning systems identify key variables while eliminating unnecessary data. Recent innovations 

in EHRs have garnered significant research interest due to their potential to improve patient 

outcomes, streamline healthcare processes, and support personalized medicine [4]. 

EHRs enable continuous analysis of various diseases by leveraging the accumulated data 

over time. This capability allows healthcare providers to detect patterns, predict disease 

progression, and personalize treatment plans effectively [5]. Continuous monitoring is especially 

beneficial in the management of chronic diseases, as it facilitates the early identification of 

complications and permits timely interventions. Machine learning classifiers such as LogitBoost, 

Random Forest, XGBoost, Decision Tree, and Support Vector Machine have been proposed for 

disease recognition tasks. However, most existing methods focus on recognizing diseases at one 

point with a single feature set, which becomes challenging as the number of activities and features 

increases. 
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This research aims to evaluate and compare the performance of five machine learning 

classifiers—Decision Tree (DT), Random Forest Classifier (RFC), XGBoost, Gradient Boosting 

Classifier (GBC), and Light Gradient-Boosting Machine (LGBM)—in disease classification, 

focusing on their accuracy across different feature sets. The study investigates the importance of 

features to identify which variables are most critical for disease detection. Boruta and Recursive 

Feature Elimination (RFE) are employed for feature selection to enhance classification accuracy 

and efficiency. This approach improves model performance and provides valuable insights into 

the key factors influencing disease classification, contributing to the development of more 

interpretable and reliable healthcare models. 

While numerous studies have explored machine learning techniques for disease detection, 

few have focused on detecting multiple diseases simultaneously. For instance, EHRs have been 

used to classify four different blood diseases, with models such as LogitBoost, Random Forest, 

XGBoost, Decision Tree, and Support Vector Machine being tested. The reported accuracy of 

these models varied, with the highest reaching 98% [6]. Another study by Arumugam et al. [7] 

explored disease detection for heart disease and diabetes using three distinct datasets for each 

condition. Among the tested models, Decision Tree outperformed the others with an accuracy of 

around 90%, surpassing Support Vector Machine (87%) and Naive Bayes (77%). 

 

2. Methods 
 

 

 
Figure 1. The Workflow of This Research 

 

Figure 1 illustrates the workflow of this research. The process begins with the dataset, 

which serves as the foundation for the entire analysis. Initially, feature selection is conducted 

using three different approaches: no feature selection (utilizing all available features), Boruta (an 

advanced feature selection technique), and RFE (Recursive Feature Elimination). These methods 

aim to identify and retain the most relevant features while eliminating less important or redundant 

ones. After feature selection, the dataset trains several machine learning models, including 

Decision Tree, Random Forest, XGBoost, Gradient Boosting Classifier (GBC), and LightGBM. 

These models are evaluated using various performance metrics such as accuracy, precision, recall, 

and others, to determine the most effective classifier for the task. Subsequently, a One-vs-Rest 

(OvR) classification approach is employed to analyze each disease class individually. The features 

selected by Boruta and RFE are assessed for their relevance and impact on classification 

performance for each disease (Anemia, Diabetes, Heart Disease, Healthy, Thalassemia, and 

Thrombocytopenia). This step allows for a comparison of the effectiveness of the feature selection 

methods for each specific disease. Finally, the features identified by Boruta and RFE are 

juxtaposed with those identified by the One-vs-Rest classifier to provide a comprehensive 

understanding of how the different feature selection techniques contribute to the classification 

process and model performance, ensuring that the results are applicable to the specific diseases 

being examined. 
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2.1. Random Forest 

Random Forests (RF) is an approach that integrates multiple decision trees to improve 

the performance of a single decision tree classifier. This is accomplished by employing the 

bootstrap aggregating (bagging) method and adding randomness when selecting data nodes for 

partitioning during the decision tree construction. An RF classifier combines several independent 

decision tree classifiers [8]. A decision tree with 𝑀 leaves splits the feature space into 𝑀 regions, 

denoted as 𝑅𝑚, where 1 ≤ 𝑚 ≤ 𝑀. For each tree, the prediction function 𝑓(𝑥) is defined as 

shown in Equation (1): 

 
f(x) = ∑ 𝑐𝑚 𝜋(𝑥, 𝑅𝑚

𝑀
𝑚=1 )               (1) 

 

In this formulation, 𝑀 represents the number of regions in the feature space, 𝑅𝑚 is the 

region associated with index 𝑚,  𝑐𝑚 is the constant corresponding to 𝑚, and 1 is an indicator 

function, defined in Equation (2): 

 

π(x, 𝑅𝑚 ) =  {
1,   𝑖𝑓 𝑥 ∈  𝑅𝑚

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                     (2) 

 

The ultimate classification decision is determined by the majority vote of all the trees. 

 

2.2. Gradient Boosting 

Gradient Boosting Classifier shows that it can be a decent model with 97% accuracy on 

the heart disease dataset and 73% on the cardiovascular dataset [9]. Gradient Boosting is a 

powerful supervised classification technique that constructs a strong predictive model by 

combining multiple weak learners [10]. The core principle involves iteratively adding new weak 

models, which are typically simple models that perform marginally better than random guessing, 

to the ensemble [11]. Each new model is trained to correct the residual errors made by the previous 

models, using gradient descent optimization to minimize these errors. Gradient Boosting is 

commonly utilized with tree-based models like decision trees or random forests. Many 

hyperparameters, such as the number of trees, the learning rate, and the maximum depth of the 

trees impact the model's efficacy. Recent applications of the Gradient Boosting Classifier 

demonstrate its robustness, achieving a 97% accuracy on a heart disease dataset and a 73% 

accuracy on a cardiovascular dataset [9]. These results underscore Gradient Boosting's capability 

to deliver high performance across diverse datasets, making it a versatile and reliable tool in 

machine learning. 

XGBoost, an advanced extension of Gradient Boosting, is widely recognized for its 

superior performance in machine learning tasks. It improves upon traditional Gradient Boosting 

through features such as advanced tree-based models, regularization techniques to prevent 

overfitting, robust handling of missing values, and parallel computing for efficient training on 

large datasets, alongside customizable hyperparameters and support for multiple objectives [12]. 

Recent research highlights XGBoost’s exceptional performance compared to other models; for 

example, one study demonstrated that XGBoost achieved an accuracy of 91%, surpassing 

alternative approaches [13], while another found that XGBoost performed well with a notable 

accuracy of 99.16% [14]. These advancements underscore XGBoost’s effectiveness as a leading 

technique for achieving high accuracy in diverse machine-learning applications. 

LightGBM is a high-performance Gradient Boosting framework that significantly 

enhances traditional Gradient Boosting techniques through several innovative methods [15]. 

LGBM consists of individual shallow decision trees that avoid overfitting problems [16][17]. 

LightGBM employs Gradient-Based One-Side Sampling and Exclusive Feature Bundling to 

reduce computational complexity and improve efficiency. Additionally, its use of Leaf-wise Tree 

Growth accelerates model training and enhances accuracy by focusing on the most promising 

splits. LightGBM supports parallel and distributed learning, which allows it to handle large-scale 

data processing efficiently while managing multiple objectives and optimizing memory usage 
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[18]. Swainn et al. [19] demonstrated the effectiveness of LightGBM in classifying Parkinson’s 

disease, achieving an impressive accuracy of 98%. This research highlights LightGBM’s 

capability to deliver high accuracy and speed in complex machine-learning tasks, confirming its 

value as a leading tool for advanced data analysis and model development. Another research by 

Sharma and Singh [20] shows that LGBM can reach 99% accuracy 

 

2.3. Feature Selection Method 

Boruta is a feature selection algorithm built around the random forest classification 

technique. It works by creating shadow features, which are randomly permuted versions of the 

original features, and then training a random forest classifier on the combined dataset [21]. The 

algorithm iteratively checks the importance of each feature by comparing it to its shadow features. 

Features with higher importance scores than their shadow features are deemed relevant and are 

retained, while those with lower scores are considered irrelevant and are removed [9][22]. 

Recursive Feature Elimination (RFE) is a wrapper method that recursively eliminates 

features and builds a model over the remaining ones [23]. It ranks features based on importance 

and eliminates the least important ones until the desired number of features is reached [24]. RFE 

is an iterative process that involves training a model on all features, ranking them, eliminating the 

least important feature, and repeating the process until the desired number of features is achieved. 

Specifically, the RFE algorithm [18] operates as follows: fit the model using all independent 

variables, calculate the variable importance of all variables, rank each independent variable based 

on its importance to the model, drop the weakest variable, and build a model using the remaining 

variables, then calculate model accuracy. This process is repeated until all variables have been 

used and ranked according to when they were dropped. For classification, accuracy and precision 

are used as metrics. Guyon et al. [25] introduced Recursive Feature Elimination (RFE), a method 

applied in cancer classification using Support Vector Machine (SVM). RFE starts by using all 

available features to train an SVM model. It then ranks the importance of each feature based on 

its contribution to the model, generating a ranked list. Irrelevant features contribute less to the 

model's performance and are eliminated iteratively until the desired number of features remains 

[26]. 

 

2.4. Dataset 

The multiple disease prediction data set is publicly available on Kaggle [27]. This dataset 

comprises 25 features and 2837 entries. It is designed to assess the health status of individuals, 

determining whether a person has a specific disease or is healthy based on blood samples and 

various health parameters. These features are presented in Table 1, and the disease class is shown 

in Table 2. 
 

Table 1. Multiple Disease Prediction Dataset Features 
No Features  No Features 
1 Glucose 14 Diastolic Blood Pressure (DBP) 
2 Cholesterol 15 Triglycerides 
3 Hemoglobin 16 HbA1c (Glycated Hemoglobin) 
4 Platelets 17 LDL (Low-Density Lipoprotein) Cholesterol 
5 White Blood Cells (WBC) 18 HDL (High-Density Lipoprotein) Cholesterol 
6 Red Blood Cells (RBC) 19 ALT (Alanine Aminotransferase) 
7 Hematocrit 20 AST (Aspartate Aminotransferase) 
8 Mean Corpuscular Volume (MCV) 21 Heart Rate 
9 Mean Corpuscular Hemoglobin (MCH) 22 Creatinine 

10 Mean Corpuscular Hemoglobin Concentration 

(MCHC) 

23 Troponin 

11 Insulin 24 C-reactive Protein (CRP) 
12 BMI (Body Mass Index) 25 Disease 
13 Systolic Blood Pressure (SBP)   
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Table 2. Disease Class 
No Disease 

1 Cholesterol 

2 Hemoglobin 

3 Platelets 

4 White Blood Cells (WBC) 

5 Red Blood Cells (RBC) 

6 Hematocrit 

 

2.5. Environment 

This research used Jupyter Notebook as the primary development environment for 

building and evaluating classification models. The dataset used in this study comprises 2,837 

records, each corresponding to one of six health conditions: Anemia, Diabetes, Heart Disease, 

Healthy, Thalassemia, and Thrombocytopenia. These conditions were selected due to their 

clinical significance and the need for accurate, early detection methods. Table 2 provides a 

detailed breakdown of the dataset distribution. 

To evaluate classifier performance, this study utilizes four key metrics: accuracy, 

precision, recall, and F1-score, which are essential for validating predictive models in healthcare 

applications. Accuracy, as shown in Equation (3), measures the overall correctness of predictions, 

while precision, as shown in Equation (4), evaluates the proportion of true positive predictions 

among all predicted positives, thereby minimizing the impact of false positives. Recall, as shown 

in Equation (5), measures the model’s ability to correctly identify all relevant positive instances. 

The F1-score, as shown in Equation (6), provides a harmonic mean between precision and recall, 

particularly beneficial when dealing with imbalanced datasets. These metrics collectively ensure 

a comprehensive and balanced assessment of model performance [28].  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                (3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                (4) 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                 (5) 

F1 =
2×𝑃×𝑅

𝑃+𝑅
                 (6) 

where: 𝑇𝑃 = True positive; 𝐹𝑃 = False positive; 𝑇𝑁 = True negative; 𝐹𝑁 = False negative; 𝑃 = 
Precision; 𝑅 = Recall. 
 

2.6. K-Fold Cross-Validation 

 To assess the model's accuracy more objectively and to mitigate bias caused by 

imbalanced data splitting, this study employs the K-Fold Cross-Validation technique with 

Stratified K-Fold. This method divides the dataset into K equal-sized parts (folds). Each fold is 

used once as a test set, while the remaining K-1 folds are used for training. This process is repeated 

for each fold, and the final evaluation results are averaged across all folds based on performance 

metrics such as accuracy, precision, and recall. This method helps provide a more reliable estimate 

of the model's performance by ensuring that every data point is used for training and testing. 

The use of Stratified K-Fold ensures that the class distribution within each fold is 

representative of the overall distribution of the classes in the dataset. This is especially important 

in imbalanced datasets, where certain classes may be underrepresented. By maintaining similar 

class distributions across all folds, Stratified K-Fold allows the model to learn from all classes 

proportionally, reducing the risk of the model being biased toward the majority class. This is 

particularly beneficial in healthcare datasets, where imbalanced class distributions are common 

and ensures a more accurate model evaluation [29]. 

In this study, the Random Forest and XGBoost models are selected due to their ability to 

handle complex, high-dimensional data and their robustness against overfitting, especially when 

used with cross-validation. Both models are trained using the features selected through Boruta 
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and Recursive Feature Elimination (RFE) methods, and their performance is evaluated based on 

the accuracy, precision, recall, and other relevant metrics. These models are particularly well-

suited for this task due to their capacity for learning non-linear relationships and handling missing 

or noisy data. 

By employing K-Fold Cross-Validation with Stratified K-Fold, the study ensures a 

thorough evaluation of the model's performance, considering the potential for bias in imbalanced 

datasets. This approach enhances the generalizability and reliability of the findings, ensuring that 

the models' performance metrics are not overly optimistic or influenced by an unrepresentative 

data split. 

 

2.7. One Vs Rest Classifier 

The One-vs-Rest (OvR) classifier is a multi-class classification approach where a separate 

binary classifier is trained for each class in the dataset. For each classifier, one class is treated as 

the positive class, while all other classes are combined into a single negative class. This method 

enables the model to focus on distinguishing one class from the rest. In the context of disease 

classification, OvR helps to evaluate the relevance of specific features for each disease condition 

separately, allowing for a more detailed and accurate analysis of how well each feature contributes 

to the classification of different diseases [30]. 

 

2.8. Parameter Setting 

 To evaluate the performance of various classification models, experiments were 

conducted using 70% of the dataset for training and the remaining 30% for testing. 

StratifiedKFold (with n_splits=10, shuffle=True, random_state=42) was employed to ensure a 

balanced distribution of the target variable in each fold, particularly important for datasets with 

imbalanced classes. Each machine learning model was configured with specific parameters for 

consistency and reproducibility: the DecisionTreeClassifier, RandomForestClassifier, and 

GradientBoostingClassifier all used a fixed random_state value of 42, ensuring that results could 

be consistently reproduced across multiple runs. The XGBClassifier was configured with 

use_label_encoder=False to prevent unnecessary warning messages and eval_metric='mlogloss' 

to optimize the model for multi-class classification by minimizing logarithmic loss.  

Boruta was used with n_estimators='auto' for feature selection, dynamically adjusting the 

number of trees based on the dataset’s complexity, ensuring an adaptive feature selection process. 

Additionally, Recursive Feature Elimination (RFE) was employed with RandomForestClassifier 

as the estimator, selecting the top 10 features based on their importance. The choice to retain 10 

features was made to balance sufficient feature retention while minimizing the risk of overfitting, 

which also helped simplify the model for better interpretability and computational efficiency. This 

combination of Boruta and RFE provided a robust, efficient, and reproducible approach to disease 

classification, enhancing model performance and interpretability. 

 

3. Result 

The classification performance of five machine learning models—Decision Tree (DT), 

Random Forest (RFC), XGBoost (XGB), Gradient Boosting Classifier (GBC), and LightGBM 

(LGBM)—was evaluated across three configurations: using all features, using features selected 

by Boruta, and using features selected by Recursive Feature Elimination (RFE). 

 
Table 3. Accuracy and Precision of 25 Feature Selection 

Model 
Mean 

Accuracy Precision Recall F1-Score 

DT 95.23% 95.29% 95.23% 95.19% 

RFC 97.83% 98.00% 97.83% 97.85% 

XGB 99.43% 99.44% 99.43% 99.43% 

GBC 99.37% 99.39% 99.37% 99.37% 

LGBM 99.66% 99.66% 99.66% 99.66% 
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Table 3 displays model performance using all 24 features. LightGBM achieved the 

highest mean scores across all metrics (accuracy, precision, recall, and F1-score at 99.66%), 

followed closely by XGBoost (99.43%) and GBC (99.37%). Decision Tree was the lowest-

performing model in this setting but maintained above 95% in all metrics. 

 
Table 4. Accuracy And Precision with Boruta Feature Selection 

Model 
Mean 

Accuracy Precision Recall F1-Score 

DT 92.12% 92.19% 92.12% 92.02% 

RFC 97.12% 97.20% 97.12% 97.11% 

XGB 99.34% 99.35% 99.34% 99.34% 

GBC 99.43% 99.45% 99.43% 99.43% 

LGBM 99.63% 99.63% 99.63% 99.63% 

 

Boruta selected all 24 features, indicating that each feature contributed meaningfully to 

the classification task. As shown in Table 4, the performance of the models with Boruta-selected 

features remained comparable to the full-feature configuration, with only minor variations. For 

instance, LightGBM again achieved 99.63% across all metrics, nearly identical to the full-feature 

result, while Decision Tree saw a slight decline to 92.12% accuracy. These findings suggest that 

the dataset contains no redundant features, and Boruta's all-inclusive selection validates the global 

relevance of each feature. 

 
Table 5. Accuracy And Precision with RFE Feature Selection 

Model 
Mean 

Accuracy Precision Recall F1-Score 

DT 91.58% 91.73% 91.58% 91.48% 

RFC 96.26% 96.38% 96.26% 96.26% 

XGB 97.35% 97.39% 97.35% 97.33% 

GBC 97.32% 97.35% 97.32% 97.30% 

LGBM 97.35% 97.38% 97.35% 97.33% 

 

Unlike Boruta, RFE selected only ten features to optimize model simplicity while 

maintaining predictive power. Table 5 shows that this reduction led to a slight drop in 

performance, particularly in simpler models such as DT and RFC. However, more robust models 

such as XGB, GBC, and LGBM still achieved over 97% accuracy. This demonstrates that a 

smaller subset of features can still perform well, although with slightly reduced accuracy 

compared to the full set or Boruta-selected features. 

 
Table 6. Importance Feature: Each Disease with OvR 

Class Top 5 Features (Importance) 

Anemia Red Blood Cells (0.2575), White Blood Cells (0.2449), Hematocrit (0.1528), C-reactive 

Protein (0.0892), Insulin (0.0837) 

Diabetes Insulin (0.2451), BMI (0.2350), Cholesterol (0.2085), HbA1c (0.1018), Glucose (0.0995) 

Healthy Heart Rate (0.2831), Platelets (0.1695), Mean Corpuscular Volume (0.1324), HDL 

Cholesterol (0.1305), Mean Corpuscular Hemoglobin (0.1011) 

Heart Disease Systolic Blood Pressure (0.1478), Heart Rate (0.1337), Insulin (0.1255), Mean Corpuscular 

Volume (0.1233), Mean Corpuscular Hemoglobin Concentration (0.1066) 

Thalassemia Mean Corpuscular Hemoglobin (0.3406), White Blood Cells (0.1825), Red Blood Cells 

(0.1505), Diastolic Blood Pressure (0.0704), Mean Corpuscular Hemoglobin Concentration 

(0.0699) 

Thrombocytopenia Heart Rate (0.3390), Platelets (0.2523), LDL Cholesterol (0.1922), White Blood Cells 

(0.0850), HDL Cholesterol (0.0509) 

 

To ensure the model's relevance to each disease class, a One-vs-Rest (OvR) analysis was 

conducted. Table 6 presents the top five most important features for each class. For instance, 

anemia classification was most influenced by red and white blood cell counts as well as hematocrit 

levels, while insulin, BMI, and cholesterol were highly predictive for diabetes. In the case of 
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thalassemia, the most critical features included mean corpuscular hemoglobin, white and red 

blood cells, and diastolic blood pressure. 

When comparing these results with the features selected by Boruta, as shown in Figure 2 

and RFE, as shown in Figure 3, it can be observed that several important features identified in the 

OvR analysis were retained. For example, Red Blood Cells, White Blood Cells, Hematocrit, and 

Insulin were selected by both Boruta and RFE, aligning with their high importance in anemia and 

other diseases. Similarly, BMI, Cholesterol, and HbA1c, which were relevant for diabetes, were 

also selected by Boruta. However, some notable features such as Heart Rate, which was important 

for multiple classes (Healthy, Heart Disease, and Thrombocytopenia), and Diastolic Blood 

Pressure, which was important for Thalassemia were not selected by RFE. 

This comparison highlights that while both Boruta and RFE were able to preserve many 

clinically relevant features, certain disease-specific indicators were excluded, potentially due to 

their lower global ranking across all classes. Nevertheless, the overall overlap suggests that the 

feature selection methods retained key discriminative variables for most classes while effectively 

reducing dimensionality and potential noise. 

 
 

 
Figure 2. Feature Selection with the Boruta Method 
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Figure 3. Feature Selection with RFE Method 

 

4. Discussion  

The experimental results indicate that feature selection techniques can noticeably impact 

classification performance, with different models exhibiting varying levels of sensitivity to 

feature set changes. The LGBM classifier consistently demonstrated the highest performance, 

regardless of feature selection method. However, the Decision Tree (DT) model showed a notable 

decline in accuracy and F1-score when Boruta and RFE were applied. This finding underscores 

that simpler models, like DT, are more sensitive to feature space changes. In contrast, more 

complex, ensemble-based models like LGBM, XGBoost, and GBC exhibit greater robustness in 

the presence of feature selection. 

Interestingly, the Boruta method selected all 24 features as important, indicating that the 

full feature set holds valuable information for disease classification. In contrast, RFE identified 

only 10 features, concentrating on dimensionality reduction. Although this reduced feature set 

resulted in slightly lower performance scores, it still maintained competitive accuracy, 

particularly for LGBM, which achieved an accuracy above 97%. This underscores the trade-off 

between interpretability and performance in medical diagnostics—RFE simplifies complexity and 

can yield more interpretable models, but it may sacrifice some predictive power. 

Further analysis using the One-vs-Rest (OvR) approach provided insights into the 

disease-specific features that drive classification accuracy. For example, anemia was strongly 

associated with red blood cells, white blood cells, and hematocrit, while diabetes was heavily 

influenced by features such as insulin, BMI, and cholesterol. Thrombocytopenia, on the other 

hand, showed a strong relationship with platelets and heart rate. These results confirm that the 

models capture disease-specific patterns and are not merely reliant on global trends, making them 

more interpretable and applicable to specific medical conditions. 

One important implication of this study is the potential for more efficient disease 

detection by utilizing fewer features without sacrificing accuracy. Feature selection methods such 

as RFE can significantly reduce computational costs, time, and resources, making them especially 

valuable in time-sensitive medical applications where data acquisition may be costly or limited. 

Medical practitioners can achieve more efficient diagnostics by focusing on a more targeted set 

of features, ultimately accelerating clinical decision-making. 

The strength of this study lies in its comprehensive evaluation of multiple machine 

learning models, accompanied by two feature selection techniques—Boruta and RFE. The 

findings suggest that high accuracy can be achieved even with a reduced feature set, making the 

models suitable for real-world medical datasets. Using both Boruta and RFE allows for a nuanced 

assessment of feature selection, offering insights into how each approach influences classification 

performance. 
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However, certain limitations must be taken into account. While Boruta's method of 

selecting all features as important may help capture a broader range of information, it could also 

lead to overfitting, especially in more complex datasets. Conversely, RFE, which aggressively 

reduces the feature set, may overlook potentially valuable features contributing to disease-specific 

classifications' accuracy. Additionally, this study only evaluates a limited number of machine 

learning models, and further research into additional algorithms could provide a more 

comprehensive understanding of the effects of feature selection on classification performance. 

 

5. Conclusions 

This study demonstrates the significant role of feature selection techniques in enhancing 

multi-disease classification performance using machine learning models. Among the evaluated 

classifiers, the Light Gradient Boosting Machine (LGBM) consistently achieved the highest 

accuracy, showing strong resilience to changes in the feature set. The comparison between Boruta 

and Recursive Feature Elimination (RFE) revealed a trade-off between model interpretability and 

predictive performance, with RFE offering a more compact and interpretable feature subset while 

maintaining high accuracy. 

Furthermore, class-wise analysis through the One-vs-Rest (OvR) approach highlighted 

the disease-specific relevance of features, confirming the models’ ability to capture meaningful 

medical patterns rather than relying solely on global trends. These findings suggest that efficient 

and accurate medical diagnosis is possible even with reduced feature sets, which is particularly 

valuable in clinical environments with limited data resources. 

Overall, this work supports the integration of feature selection in medical machine 

learning pipelines to improve both performance and interpretability. Future research could apply 

other feature selection techniques, such as Mutual Information or Genetic Algorithms, to compare 

their effectiveness in multi-disease classification tasks. Exploring alternative ensemble models, 

like Stacking or Voting classifiers, could also enhance performance. Additionally, evaluating 

these methods on diverse datasets, including those with missing or imbalanced data, would help 

assess the models' robustness and generalizability. Finally, integrating domain-specific medical 

knowledge with feature selection methods could further improve both the models' interpretability 

and performance, offering a more personalized approach to disease classification. 
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