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Abstrak. Paper ini mempresentasikan Two-SidedRapidly-Explored Random Tree (RRT*) 
yang merupakan varian dari algoritma perencanaan jalur RRT* yang memanfaatkan 
simpul awal dan simpul target sebagai basis untuk menghasilkan jalur. Keuntungan dari 
metode ini adalah kemampuan untuk membuat koneksi antara simpul awal dan simpul 
target di bawah ruang kerja yang berlawanan. Dalam jenis ruang kerja ini, masalah utama 
dalam RRT* adalah tingkat keberhasilan membangun rute yang lengkap dan optimal dan 
mengurangi waktu pemrosesan pembuatan jalur. Algoritma yang diusulkan bertujuan 
untuk meningkatkan tingkat keberhasilan pembuatan rute dan mengurangi waktu 
pemrosesan tersebut. Teknik ini terdiri dari dua hal: penerapan panjang maksimum jalur 
antar-simpul dan pembuatan simpul dua sisi, yaitu, dari simpul awal dan target. Hasil 
simulasi menyimpulkan bahwa penerapan panjang maksimum jalur antar-simpul yang 
besar dapat meningkatkan tingkat keberhasilan konstruksi rute yang lengkap. 
Keywords: Automated guided vehicle (AGV), perencanaan jalur, rapidly explored random 
tree (RRT), Algoritma A* 
 
Abstract. This paper presents a two-sided Rapidly-Explored Random Tree (RRT*) which is 
a variant of RRT* path planning algorithm that utilizes a start and a target node as the 
bases for generating paths. The advantage of this method is in the capability to make a 
connection between start and target nodes under adversarial workspace. In this type of 
workspaces, the main problem in RRT* is the success rate of constructing a complete and 
optimized route and reducing path-generation processing time. The proposed algorithm is 
purposed to increase the route generation success rate and reduce the processing time. The 
technique consists of two-fold: the application of maximum length of inter-node path and 
two-sided node generation, i.e., from the start and target nodes. Simulation results conclude 
that the application of large maximum length of inter-node path can increase the success 
rate of complete route construction. 
Keywords: Automated guided vehicle (AGV), path planning, rapidly explored random tree 
(RRT), A* algorithm 

 
1. Introduction  

Manufacturing is an important component of modern industry. In modern industry, 
especially Industry 4.0, warehouses play a significant role in ensuring the continuity of the supply 
chain. If warehouse operations are disrupted, the entire supply chain can be affected. 
Contemporary warehouse systems are characterized by efficient material handling activities. In 
large-scale warehouse systems, the use of automated guided vehicles (AGVs) and robotic arms 
has become common, especially with the emergence of Industry 4.0 as a prevailing paradigm. 
Typical warehouse operations include loading and unloading of docks and pallets. 

The operation of AGVs relies on two critical components: motion control and path 
planning. Motion control refers to the mechanism of driving the motion of AGVs from a 
predetermined starting node to a specific target node. Nevertheless, in adversarial environments 
like those in large warehouses, motion control itself is often insufficient to handle some dynamic 
conditions, such as the presence of unpredictable obstacles. Therefore, path planning is utilized 
to enhance the performance of motion control. The issue of path planning is urgent in the 
environment of AGVs, especially in the context of safety guarantees. Applying motion control 
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without exact path planning will potentially increase the safety risk. Therefore, designing a 
collision-free and rigorous path planning for AGVs is mandatory in smart manufacture. 

One widely used path planning technique is the Rapidly-Exploring Random Tree (RRT) 
algorithm, and its more efficient variant, RRT*. Such algorithms are especially effective in 
complex or adversarial workspaces, which is highly possible to include obstacles and differential 
constraints. To ensure the efficiency and safety in operations, warehouse robotic systems require 
a generated plan—either a path or a trajectory. For each task, the robot must solve the problem of 
navigating from its initial position and orientation (or configuration) to a target configuration 
while avoiding collisions with obstacles.  

Numerous RRT and RRT* algorithms have been developed over the past two decades. 
Recently, their applications span a variety of domains, including mobile robots [1]-[3], truck-
trailer systems [4][5], unmanned surface vehicles [6], robotic arms [7][8], aerial vehicles [9]-[11], 
ships [12], and surgical robots [13]. Notwithstanding these advancements, a common issue 
remains: the efficiency of connecting the start and target nodes in the minimum time.  

Most of the referenced works do not address the issue of the required time for generating 
feasible paths. Although nodes are affirmed to be randomly generated, some form of "directional 
randomness" is needed to ensure that the exploration does not bend into irrelevant or 
counterproductive directions, such as paths leading significantly away from the target node. 
Moreover, conventional RRT and RRT* algorithms tend to rely on short node-to-node 
connections, which often increases the number of iterations required to obtain an optimized path. 

The modified RRT* algorithm in this paper addresses two key issues. First is the need to 
guide the randomness in node generation. Second is the use of an allowable maximum extension 
length. Directional randomness is defined as the reduced probability of generating nodes in areas 
that lie significantly outside the viable path corridor toward the target. In this paper, the 
relationship between the allowable maximum extension length and it is hypothesized that both 
features will influence the number of required iterations and overall processing time. 
   
2. Literature Review 

The Rapidly-Exploring Random Tree algorithms (RRT and RRT*) are well-known and 
very efficient class of path planning algorithms used in robotics. Such the algorithms provide a 
support for robots to discover the motion strategy for a very basic mission, i.e., moving from a 
start node to a target node in a far distance under complicated workspace. 

The basic RRT operates under the following four steps: random sampling, tree expansion, 
bias toward exploration, and goal biasing. The random sampling step is a method that randomly 
samples configurations from a set of free-space in a given workspace. The dimension of the 
configurations may be various. It can be 2D, 3D, or higher dimensions. 

Tree expansion is the core of the exploration of the RRT. In this method, new nodes are 
generated and connections between them and the existing closer nodes are established. Under a 
complex and adversarial workspace, the new node generation also calls the function of collision 
avoidance. Therefore, the resulted new nodes and their connections are collision-free. The 
randomly-generation method potentially plots the nodes into unpredictable unexplore areas. Then, 
some route alternatives can be performed. Finally, this method makes connections between some 
nodes that are close to the target configuration. 

According to Zhu and Qiu (2025), the RRT algorithm was developed by considering 
kinematic model of mobile robots [1]. Here, the turning radius of the robot leads to the next 
generated nodes. Therefore, the generated edges (node-to-node link) have a shape of 
nonholonomic vehicles motion, which in turn is more realistic. In other developments, the 
combination of RRT and a training algorithm called Generative Adversarial Network-based 
Direct Trajectory Planning (GDTP) was proposed in [4]. 
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Figure 1. Research Workflow  

 
Various techniques in more optimalized algorithm of RRT, namely, RRT* have been 

introduced. The use of dual-structure RRT* was proposed by Chen et al (2018). The proposed 
algorithm enhanced the traditional RRT* (first structure) with optimalization (second structure). 
Smoothing has been an interesting issue since, usually, the traditional results of RRT and RRT* 
mostly cannot accommodate the kinematics constraints of the tracking vehicles. Therefore, some 
smoothing algorithms were developed [6][9][14]. Here, the use of spline curves was proposed. 
As the work in [14], a generated RRT* can be smoothed by treating some waypoints in a particular 
route as control points for the curve by considering some geometrical constraints related to 
collision. 

Based on the literature review, there is an issue that has not been considered, i.e., the 
factors that affect the computational time. Mostly, the literature focused on the success rate of 
connecting the start and the goal points without proposing a mechanism to reduce the 
computational time. In this paper, the maximum length of node-to-node paths and the application 
of two path sources are considered to reduce the computational time. Moreover, the ability of the 
proposed algorithm to generate paths on a narrow passage between obstacles is demonstrated.  

 
3. Research Methodology 
3.1. Research Workflow 

The overall research workflow is illustrated in Figure 1. This research begins with a 
literature review aimed at tracking the development of path planning research—particularly 
Rapidly-Explored Random Trees (RRT)—identifying issues that have emerged in previous 
studies, and revealing research gaps. When the issue is identified, the activities are continued to 
designing a simulation scenario. This includes setting up various parameters such as the allowable 
maximum extension length of all node-to-node paths, and the number of nodes placed in free 
space. 

The defined issues are then applied through algorithm design and followed by the 
development of a simulation program using MATLAB. This software is chosen for its 
robustlibrary support, which facilitates data visualization and efficient calculation. The proposed 
algorithms include: one method is dedicated for generating nodes in free space, one method for 
sorting nodes based on their distance to the target node, and another method is utilized for 
detecting obstacles. 

The RRT simulation is executed according to the designed scenario. Visual results are 
collected for several parameter configurations. Three key outputs are analyzed: (1) the shape of 
the resulting path and whether a connection from the START to the GOAL node is successfully 
formed, (2) the processing time for each parameter setting, and (3) the measured distance to 
determine whether it is optimal. The results of these simulations are summarized in the 
conclusion. 

 
3.2. Path Planning using Rapidly-Explored Random Tree* (RRT*) 
3.2.1 Basic Principle 

We introduce a path generation algorithm based on the Rapidly-Explored Random Tree 
(RRT*) method, utilizing a two-sided node generation approach, as presented in Algorithm 1. In 
this variant of RRT*, each node is generated by referencing both the start and target nodes, as 



Pamosoaji, Two-Sided RRT* Planner Considering Inter-Node Maximum Length Connection on Adversarial Workspace for AGV    25 
 

shown in Algorithm 2. The objective of the algorithm is to produce an optimal complete route 
connecting the start and target nodes within an adversarial workspace. 

 
Algorithm 1. Two-Sided RRT* Planning 
1: Define workspace layout and static  
     obstacles 
2: Determine Ps and  PT 
3: G ← Ps, PT  
4: Determine Lmax, N 
5: distDummy = 100000  (or any large  
     number) 
6: idx = 1 
7: while idx < N: 
8:    new_node =  
         generateNewNode(side) 
9:    closerNodes =  
         findClosestNode(nodes)    
10:   new_node =  
          limitLength(new_node)  

 
11:   collStatus =  
          checkObstacleIntersection  
          (β, γ, α) 
12:   if collStatus == COLLISION 
13:      continue 
14:   else 
15:      closerNode.neighbor  
            ←	new_node 
16:      new_node.neighbor 
            ←	closerNode.neighbor 
17:      G ← new_node 
18:   end 
19:   side = changeSide(side) 
20: end 
21:resultedPath = A*-search( ) 
 
 

Algorithm 2. generateNewNode(side)  
 
1:  if side == TARGET: 
2:    new_node.x = rand( ) * HEIGHT +  |𝑥!| * rand(∆𝑥"#$, ∆𝑥"%&] )  
3:    new_node.y = rand( ) * WIDTH +  |𝑦!| * rand(∆𝑦"#$, ∆𝑦"%&] )  
4:  else: 
5:    new_node.x = rand( ) * HEIGHT +  |𝑥'| * rand(∆𝑥"#$, ∆𝑥"%&] )  
6:    new_node int.y = rand( ) * WIDTH +  |𝑦'| * rand(∆𝑦"#$, ∆𝑦"%&] )  
7:  end 
 
Algorithm 3. A-star-search( )  
1: openList ← {} 
2: closeList ← {} 
3: openList ← START 
4: current = openList(1) 
5: while openList ∉ {} 
6:   if  current == TARGET 
7:     resultedPath = FindRoute ( 
          current, closeList) 
8:     break 
9:   end 
 
10:  for each member m of closeList        
11:    if current ∩ closeList = {}                
12:      closeList ←   
               updateCloseList() 
13:      removeOpenList(current) 
14:    else 
15:      goto Line 6 
17:    end 
17:  end 
18:    openList ← current.neighbor   
19: end 

Algorithm 4. FindRoute(current, closeList )  
1: closeList ←	current 
2: m = length(closeList) 
3: for each member m of closeList: 
4:  m = m - 1 
5:  parent = m-th member of  
        closeList 
6:  if  m-th member of closeList ==   
        START 
7:   resultedPath ← m-th member of  
        closeList 
8:   break 
9:  end 
10:  If parent == m-th member of  
        closeList 
11:   resultedPath ← parent 
12:   parent = the parent of the m- 
        th member of closeList 
13:  end 
14: end 
15:  return resultedPath  
 

 
Let G be defined as a set of nodes on a Euclidean workspace. Let 𝐩!(𝑥", 𝑦") and 

𝐩#(𝑥$, 𝑦$) ∈ G be start and target nodes, respectively. Let 𝐿%&' be the maximum length of inter-
node path; 𝑁 be the number of nodes, and 𝐿(,! and 𝐿(,#  be the length of the i-th node to the start 
and target nodes, respectively. A complete route is defined as the set of adjacent connected node 
pairs such that there is a way to go from the start to the target node. 
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Algorithm 1 shows the process of generating a complete route using the two-sided RRT* 
planning algorithm. At the beginning, the information of the workspace’s layout, known obstacles 
are defined (line 1), and the position of 𝐩! and 𝐩# (line 2). Then, a graph G is provided to store 
the incoming generated nodes (line 3). The feature of this proposed algorithm is 𝐿%&' and 𝑁 
determined in line 4. Lines 7-19 show the procedure for generating a new node. This procedure 
starts by creating a new node by calling generateNewNode() in line 8, followed by calling 
findClosestNode() in line 9, which connects the new node to the closest existing node. The 
process is continued by calling limitLength () which adjust the position of the generated node 
such that its distance to the closestNode is below 𝐿%&'. The last process is the collision-free 
verification by calling checkObstacleIntersection() in line 11. In this method, if the 
connection between the new node and its closest node intercepts any obstacle, then the process is 
repeated for a different side. If the new node is collision-free, then the new node is added as the 
neighbor of the closer node (lines 15-17). Otherwise, the exploration is repeated (line 8). Once 
the new node is created, the source of the node generated is switched to another side (line 19). 

Algorithm 2, i.e., generateNewNode(), specifically explains the process of generating a 
new node. In this algorithm, the new node is generated by plotting the position using the formula 
in lines 2 and 3 (for target-side nodes) and lines 5-6 (for start-side nodes).  

The process of finding the best path is shown in Algorithms 3 and 4. The A* algorithm is a 
well-known algorithm dedicated to optimal pathfinding over a graph, typically the closest one. 
This algorithm is efficient, complete, and optimal for shortest path finding between the start and 
goal nodes. The path is composed of a series of nodes, where each node has a minimized cost 
function formulated as shown in Equations (1)-(2).  
 
𝑓(𝑛) = 𝑔(𝑛) + 	ℎ(𝑛),   (1) 
 
where  
 
𝑔(𝑛) = 𝑔(𝑛 − 1) + ‖𝐩(𝑛) − 	𝐩(𝑛 − 1)‖	. (2) 
 

This algorithm starts by declaring openList and closeList as empty sets (Lines 1-2). The 
openList is a list for nodes that will be checked, and the closeList is the list for all nodes that 
are finished checking. Then, the openList is filled with the start point (Line 3). A variable current 
is used to store the node that is checked. The term “check” in here means to explore the neighbors 
and identify the parent node.  

A loop is run as long as the openList is not empty (Lines 5-19). Here, each node, starting 
from the start point, is checked. If the node is a target, then Algorithm 4 is run, and then the entire 
program is terminated (Lines 6-9). In Lines 10-17, a loop for each member of the process is 
described as follows. A method updateCloseList() is called.  If the current node is not a 
member of closeList, then put the node as the new member of closeList. This step is 
followed by removing the current from the openList. Otherwise, if the value 𝑓 of current 
is less than the m-th member of the closeList, then the member is updated with current, and 
the process starts again at Line 4. 

Algorithm 5 describes the steps for arranging a route from the target point to the start point. 
Here, a complete route is constructed by arranging each scanned node with its parent.  This 
process is recursively executed until the last parent node, i.e., the start point. 

 
 3.2.2 Obstacle-Free Nodes Plotting Algorithm 

In a workspace with many adversarial objects, each new randomly generated node needs 
to be evaluated to determine whether it is located in the prohibited area or in its shadow area. If 
this node is located in the prohibited area, then the position of this node must be modified.  

Defined 𝐶*+,(𝑥*+,, 𝑦*+,) is the center node of an obstacle object with radius 𝑟;  A(𝑥-, 𝑦-) 
and B(𝑥., 𝑦.) are respectively the positions of the reference node (the closest candidate node to 
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the new random node) and the new random node to be evaluated; 𝛾 is the angle formed by the 
line connecting nodes A and 𝐶*+,	and the positive X-axis; 𝛼 is the angle formed by the line 
connecting nodes A and B and the positive X-axis; and d is the distance from node A to 𝐶*+,. 

 

 
Figure 2. Model of randomly-generated node validation 

 

 
Figure 3. Workspace set up for simulations 

 
According to Figure 2, it can be concluded that node B is said to be prohibited if: 1) its 

distance from the center of the obstacle object 𝐶*+, is smaller than the radius 𝑟 + Δ𝑟, where Δ𝑟 is 
the minimum distance between node B and the edge of the obstacle object; and 2) the angle 𝛾 is 
between 𝛼 and 𝛾. 

From Figure 2, we can derive Equations (3)-(5): 
 

𝛾 = arctan((𝑦*+, − 𝑦-)/(𝑥*+, − 𝑥-)), (3) 
 
𝛽 = arctan((𝑦. − 𝑦-)/(𝑥. − 𝑥-)), (4) 
 
𝛼 = asin	 D/01/

2
E      (5)

  
where, 𝛼, 𝛽, 𝛾 ∈ (−𝜋, 𝜋]. Since 𝛼 is limited by the reference node (namanya), obstacles, and the 
evaluated node, therefore the interval of 𝛼 is: 𝛼 ∈ [−𝜋 2⁄ , 𝜋 2⁄ ]. Moreover, since 𝛼  is calculated 
from the line connecting the center node  𝐶*+,	 and the tangent line of the obstacle then in general 
there exits two angles performed by the two tangential line, i.e., (𝛾 + 𝛼) and (𝛾 − 𝛼). 

Another issue to be taken into account is that the intervals of (𝛾 + 𝛼)  and (𝛾 − 𝛼)  are 
[−𝜋 2⁄ , 𝜋 2⁄ ]. The problem appears because when 𝛾 is near 𝜋  or –	𝜋 since (𝛾 + 𝛼)  may be 
larger than 𝜋 for and 𝛾 ≥ 0 and (𝛾 − 𝛼) may be less than −𝜋 for any 𝛾 < 0, which violates the 
boundary of 𝛼. In consequences, when (𝛾 + 𝛼)  or 	(𝛾 − 𝛼) satisify such the conditions, their 
value must be converted such that (𝛾 + 𝛼) < 0 for all   𝛾 ≥ 0 and (𝛾 − 𝛼) > 0 for 𝛾 < 0. 
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4. Results and Discussion 
Simulations were established using MATLAB and were based on three parameters, i.e., 

the minimum distance to the obstacle 𝐿*+,%34, the number of generated nodes 𝑁,  and the 
maximum length of the edges 𝐿%&'. The layout of the simulation workspace is shown in Figure 
3. The simulations are held for 𝐿*+,%34 = 2 m. Two series of simulations were organized. The 
first series was those for  𝐿%&' = 15 m and the second one was those for 𝐿%&' = 30 m. Each 
series consisted of five simulations for 𝑁 equals to 100, 200, 400, and 800 nodes. The output to 
be analyzed is the success rate of the algorithm to connect the start node to the target node and 
the success rate of the generated path to pass through the passage.  
4.1. Simulation set for 𝑳𝐦𝐚𝐱 = 𝟏𝟓 m. 

The results of the simulations for 𝐿%&' = 15 m, is revealed in Table 1. Also, the sampled 
visualization of the performance is depicted in Figure 4.  From Table 1, it can be concluded that 
for the small number of N, the success rate of connecting the start and the target nodes tends to 
be low. As the number of N increases, the success rate of route generation increases. The results 
can be explained as follows. The increase of N leads to the increase of the density of the node 
distribution (those generated from the start-side and from the target-side). Therefore, the 
possibility of connecting a node generated from the start-side and any particular node generated 
from the target-side increases. 
 
Table 1. Simulation Results for Lmax= 15m  

𝑳𝐦𝐚𝐱	(𝒎) N success rate of  
start-to-target connection 

success rate of  
passing-through path 

15 100 20% 0% 
15 200 40% 0% 
15 400 100% 20% 
15 800 100% 60% 

 
Another performance to analyze is the ability of the algorithm to perform a path that 

passes through the space between obstacles. From Table 1, the possibility of generating such kind 
of path is larger as N becomes larger. It is straighforward that as N larger, the possibility to place 
nodes in the inter-obstacle area is higher. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.  Simulation results for (a) 𝑳𝐨𝐛,𝐦𝐢𝐧 = 2,  𝑵 = 100, and 𝑳𝐦𝐚𝐱 = 15; (b) 𝑳𝐨𝐛,𝐦𝐢𝐧 = 2,  𝑵 = 200, 
𝑳𝐦𝐚𝐱= 15; (c) 𝑳𝐨𝐛,𝐦𝐢𝐧= 2,  𝑵 = 400, and 𝑳𝐦𝐚𝐱 = 15; and (d) 𝑳𝐨𝐛,𝐦𝐢𝐧= 2,  𝑵 = 800, and 𝑳𝐦𝐚𝐱= 15 
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4.2. Simulation set for 𝑳𝐦𝐚𝐱 = 𝟑𝟎 m 
The results of the simulations for 𝐿%&' = 30 m are revealed in Table 2, and the sampled 

visualization of the performance of the algorithm is shown in Figure 5. According to Table 2, it 
can be concluded that for the small size of N, the success rate of connecting the start and the target 
nodes tends to be low. However, compared to the results of 𝐿%&' = 15 m, the possibility of 
success in this simulation set is larger. The results indicate that the larger 𝐿%&' leads to performing 
a long edge. Consequently, the possibility of a node generated from the start-side to be closer to 
the target node (and vice versa) is higher than that of lower 𝐿%&'. One interesting issue in here 
that for 𝑁 = 800, the success rate of start-to-target connection is lower than that for 𝑁 = 400. It 
is possible because of the emptiness of the connection between the set of the start-based nodes 
and the target-based ones. 

 
Table 1. Simulation Results for Lmax= 30m  

𝑳𝐦𝐚𝐱	(𝒎) N success rate of  
start-to-target connection 

success rate of  
passing-through path 

30 100 20% 0% 
30 200 80% 40% 
30 400 100% 100% 
30 800 80% 100% 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.  Simulation results for 𝑳𝐦𝐚𝐱 = 30 m: (a) 𝑳𝐨𝐛,𝐦𝐢𝐧 = 2,  𝑵 = 100, and; (b) 𝑳𝐨𝐛,𝐦𝐢𝐧 = 2,  𝑵 = 
200; (c) 𝑳𝐨𝐛,𝐦𝐢𝐧= 2,  𝑵 = 400; and (d) 𝑳𝐨𝐛,𝐦𝐢𝐧= 2,  𝑵 = 800. 

 
For the analysis of the success rate of generating an inter-obstacle path, it can be seen 

from Table 2 that such a path has a larger possibility of success compared to the first simulation 
set. Figure 6 reveals the processing time of path generation using the proposed method for 
maximum inter-node distances of 15 meters and 30 meters. For each distance, the evaluation is 
focused on four sample sizes, i.e., 100, 200, 400, and 800 nodes. It is shown that the processing 
time at N equals 100 and 200 nodes is highly precise. For N equals 800 nodes in both distances, 
the precisions are low. This phenomenon is caused by the larger possibility of obtaining feasible 
paths as N gets larger. The comparison between the Figures. 6(a) and 6(b) conclude that for the 
same number of nodes, the processing time has no significant difference. Some outliers exist in 
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N = 200 (Figure 6(a)) and N = 400 (Figure 6(b)). It is because the searching in the A* algorithm 
may come to some dead nodes (nodes that have no neighbor other than its own parent node). 

 
(a) 

 
(b) 

Figure 6. Processing time for maximum inter-node distance equals to (a) 15 m; (b) 30 m.  
 
5. Conclusions and Suggestions 

A two-sided path planning algorithm, which is a modification of traditional RRT*, is 
proposed. This algorithm introduces the generation of path alternatives by using different 
formulas for nodes that are generated from the start-point side and from the target-point side. In 
addition, a maximum allowable length of inter-node connection is applied. The advantage of this 
approach lies in the increase in the success rate of route construction. Moreover, the number of 
maximum nodes can be decreased significantly compared to other methods in previous works. 
The success rate of the proposed algorithm is 100% for a maximum path length of 15 m and a 
number of nodes of 400-800, and 80-100% for a maximum path length of 30 m and a number of 
nodes of 200-800. Evaluating for the passing-through path generation success rate, the maximum 
success rate is achieved for number of nodes=800 for maximum path length 15 m, and 100% for 
maximum path length 30 m, and number of nodes = 400 and 800. One notable observation is that 
increasing the maximum nodes does not significantly reduce the processing time. Therefore, 
further research is suggested in the future to solve this problem. 
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