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Abstrak. Pentingnya Pemilihan Fitur untuk Klasifikasi Berbagai Penyakit. Kinerja
machine learning dalam Klasifikasi penyakit sangat bergantung pada pemilihan fitur yang
tepat. Penelitian ini mengeksplorasi metode seleksi fitur—Boruta dan Recursive Feature
Elimination (RFE)—dengan model ensemble seperti Random Forest, Decision Tree,
Gradient Boosting, LightGBM, dan XGBoost menggunakan data Electronic Health
Records (EHR). Hasil menunjukkan bahwa kombinasi Boruta dan LightGBM
menghasilkan akurasi tertinggi sebesar 99%. Seleksi fitur meningkatkan presisi dengan
fokus pada variabel relevan dan menghapus yang tidak perlu. Analisis lebih lanjut
menunjukkan fitur seperti Red Blood Cells, Insulin, Heart Rate, dan Cholesterol sangat
mempengaruhi klasifikasi penyakit tertentu. Temuan ini menyoroti pentingnya seleksi fitur
dalam klasifikasi multi-penyakit dan analisis data medis, serta meningkatkan efisiensi
sistem machine learning. Penelitian selanjutnya disarankan untuk mengembangkan metode
seleksi fitur yang lebih fleksibel dan menguji model pada dataset penyakit yang lebih
beragam.
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Abstract. The performance of machine learning in disease classification heavily depends
on effective feature selection. This study explores feature selection methods—Boruta and
Recursive Feature Elimination (RFE)—with ensemble models like Random Forest,
Decision Tree, Gradient Boosting, LightGBM, and XGBoost using Electronic Health
Records (EHR) data. Results show that combining Boruta with LightGBM achieves the
highest accuracy of 99%. Feature selection enhances precision by focusing on relevant
variables and removing unnecessary ones. Further analysis reveals that features such as
Red Blood Cells, Insulin, Heart Rate, and Cholesterol significantly influence the
classification of specific diseases. These findings highlight the importance of feature
selection in multi-disease classification and medical data analysis, improving the efficiency
of machine learning systems. Future research should develop more flexible feature selection
methods and test models on diverse disease datasets.
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1. Introduction

Electronic Health Records (EHR) are crucial in advancing machine learning applications
in the medical field, especially in disease classification. EHRs provide detailed and complex
patient data, which is essential for building accurate and reliable disease diagnosis models
[1][2][3]. With the vast amount of real-time and historical health information, EHRs help machine
learning systems identify key variables while eliminating unnecessary data. Recent innovations
in EHRs have garnered significant research interest due to their potential to improve patient
outcomes, streamline healthcare processes, and support personalized medicine [4].

EHRs enable continuous analysis of various diseases by leveraging the accumulated data
over time. This capability allows healthcare providers to detect patterns, predict disease
progression, and personalize treatment plans effectively [5]. Continuous monitoring is especially
beneficial in the management of chronic diseases, as it facilitates the early identification of
complications and permits timely interventions. Machine learning classifiers such as LogitBoost,
Random Forest, XGBoost, Decision Tree, and Support Vector Machine have been proposed for
disease recognition tasks. However, most existing methods focus on recognizing diseases at one
point with a single feature set, which becomes challenging as the number of activities and features
increases.
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This research aims to evaluate and compare the performance of five machine learning
classifiers—Decision Tree (DT), Random Forest Classifier (RFC), XGBoost, Gradient Boosting
Classifier (GBC), and Light Gradient-Boosting Machine (LGBM)—in disease classification,
focusing on their accuracy across different feature sets. The study investigates the importance of
features to identify which variables are most critical for disease detection. Boruta and Recursive
Feature Elimination (RFE) are employed for feature selection to enhance classification accuracy
and efficiency. This approach improves model performance and provides valuable insights into
the key factors influencing disease classification, contributing to the development of more
interpretable and reliable healthcare models.

While numerous studies have explored machine learning techniques for disease detection,
few have focused on detecting multiple diseases simultaneously. For instance, EHRs have been
used to classify four different blood diseases, with models such as LogitBoost, Random Forest,
XGBoost, Decision Tree, and Support Vector Machine being tested. The reported accuracy of
these models varied, with the highest reaching 98% [6]. Another study by Arumugam et al. [7]
explored disease detection for heart disease and diabetes using three distinct datasets for each
condition. Among the tested models, Decision Tree outperformed the others with an accuracy of
around 90%, surpassing Support Vector Machine (87%) and Naive Bayes (77%).
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Figure 1. The Workflow of This Research

Figure 1 illustrates the workflow of this research. The process begins with the dataset,
which serves as the foundation for the entire analysis. Initially, feature selection is conducted
using three different approaches: no feature selection (utilizing all available features), Boruta (an
advanced feature selection technique), and RFE (Recursive Feature Elimination). These methods
aim to identify and retain the most relevant features while eliminating less important or redundant
ones. After feature selection, the dataset trains several machine learning models, including
Decision Tree, Random Forest, XGBoost, Gradient Boosting Classifier (GBC), and LightGBM.
These models are evaluated using various performance metrics such as accuracy, precision, recall,
and others, to determine the most effective classifier for the task. Subsequently, a One-vs-Rest
(OvR) classification approach is employed to analyze each disease class individually. The features
selected by Boruta and RFE are assessed for their relevance and impact on classification
performance for each disease (Anemia, Diabetes, Heart Disease, Healthy, Thalassemia, and
Thrombocytopenia). This step allows for a comparison of the effectiveness of the feature selection
methods for each specific disease. Finally, the features identified by Boruta and RFE are
juxtaposed with those identified by the One-vs-Rest classifier to provide a comprehensive
understanding of how the different feature selection techniques contribute to the classification
process and model performance, ensuring that the results are applicable to the specific diseases
being examined.
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2.1. Random Forest

Random Forests (RF) is an approach that integrates multiple decision trees to improve
the performance of a single decision tree classifier. This is accomplished by employing the
bootstrap aggregating (bagging) method and adding randomness when selecting data nodes for
partitioning during the decision tree construction. An RF classifier combines several independent
decision tree classifiers [8]. A decision tree with M leaves splits the feature space into M regions,
denoted as R,,, where 1 <m < M. For each tree, the prediction function f(x) is defined as
shown in Equation (1):

fx) = Z%:l Cm (X, Rp) (1

In this formulation, M represents the number of regions in the feature space, R,, is the
region associated with index m, ¢, is the constant corresponding to m, and 1 is an indicator
function, defined in Equation (2):

1, if x € Ry,
0, otherwise

(s R) = | @)

The ultimate classification decision is determined by the majority vote of all the trees.

2.2. Gradient Boosting

Gradient Boosting Classifier shows that it can be a decent model with 97% accuracy on
the heart disease dataset and 73% on the cardiovascular dataset [9]. Gradient Boosting is a
powerful supervised classification technique that constructs a strong predictive model by
combining multiple weak learners [10]. The core principle involves iteratively adding new weak
models, which are typically simple models that perform marginally better than random guessing,
to the ensemble [11]. Each new model is trained to correct the residual errors made by the previous
models, using gradient descent optimization to minimize these errors. Gradient Boosting is
commonly utilized with tree-based models like decision trees or random forests. Many
hyperparameters, such as the number of trees, the learning rate, and the maximum depth of the
trees impact the model's efficacy. Recent applications of the Gradient Boosting Classifier
demonstrate its robustness, achieving a 97% accuracy on a heart disease dataset and a 73%
accuracy on a cardiovascular dataset [9]. These results underscore Gradient Boosting's capability
to deliver high performance across diverse datasets, making it a versatile and reliable tool in
machine learning.

XGBoost, an advanced extension of Gradient Boosting, is widely recognized for its
superior performance in machine learning tasks. It improves upon traditional Gradient Boosting
through features such as advanced tree-based models, regularization techniques to prevent
overfitting, robust handling of missing values, and parallel computing for efficient training on
large datasets, alongside customizable hyperparameters and support for multiple objectives [12].
Recent research highlights XGBoost’s exceptional performance compared to other models; for
example, one study demonstrated that XGBoost achieved an accuracy of 91%, surpassing
alternative approaches [13], while another found that XGBoost performed well with a notable
accuracy of 99.16% [14]. These advancements underscore XGBoost’s effectiveness as a leading
technique for achieving high accuracy in diverse machine-learning applications.

LightGBM is a high-performance Gradient Boosting framework that significantly
enhances traditional Gradient Boosting techniques through several innovative methods [15].
LGBM consists of individual shallow decision trees that avoid overfitting problems [16][17].
LightGBM employs Gradient-Based One-Side Sampling and Exclusive Feature Bundling to
reduce computational complexity and improve efficiency. Additionally, its use of Leaf-wise Tree
Growth accelerates model training and enhances accuracy by focusing on the most promising
splits. LightGBM supports parallel and distributed learning, which allows it to handle large-scale
data processing efficiently while managing multiple objectives and optimizing memory usage
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[18]. Swainn et al. [19] demonstrated the effectiveness of LightGBM in classifying Parkinson’s
disease, achieving an impressive accuracy of 98%. This research highlights LightGBM’s
capability to deliver high accuracy and speed in complex machine-learning tasks, confirming its
value as a leading tool for advanced data analysis and model development. Another research by
Sharma and Singh [20] shows that LGBM can reach 99% accuracy

2.3. Feature Selection Method

Boruta is a feature selection algorithm built around the random forest classification
technique. It works by creating shadow features, which are randomly permuted versions of the
original features, and then training a random forest classifier on the combined dataset [21]. The
algorithm iteratively checks the importance of each feature by comparing it to its shadow features.
Features with higher importance scores than their shadow features are deemed relevant and are
retained, while those with lower scores are considered irrelevant and are removed [9][22].

Recursive Feature Elimination (RFE) is a wrapper method that recursively eliminates
features and builds a model over the remaining ones [23]. It ranks features based on importance
and eliminates the least important ones until the desired number of features is reached [24]. RFE
is an iterative process that involves training a model on all features, ranking them, eliminating the
least important feature, and repeating the process until the desired number of features is achieved.
Specifically, the RFE algorithm [18] operates as follows: fit the model using all independent
variables, calculate the variable importance of all variables, rank each independent variable based
on its importance to the model, drop the weakest variable, and build a model using the remaining
variables, then calculate model accuracy. This process is repeated until all variables have been
used and ranked according to when they were dropped. For classification, accuracy and precision
are used as metrics. Guyon et al. [25] introduced Recursive Feature Elimination (RFE), a method
applied in cancer classification using Support Vector Machine (SVM). RFE starts by using all
available features to train an SVM model. It then ranks the importance of each feature based on
its contribution to the model, generating a ranked list. Irrelevant features contribute less to the
model's performance and are eliminated iteratively until the desired number of features remains
[26].

2.4. Dataset

The multiple disease prediction data set is publicly available on Kaggle [27]. This dataset
comprises 25 features and 2837 entries. It is designed to assess the health status of individuals,
determining whether a person has a specific disease or is healthy based on blood samples and
various health parameters. These features are presented in Table 1, and the disease class is shown
in Table 2.

Table 1. Multiple Disease Prediction Dataset Features

No Features No Features
1 Glucose 14 Diastolic Blood Pressure (DBP)
2 Cholesterol 15  Triglycerides
3 Hemoglobin 16 HbAlc (Glycated Hemoglobin)
4  Platelets 17 LDL (Low-Density Lipoprotein) Cholesterol
5 White Blood Cells (WBC) 18  HDL (High-Density Lipoprotein) Cholesterol
6 Red Blood Cells (RBC) 19  ALT (Alanine Aminotransferase)
7  Hematocrit 20  AST (Aspartate Aminotransferase)
8  Mean Corpuscular Volume (MCV) 21  Heart Rate
9  Mean Corpuscular Hemoglobin (MCH) 22 Creatinine
10 Mean Corpuscular Hemoglobin Concentration 23 Troponin
(MCHC)
11 Insulin 24  C-reactive Protein (CRP)
12 BMI (Body Mass Index) 25 Disease

13 Systolic Blood Pressure (SBP)
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Table 2. Disease Class
No Disease
1 Cholesterol

2 Hemoglobin

3 Platelets

4 White Blood Cells (WBC)
5 Red Blood Cells (RBC)

6  Hematocrit

2.5. Environment

This research used Jupyter Notebook as the primary development environment for
building and evaluating classification models. The dataset used in this study comprises 2,837
records, each corresponding to one of six health conditions: Anemia, Diabetes, Heart Disease,
Healthy, Thalassemia, and Thrombocytopenia. These conditions were selected due to their
clinical significance and the need for accurate, early detection methods. Table 2 provides a
detailed breakdown of the dataset distribution.

To evaluate classifier performance, this study utilizes four key metrics: accuracy,
precision, recall, and F1-score, which are essential for validating predictive models in healthcare
applications. Accuracy, as shown in Equation (3), measures the overall correctness of predictions,
while precision, as shown in Equation (4), evaluates the proportion of true positive predictions
among all predicted positives, thereby minimizing the impact of false positives. Recall, as shown
in Equation (5), measures the model’s ability to correctly identify all relevant positive instances.
The F1-score, as shown in Equation (6), provides a harmonic mean between precision and recall,
particularly beneficial when dealing with imbalanced datasets. These metrics collectively ensure
a comprehensive and balanced assessment of model performance [28].

TP+TN
Accuracy = TP+TN+FP+FN ©)
Precision = —— 4)
TP+FP
Recall = —— )
TP+FN
2XPXR
F1 = iR (6)

where: TP = True positive; FP = False positive; TN = True negative; FN = False negative; P =
Precision; R = Recall.

2.6. K-Fold Cross-Validation

To assess the model's accuracy more objectively and to mitigate bias caused by
imbalanced data splitting, this study employs the K-Fold Cross-Validation technique with
Stratified K-Fold. This method divides the dataset into K equal-sized parts (folds). Each fold is
used once as a test set, while the remaining K-1 folds are used for training. This process is repeated
for each fold, and the final evaluation results are averaged across all folds based on performance
metrics such as accuracy, precision, and recall. This method helps provide a more reliable estimate
of the model's performance by ensuring that every data point is used for training and testing.

The use of Stratified K-Fold ensures that the class distribution within each fold is
representative of the overall distribution of the classes in the dataset. This is especially important
in imbalanced datasets, where certain classes may be underrepresented. By maintaining similar
class distributions across all folds, Stratified K-Fold allows the model to learn from all classes
proportionally, reducing the risk of the model being biased toward the majority class. This is
particularly beneficial in healthcare datasets, where imbalanced class distributions are common
and ensures a more accurate model evaluation [29].

In this study, the Random Forest and XGBoost models are selected due to their ability to
handle complex, high-dimensional data and their robustness against overfitting, especially when
used with cross-validation. Both models are trained using the features selected through Boruta
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and Recursive Feature Elimination (RFE) methods, and their performance is evaluated based on
the accuracy, precision, recall, and other relevant metrics. These models are particularly well-
suited for this task due to their capacity for learning non-linear relationships and handling missing
or noisy data.

By employing K-Fold Cross-Validation with Stratified K-Fold, the study ensures a
thorough evaluation of the model's performance, considering the potential for bias in imbalanced
datasets. This approach enhances the generalizability and reliability of the findings, ensuring that
the models' performance metrics are not overly optimistic or influenced by an unrepresentative
data split.

2.7. One Vs Rest Classifier

The One-vs-Rest (OvR) classifier is a multi-class classification approach where a separate
binary classifier is trained for each class in the dataset. For each classifier, one class is treated as
the positive class, while all other classes are combined into a single negative class. This method
enables the model to focus on distinguishing one class from the rest. In the context of disease
classification, OVR helps to evaluate the relevance of specific features for each disease condition
separately, allowing for a more detailed and accurate analysis of how well each feature contributes
to the classification of different diseases [30].

2.8. Parameter Setting

To evaluate the performance of various classification models, experiments were
conducted using 70% of the dataset for training and the remaining 30% for testing.
StratifiedKFold (with n_splits=10, shuffle=True, random_state=42) was employed to ensure a
balanced distribution of the target variable in each fold, particularly important for datasets with
imbalanced classes. Each machine learning model was configured with specific parameters for
consistency and reproducibility: the DecisionTreeClassifier, RandomForestClassifier, and
GradientBoostingClassifier all used a fixed random_state value of 42, ensuring that results could
be consistently reproduced across multiple runs. The XGBClassifier was configured with
use label encoder=False to prevent unnecessary warning messages and eval metric='mlogloss'
to optimize the model for multi-class classification by minimizing logarithmic loss.

Boruta was used with n_estimators="auto' for feature selection, dynamically adjusting the
number of trees based on the dataset’s complexity, ensuring an adaptive feature selection process.
Additionally, Recursive Feature Elimination (RFE) was employed with RandomForestClassifier
as the estimator, selecting the top 10 features based on their importance. The choice to retain 10
features was made to balance sufficient feature retention while minimizing the risk of overfitting,
which also helped simplify the model for better interpretability and computational efficiency. This
combination of Boruta and RFE provided a robust, efficient, and reproducible approach to disease
classification, enhancing model performance and interpretability.

3. Result

The classification performance of five machine learning models—Decision Tree (DT),
Random Forest (RFC), XGBoost (XGB), Gradient Boosting Classifier (GBC), and LightGBM
(LGBM)—was evaluated across three configurations: using all features, using features selected
by Boruta, and using features selected by Recursive Feature Elimination (RFE).

Table 3. Accuracy and Precision of 25 Feature Selection

Mean
Model Accuracy Precision Recall F1-Score
DT 95.23% 95.29% 95.23% 95.19%
RFC 97.83% 98.00% 97.83% 97.85%
XGB 99.43% 99.44% 99.43% 99.43%
GBC 99.37% 99.39% 99.37% 99.37%

LGBM 99.66% 99.66% 99.66% 99.66%
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Table 3 displays model performance using all 24 features. LightGBM achieved the
highest mean scores across all metrics (accuracy, precision, recall, and F1-score at 99.66%),
followed closely by XGBoost (99.43%) and GBC (99.37%). Decision Tree was the lowest-
performing model in this setting but maintained above 95% in all metrics.

Table 4. Accuracy And Precision with Boruta Feature Selection

Model Mean

Accuracy Precision Recall F1-Score
DT 92.12% 92.19% 92.12% 92.02%
RFC 97.12% 97.20% 97.12% 97.11%
XGB 99.34% 99.35% 99.34% 99.34%
GBC 99.43% 99.45% 99.43% 99.43%
LGBM 99.63% 99.63% 99.63% 99.63%

Boruta selected all 24 features, indicating that each feature contributed meaningfully to
the classification task. As shown in Table 4, the performance of the models with Boruta-selected
features remained comparable to the full-feature configuration, with only minor variations. For
instance, LightGBM again achieved 99.63% across all metrics, nearly identical to the full-feature
result, while Decision Tree saw a slight decline to 92.12% accuracy. These findings suggest that
the dataset contains no redundant features, and Boruta's all-inclusive selection validates the global
relevance of each feature.

Table 5. Accuracy And Precision with RFE Feature Selection

Model Mean

Accuracy Precision Recall F1-Score
DT 91.58% 91.73% 91.58% 91.48%
RFC 96.26% 96.38% 96.26% 96.26%
XGB 97.35% 97.39% 97.35% 97.33%
GBC 97.32% 97.35% 97.32% 97.30%
LGBM 97.35% 97.38% 97.35% 97.33%

Unlike Boruta, RFE selected only ten features to optimize model simplicity while
maintaining predictive power. Table 5 shows that this reduction led to a slight drop in
performance, particularly in simpler models such as DT and RFC. However, more robust models
such as XGB, GBC, and LGBM still achieved over 97% accuracy. This demonstrates that a
smaller subset of features can still perform well, although with slightly reduced accuracy
compared to the full set or Boruta-selected features.

Table 6. Importance Feature: Each Disease with OvR

Class Top S Features (Importance)

Anemia Red Blood Cells (0.2575), White Blood Cells (0.2449), Hematocrit (0.1528), C-reactive
Protein (0.0892), Insulin (0.0837)

Diabetes Insulin (0.2451), BMI (0.2350), Cholesterol (0.2085), HbAlc (0.1018), Glucose (0.0995)

Healthy Heart Rate (0.2831), Platelets (0.1695), Mean Corpuscular Volume (0.1324), HDL
Cholesterol (0.1305), Mean Corpuscular Hemoglobin (0.1011)

Heart Disease Systolic Blood Pressure (0.1478), Heart Rate (0.1337), Insulin (0.1255), Mean Corpuscular
Volume (0.1233), Mean Corpuscular Hemoglobin Concentration (0.1066)

Thalassemia Mean Corpuscular Hemoglobin (0.3406), White Blood Cells (0.1825), Red Blood Cells
(0.1505), Diastolic Blood Pressure (0.0704), Mean Corpuscular Hemoglobin Concentration
(0.0699)

Thrombocytopenia Heart Rate (0.3390), Platelets (0.2523), LDL Cholesterol (0.1922), White Blood Cells
(0.0850), HDL Cholesterol (0.0509)

To ensure the model's relevance to each disease class, a One-vs-Rest (OvR) analysis was
conducted. Table 6 presents the top five most important features for each class. For instance,
anemia classification was most influenced by red and white blood cell counts as well as hematocrit
levels, while insulin, BMI, and cholesterol were highly predictive for diabetes. In the case of
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thalassemia, the most critical features included mean corpuscular hemoglobin, white and red
blood cells, and diastolic blood pressure.

When comparing these results with the features selected by Boruta, as shown in Figure 2
and RFE, as shown in Figure 3, it can be observed that several important features identified in the
OvVR analysis were retained. For example, Red Blood Cells, White Blood Cells, Hematocrit, and
Insulin were selected by both Boruta and RFE, aligning with their high importance in anemia and
other diseases. Similarly, BMI, Cholesterol, and HbA1c, which were relevant for diabetes, were
also selected by Boruta. However, some notable features such as Heart Rate, which was important
for multiple classes (Healthy, Heart Disease, and Thrombocytopenia), and Diastolic Blood
Pressure, which was important for Thalassemia were not selected by RFE.

This comparison highlights that while both Boruta and RFE were able to preserve many
clinically relevant features, certain disease-specific indicators were excluded, potentially due to
their lower global ranking across all classes. Nevertheless, the overall overlap suggests that the
feature selection methods retained key discriminative variables for most classes while effectively
reducing dimensionality and potential noise.

Features Selected by Boruta

0.8

Not Selected)

0.6

Selected, 0

0.4

Importance (1

0.2

0.0
mmmmmmm

I

I
ume
obin
tion
ulin
BMI
ure
sure
ides
Alc
erol
erol
ALT
AST

2 & 3

s 2 2

Glucos:
globi
teles
d Cell
d G
"OC|
HI
Troponin

6 8 5 35

Cholesterol
White Blo
Hema
Mean Cnrpu;cu\ar Vol
Mean Corpuscular Hemoglobi
Systolic Blood Pre
Diastolic Blood
Triglyceri
LDL Chales|
HDL Choles!
Heart Rate
Creatinine
C-reactive Protein

Mean Corpuscular Hemoglobin Concentr;

Features

Figure 2. Feature Selection with the Boruta Method



42 Jurnal Buana Informatika, Volume 16, Nomor 1, April 2025: 34-45

Fitur yang Dipilih oleh RFE dengan Random Forest
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4. Discussion

The experimental results indicate that feature selection techniques can noticeably impact
classification performance, with different models exhibiting varying levels of sensitivity to
feature set changes. The LGBM classifier consistently demonstrated the highest performance,
regardless of feature selection method. However, the Decision Tree (DT) model showed a notable
decline in accuracy and F1-score when Boruta and RFE were applied. This finding underscores
that simpler models, like DT, are more sensitive to feature space changes. In contrast, more
complex, ensemble-based models like LGBM, XGBoost, and GBC exhibit greater robustness in
the presence of feature selection.

Interestingly, the Boruta method selected all 24 features as important, indicating that the
full feature set holds valuable information for disease classification. In contrast, RFE identified
only 10 features, concentrating on dimensionality reduction. Although this reduced feature set
resulted in slightly lower performance scores, it still maintained competitive accuracy,
particularly for LGBM, which achieved an accuracy above 97%. This underscores the trade-off
between interpretability and performance in medical diagnostics—RFE simplifies complexity and
can yield more interpretable models, but it may sacrifice some predictive power.

Further analysis using the One-vs-Rest (OvR) approach provided insights into the
disease-specific features that drive classification accuracy. For example, anemia was strongly
associated with red blood cells, white blood cells, and hematocrit, while diabetes was heavily
influenced by features such as insulin, BMI, and cholesterol. Thrombocytopenia, on the other
hand, showed a strong relationship with platelets and heart rate. These results confirm that the
models capture disease-specific patterns and are not merely reliant on global trends, making them
more interpretable and applicable to specific medical conditions.

One important implication of this study is the potential for more efficient disease
detection by utilizing fewer features without sacrificing accuracy. Feature selection methods such
as RFE can significantly reduce computational costs, time, and resources, making them especially
valuable in time-sensitive medical applications where data acquisition may be costly or limited.
Medical practitioners can achieve more efficient diagnostics by focusing on a more targeted set
of features, ultimately accelerating clinical decision-making.

The strength of this study lies in its comprehensive evaluation of multiple machine
learning models, accompanied by two feature selection techniques—Boruta and RFE. The
findings suggest that high accuracy can be achieved even with a reduced feature set, making the
models suitable for real-world medical datasets. Using both Boruta and RFE allows for a nuanced
assessment of feature selection, offering insights into how each approach influences classification
performance.



Andika, Importance of Feature Selection for Multiple Disease Classification 43

However, certain limitations must be taken into account. While Boruta's method of
selecting all features as important may help capture a broader range of information, it could also
lead to overfitting, especially in more complex datasets. Conversely, RFE, which aggressively
reduces the feature set, may overlook potentially valuable features contributing to disease-specific
classifications' accuracy. Additionally, this study only evaluates a limited number of machine
learning models, and further research into additional algorithms could provide a more
comprehensive understanding of the effects of feature selection on classification performance.

5. Conclusions

This study demonstrates the significant role of feature selection techniques in enhancing
multi-disease classification performance using machine learning models. Among the evaluated
classifiers, the Light Gradient Boosting Machine (LGBM) consistently achieved the highest
accuracy, showing strong resilience to changes in the feature set. The comparison between Boruta
and Recursive Feature Elimination (RFE) revealed a trade-off between model interpretability and
predictive performance, with RFE offering a more compact and interpretable feature subset while
maintaining high accuracy.

Furthermore, class-wise analysis through the One-vs-Rest (OvR) approach highlighted
the disease-specific relevance of features, confirming the models’ ability to capture meaningful
medical patterns rather than relying solely on global trends. These findings suggest that efficient
and accurate medical diagnosis is possible even with reduced feature sets, which is particularly
valuable in clinical environments with limited data resources.

Overall, this work supports the integration of feature selection in medical machine
learning pipelines to improve both performance and interpretability. Future research could apply
other feature selection techniques, such as Mutual Information or Genetic Algorithms, to compare
their effectiveness in multi-disease classification tasks. Exploring alternative ensemble models,
like Stacking or Voting classifiers, could also enhance performance. Additionally, evaluating
these methods on diverse datasets, including those with missing or imbalanced data, would help
assess the models' robustness and generalizability. Finally, integrating domain-specific medical
knowledge with feature selection methods could further improve both the models' interpretability
and performance, offering a more personalized approach to disease classification.
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