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Abstrak. Multilevel Thresholding untuk Segmentasi Citra Berwarna berbasis Inspired 

GWO dengan M. Masi Entropy. Segmentasi citra sangat penting dalam pemrosesan citra 

dan visi komputer, dengan Multilevel Thresholding Image Segmentation Problem (ML-

ISP) yang menawarkan solusi tangguh untuk citra kompleks. Namun, penerapan ML-ISP 

secara efektif pada citra berwarna RGB masih menjadi tantangan karena kompleksitas 

komputasi dan keterbatasan algoritma optimasi tradisional seperti Grey Wolf Optimizer 

(GWO). Studi ini mengusulkan Inspired Grey Wolf Optimizer (IGWO) untuk mengatasi 

masalah ini dan meningkatkan ML-ISP untuk citra berwarna RGB. Stabilitas kinerja 

IGWO dievaluasi secara komprehensif menggunakan tiga fungsi objektif yang berbeda: 

metode Otsu, Kapur Entropy, dan M. Masi Entropy. Analisis kualitatif dan kuantitatif, 

menggunakan PSNR, SSIM, dan UQI, dilakukan pada citra acuan. Hasil secara konsisten 

menunjukkan bahwa IGWO, khususnya dengan M. Masi Entropy, mencapai kualitas 

segmentasi yang unggul. Penelitian ini menggabungkan penyetelan hiperparameter 

berbasis GridSearch. Temuan ini menyoroti efektivitas dan ketahanan pendekatan IGWO 

yang diusulkan untuk tugas ML-ISP kompleks pada citra berwarna. 
Keywords: Inspired Grey Wolf Optimizer, Multilevel Thresholding Segmentasi Citra 
Berwarna, Metode Otsu, Kapur Entropy, M. Masi Entropy 
 
Abstract. Image segmentation is crucial in image processing and computer vision, with 

multilevel thresholding (ML-ISP) offering robust solutions for complex images. However, 

effectively applying ML-ISP to RGB color images remains a challenge due to 

computational complexity and the limitations of traditional optimization algorithms, such 

as the Grey Wolf Optimizer (GWO). This study proposes an Inspired Grey Wolf Optimizer 

(IGWO) to address these issues and enhance ML-ISP for RGB color images. The 

performance stability of IGWO is comprehensively evaluated using three distinct objective 

functions: the Otsu method, the Kapur Entropy, and the M. Masi Entropy. Qualitative and 

quantitative analyses using PSNR, SSIM, and UQI were conducted on benchmark images. 

Results consistently demonstrate that IGWO, particularly with M. Masi Entropy, achieves 

superior segmentation quality. This research incorporates GridSearch-based 

hyperparameter tuning. The findings highlight the effectiveness and robustness of the 

proposed IGWO approach for complex ML-ISP tasks on color images. 
Kata Kunci: Inspired Grey Wolf Optimizer, Multilevel Color Image Thresholding, Otsu 
Method, Kapur Entropy, M. Masi Entropy 

 
1. Introduction  

Image analysis is an essential process in computer vision, involving image segmentation. 

Thresholding is a simple and efficient segmentation technique that determines optimal threshold 

values based on pixel intensities [1], [2]. However, multilevel thresholding (ML-ISP) is more 

challenging. Non-parametric approaches such as Otsu's method, Kapur entropy, and minimal 

cross entropy are effective for bi-level thresholding of grayscale images. These methods often 

become ineffective and computationally complex [1], [2], [3] when extended to ML-ISP, 

particularly as the number of thresholds increases. 
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Entropy plays a crucial role in optimizing ML-ISP, a complex problem that requires 

metaheuristic optimization algorithms based on swarm intelligence (SI) [3], [4]. Otsu, Kapur, and 

M. Masi entropy techniques have been used in various optimization methods, demonstrating 

superior efficiency and accuracy compared to exhaustive search and traditional evolutionary 

algorithms. For instance, the Otsu method has been used with MFO [5], KHO [4], WOA [5], 

GWO [6], and improved WOA [4]. Kapur Entropy has been explored with WOA-SMA [7], a 

multistage hybrid SI method [3], DA [8], GWO [6], and KHO [4], while M. Masi Entropy has 

been tested with GWO [1] and PSO [8]. 

Existing SI-based ML-ISP research often focuses on grayscale images [1], overlooking 

color information. The No Free Lunch (NFL) theorem suggests that no single optimization 

algorithm is universally optimal. Existing SI approaches often suffer from slow convergence, 

premature convergence, and susceptibility to local optima, leading to suboptimal segmentation 

quality [2], [3]. Evaluating performance across multiple objective functions is crucial for 

consistency and robustness. 

To address these limitations, this study proposes an Inspired Grey Wolf Optimizer 

(IGWO) for solving ML-ISP on RGB color images, enhancing performance over traditional 

population-based algorithms. IGWO's non-linear adjustment strategy and modified wolf position 

update mechanism balance exploration and exploitation. IGWO was chosen for its superior 

performance compared to conventional population-based algorithms. Benchmark images from 

BSD300 Berkeley and USC-SIPI demonstrate its efficacy, assessing PSNR, SSIM, and UQI. 

 

 
Figure 1. Research flowchart of experiment 

 

 
Figure 2. An intuitive visual representation of multilevel thresholding applied to color image 

segmentation using IGWO 

 



54   Jurnal Buana Informatika, Volume 16, Nomor 2, October 2025:52-62 

 

 

2. Research Methodology 

As shown in Figure 1, this section outlines the procedures used to address the research 

objectives and the dataset used in the study. A clear visual overview of the entire process for 

resolving ML-ISP using the proposed IGWO method is provided in Figure 2. We make reference 

to the objective functions of the Otsu, Kapur, and M. Masi entropy approaches, as well as the 

ML-ISP problem, to the findings of earlier studies [9].  
 

2.1 Dataset 

This study used a common benchmark dataset, the Berkeley Segmentation Dataset1 

(BSDS300), and the USC-SIPI image database2. Six images serve as test data (retrieved from 

USC-SIPI), while ten images serve as training data (retrieved from BSDS300), as shown in Table 

1. These files were selected for their multimodal histogram features, which enable the objective 

selection of each model's optimal hyperparameters. The training data is used for the ML-ISP 

IGWO model construction, including hyperparameter tuning for each model. The performance of 

the proposed method is evaluated using the test data. The histogram of the test data's pixel 

intensities is shown in Figure 3. 

 
Table 1. Benchmark images used in this experiment 

Type Filename Dimension (pixels) Colorspace 

Testing House – 4.1.05 512x512 Color (24 bits/pixel) 

Testing Splash – 4.2.01 512x512 Color (24 bits/pixel) 

Testing Mandrill (a.k.a. Baboon) – 4.2.03 512x512 Color (24 bits/pixel) 

Testing Tree – 4.1.06 256x256 Color (24 bits/pixel) 

Testing Jelly beans – 4.1.08 256x256 Color (24 bits/pixel) 

Testing Female – 4.1.04 256x256 Color (24 bits/pixel) 

Training 35010.jpg 481x321 Color (24 bits/pixel) 

Training 95006.jpg 481x321 Color (24 bits/pixel) 

Training 112082.jpg 481x321 Color (24 bits/pixel) 

Training 124084.jpg 481x321 Color (24 bits/pixel) 

Training 140055.jpg 481x321 Color (24 bits/pixel) 

Training 156079.jpg 481x321 Color (24 bits/pixel) 

Training 169012.jpg 481x321 Color (24 bits/pixel) 

Training 189003.jpg 481x321 Color (24 bits/pixel) 

Training 232038.jpg 481x321 Color (24 bits/pixel) 

Training 317080.jpg 481x321 Color (24 bits/pixel) 

 

 
(a’) 

 
(a’’) 

Figure 3. One of the benchmarks (RGB) test image data used to evaluate the method's performance 

came from the USC-SIPI image database. The images have their own RGB histogram (a'') and 

grayscale histogram (a') with (a) House – 4.1.05  

 

 
1 https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/ 
2 https://sipi.usc.edu/database/ 
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2.2 Classical GWO vs IGWO 

Mirjalili et al. (2014) [10] introduced the Grey Wolf Optimizer (GWO) as a metaheuristic 

algorithm inspired by the hunting habits and hierarchical social structure of grey wolves. These 

wolves typically form packs of 5-12 individuals, adhering to a strict social hierarchy composed 

of alpha (𝛼), beta (𝛽), delta (𝛿), and omega (𝜔) ranks [6]. In the mathematical formulation of 

GWO, the 𝛼, 𝛽, and 𝛿 wolves are designated as the first, second, and third-best solutions, 

respectively, guiding the optimization process. In contrast, the remaining 𝜔 wolves follow their 

lead [6]. The encirclement of prey is modeled by Equations 1, 2, and 3, where 𝑋𝑝𝑟𝑒𝑦
(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

 is the prey's 

position and 𝑋𝐼
(𝑡)⃗⃗ ⃗⃗ ⃗⃗  ⃗

 is the wolf's position. The control parameter linearly decreases from 2 to 0 

(Equation 4), while 𝑟1⃗⃗⃗   and 𝑟2⃗⃗  ⃗ are random vectors in [0,1] [11]. All other wolves update their 

positions based on the superior knowledge of the 𝛼, 𝛽, and 𝛿 wolves (Equations 5 and 6). Vectors 

𝐴𝑖
⃗⃗  ⃗ and  𝐶𝑖

⃗⃗  ⃗ manage the balance between exploration and exploitation: |𝐴(𝑡)⃗⃗ ⃗⃗ ⃗⃗  ⃗| < 1 and/or |𝐶(𝑡)⃗⃗ ⃗⃗ ⃗⃗  ⃗| <

1, signifies attacking the prey (exploitation), while |𝐴(𝑡)⃗⃗ ⃗⃗ ⃗⃗  ⃗| > 1 and/or |𝐶(𝑡)⃗⃗ ⃗⃗ ⃗⃗  ⃗| > 1 indicates 

exploration of new search areas to avoid local optima [6], [11]. This dynamic adjustment of a in 

each iteration effectively balances these two operators. 

 

𝑋𝐼
(𝑡+1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

=  𝑋𝑝𝑟𝑒𝑦
(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

− 𝐴 ∙ |𝐶 ∙ 𝑋𝑝𝑟𝑒𝑦
(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

−  𝑋𝐼
(𝑡)⃗⃗ ⃗⃗ ⃗⃗  ⃗

|  
(1) 

𝐴 = 2𝑎 ∙  𝑟1⃗⃗⃗  − 𝑎    (2) 

𝐶 = 2 ∙ 𝑟2⃗⃗  ⃗   (3) 

𝑎 = 2 (1 − 
𝑡

𝑇
)  (4) 

 

The Inspired Grey Wolf Optimizer (IGWO) was proposed to address limitations of 

traditional GWO in real-world optimization [11], [12]. It incorporates individual and global best 

positions into its update process, addressing premature convergence or entrapment in local 

optima. This nonlinear adjustment strategy enhances the optimization process. 

 

𝑋1
(𝑡)⃗⃗ ⃗⃗ ⃗⃗  ⃗

=  𝑋𝑎𝑙𝑝ℎ𝑎
(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

−  𝐴1
⃗⃗⃗⃗ ∙ |𝐶1

⃗⃗⃗⃗ ∙ 𝑋𝑎𝑙𝑝ℎ𝑎
(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

−  𝑋𝐼
(𝑡)⃗⃗ ⃗⃗ ⃗⃗  ⃗

|  

𝑋2
(𝑡)⃗⃗ ⃗⃗ ⃗⃗  ⃗

=  𝑋𝑏𝑒𝑡𝑎
(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

−  𝐴2
⃗⃗ ⃗⃗ ∙ |𝐶2

⃗⃗⃗⃗ ∙ 𝑋𝑏𝑒𝑡𝑎
(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

−  𝑋𝐼
(𝑡)⃗⃗ ⃗⃗ ⃗⃗  ⃗

|  

𝑋3
(𝑡)⃗⃗ ⃗⃗ ⃗⃗  ⃗

=  𝑋𝑑𝑒𝑙𝑡𝑎
(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

−  𝐴3
⃗⃗ ⃗⃗ ∙ |𝐶3

⃗⃗⃗⃗ ∙ 𝑋𝑑𝑒𝑙𝑡𝑎
(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

−  𝑋𝐼
(𝑡)⃗⃗ ⃗⃗ ⃗⃗  ⃗

|   

(5)  

𝑋𝐼
(𝑡+1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

=  
𝑋1

(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
+ 𝑋2

(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
+ 𝑋3

(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

3
     

(6) 

 

IGWO enhances GWO through two primary modifications. Firstly, it replaces the linear 

decay of parameter a with a logarithmic decay method, calculated by Equation 7. This non-linear 

adjustment aims to achieve a better balance between exploration and exploitation, facilitating 

convergence to the global optimum [12]. Secondly, IGWO modifies the equation for updwolf 

position vector. Unlike conventional GWO, which relies only on 𝛼, 𝛽, and 𝛿 wolves (Equations 

5 and 6), IGWO incorporates each wolf's best individual position (𝑋𝑝𝑏𝑒𝑠𝑡,𝐼
(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

) and the global best 

position (𝑋𝑎𝑙𝑝ℎ𝑎
(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

) as shown in Equation 8. This modification, inspired by PSO, enhances the 

algorithm's ability to avoid local optima. Coefficients 𝑐1 and 𝑐2 represent individual memory and 

population communication, respectively (both in [0,1]), with 𝑟3⃗⃗  ⃗ and 𝑟4⃗⃗⃗   r as random vectors in 

[0,1]. Furthermore, similar to PSO, IGWO includes an inertia weight (ω), which linearly declines 

from an initial (𝜔𝑖𝑛𝑖𝑡𝑖𝑎𝑙) to a final (𝜔𝑓𝑖𝑛𝑎𝑙) value, as defined by Equation (9). 
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𝑎𝑡⃗⃗  ⃗ = 𝑎𝑖𝑛𝑖𝑡𝑖𝑎𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ −  (𝑎𝑖𝑛𝑖𝑡𝑖𝑎𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ −  𝑎𝑓𝑖𝑛𝑎𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) × 𝑙𝑜𝑔 (1 + (𝑒 − 1) ×
𝑡

𝑇𝑚𝑎𝑥
)     (7) 

𝑋𝐼
(𝑡+1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

=  ω ∙ (
𝑋1

(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
+ 𝑋2

(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
+ 𝑋3

(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

3
 ) + 𝑐1 ∙ 𝑟3⃗⃗  ⃗ ∙ (𝑋𝑝𝑏𝑒𝑠𝑡,I

(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
−  𝑋𝐼

(𝑡)⃗⃗ ⃗⃗ ⃗⃗  ⃗
) + 𝑐2 ∙ 𝑟4⃗⃗⃗  ∙ (𝑋𝑎𝑙𝑝ℎ𝑎

(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
−  𝑋𝐼

(𝑡)⃗⃗ ⃗⃗ ⃗⃗  ⃗
)     

(8) 

𝜔𝑡 = (
𝑇𝑚𝑎𝑥−𝑡

𝑇𝑚𝑎𝑥
) × (𝜔𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝜔𝑓𝑖𝑛𝑎𝑙) + 𝜔𝑓𝑖𝑛𝑎𝑙   (9) 

 

2.3 M. Masi Entropy for Multilevel Thresholding in Color Image Segmentation 

M. Masi Entropy is an objective criterion used to determine the optimal thresholds in 

multilevel color image segmentation (ML-ISP). An RGB color image is defined as a 3D array of 

size 𝑅 × 𝐾 × 3, consisting of red (𝐶𝑖
𝑟), green (𝐶𝑖

𝑔
), and blue (𝐶𝑖

𝑏) color channels. The purpose 

of multilevel thresholding is to find m optimal thresholds, namely {𝑡1, 𝑡2, … , 𝑡𝑚} that divide the 

image into 𝑚 + 1 areas based on predefined criteria, such as M. Masi Entropy, Kapur Entropy, 

or the Otsu Method. 

𝐹𝑀𝑎𝑠𝑖(𝑡1, 𝑡2, … , 𝑡𝑚) measures segmentation quality by maximizing the variance within 

each image segment. The value of 𝐹𝑀𝑎𝑠𝑖 is calculated by summing the M. Masi Entropy values 

(𝑀𝑀𝐸𝑗) from each divided segment according to Equation (10). Each 𝑀𝑀𝐸𝑗 is calculated using 

Equation (11), while the value 𝜑𝑗 is the pixel probability distribution in the j-th segment, which 

is calculated using Equation (12). The value 𝑃𝑧
(𝑖) in Equation (12) is the probability that the z-th 

gray level occurs at 𝐶𝑖
𝑥 and is calculated using Equation (13). The value of 𝛼 in these equations 

is typically experimented on in the interval -1 to 3 with a step of 0.1, and values of 𝛼 < 1 have 

shown steady and high quality. The best segmented image is the one that yields the highest 𝐹𝑀𝑎𝑠𝑖 

score among all possible threshold combinations. 

 
𝐹𝑀𝑎𝑠𝑖(𝑡1, 𝑡2, … , 𝑡𝑚) = ∑ 𝑀𝑀𝐸𝑗

𝑚
𝑗=0 = 𝑀𝑀𝐸0 + 𝑀𝑀𝐸1 + ⋯+ 𝑀𝑀𝐸𝑚  (10) 

𝑀𝑀𝐸𝑗 = 
𝑙𝑜𝑔(1− (1−𝛼) × 𝑗)

(1−𝛼)
   (11) 

𝜑𝑚 = ∑
𝑃𝑧

(𝑖)

𝑤𝑚

𝐿−1
𝑧=𝑡𝑚 𝑙𝑜𝑔 (

𝑃𝑧
(𝑖)

𝑤𝑚
) , 𝑤𝑚 = ∑ 𝑃𝑧

(𝑖)𝐿−1
𝑧=𝑡𝑚   

(12) 

𝑃𝑗
(𝑖)

= 
𝑛𝑗

𝑁𝑖
, (0 ≤ 𝑃𝑗

(𝑖)
≤ 1) ∧ (∑ 𝑃𝑘

(𝑖)
= 1𝐿−1

𝑘=0 )  (13) 

 

2.4 IGWO for Solving ML-ISP 

Code 1 presents the pseudocode for implementing the IGWO to solve the ML-ISP. This 

study uses the IGWO method to determine optimal threshold values, represented by the wolf's 

vector position, at the 𝑚-th level for segmenting images into up to 𝑚 + 1  distinct regions. The 

process takes the image's histogram as its input, and its output is the alpha wolf's position vector 

at the final iteration (𝑋𝑎𝑙𝑝ℎ𝑎
(𝑇𝑚𝑎𝑥)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

 ), corresponding to the derived optimal threshold values. 

 
Code 1. IGWO with M. Masi Entropy to determine the 𝒎 optimum thresholds 
Input:  

 𝑁𝑤𝑜𝑙𝑓 ← wolves population size 
 𝑇𝑚𝑎𝑥 ← maximum iteration 
 𝐹𝑓𝑢𝑛𝑐 ← M. Masi Entropy, Otsu Method, or Kapur Entropy 

Output: Best individual solution at final iteration 𝑋𝑎𝑙𝑝ℎ𝑎
(𝑇𝑚𝑎𝑥)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

 and best individual 

solution’s fitness 𝐹𝑖𝑡 (𝑋𝑎𝑙𝑝ℎ𝑎
(𝑇𝑚𝑎𝑥)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

) 

Initialization: 

 𝐺𝑟𝑒𝑦𝑊𝑜𝑙𝑓𝑠 ← Initialize 2D matrix using Equation 14 of 𝑁𝑤𝑜𝑙𝑓 grey wolf 

position. 

 𝐹𝑓𝑢𝑛𝑐 is used to calculate each individual fitness 

 
Find 𝑋𝑎𝑙𝑝ℎ𝑎

(0)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
, 𝑋𝑏𝑒𝑡𝑎

(0)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
, dan 𝑋𝑑𝑒𝑙𝑡𝑎

(0)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
 

FOR 𝑡 in range(0, 𝑇𝑚𝑎𝑥) DO 

 Use Equation 7.to update 𝑎   
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 FOR individual in 𝐺𝑟𝑒𝑦𝑊𝑜𝑙𝑓𝑠 DO  
  Use Equation 2 and 3 to update 𝐴𝑥

⃗⃗ ⃗⃗   and 𝐶𝑥
⃗⃗⃗⃗  respectively. 

  
Use Equation 5 to calculate 𝑋1

(𝑡)⃗⃗ ⃗⃗ ⃗⃗  ⃗
, 𝑋2

(𝑡)⃗⃗ ⃗⃗ ⃗⃗  ⃗
, 𝑋3

(𝑡)⃗⃗ ⃗⃗ ⃗⃗  ⃗
  

  
Use Equation 8 to update 𝑋𝐼

(𝑡)⃗⃗ ⃗⃗ ⃗⃗  ⃗
  

  
Use Equation 15 to update 𝑋𝐼

(𝑡)⃗⃗ ⃗⃗ ⃗⃗  ⃗
 boundaries solution space  

 ENDFOR 

 Update each individual fitness value using 𝐹𝑓𝑢𝑛𝑐 

 
Update 𝑋𝑎𝑙𝑝ℎ𝑎

(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
, 𝑋𝑏𝑒𝑡𝑎

(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
, dan 𝑋𝑑𝑒𝑙𝑡𝑎

(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
 

ENDFOR 

Return 𝑋𝑎𝑙𝑝ℎ𝑎
(𝑇𝑚𝑎𝑥)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

 , 𝐹𝑖𝑡 (𝑋𝑎𝑙𝑝ℎ𝑎
(𝑇𝑚𝑎𝑥)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

) 

 

Equation 14 is used to initialize the positional vector representation of each 𝑖-th wolf, 

which is expressed as 𝑋𝐼
⃗⃗  ⃗. 𝑁𝑤𝑜𝑙𝑓 represents the total number of wolves that were initiated. The 

gray level of an image represents the threshold value, which is 𝑥(𝐼,𝑘) ∈ 𝑋𝐼
(𝑡)⃗⃗ ⃗⃗ ⃗⃗  ⃗

. All wolves' fitness 

is determined at the start of the iteration (𝑡 = 0) using a preset objective function, specifically the 

Otsu method, Kapur Entropy, or M. Masi Entropy [9]. Next, we define three wolves with optimal 

fitness values at initial as follows: 𝑋𝑎𝑙𝑝ℎ𝑎
(0)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

, 𝑋𝑏𝑒𝑡𝑎
(0)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

, dan 𝑋𝑑𝑒𝑙𝑡𝑎
(0)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 

.  Each wolf uses Equation 8 to update 

its position based on IGWO's new formulation for each iteration during a predefined maximum 

iteration 𝑇𝑚𝑎𝑥. Vector 𝐴 , vector 𝐶 , and vector 𝑎   are determined using Equations 2, 3, and 7, 

respectively, prior to the positions being updated. 

 

𝑋𝐼
(0)⃗⃗ ⃗⃗ ⃗⃗  ⃗

=  [𝑥(𝐼,1), 𝑥(𝐼,2), … , 𝑥(𝐼,𝑚)], (𝐼 = 1,2, … , 𝑁)  ∧  (0 < 𝑥(𝐼,1)… < 𝑥(𝐼,𝑚) < 𝐿)  

𝑥(𝐼,𝑘) = 𝑟𝑎𝑛𝑑𝐼𝑛𝑡(0, (𝐿 − 1))  

(14) 

𝑋𝐼
(𝑡+1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

=

 {

𝐿 − 𝑟𝑜𝑢𝑛𝑑(𝑟𝑎𝑛𝑑𝑜𝑚(0,1) ∗  𝑟𝑎𝑛𝑑𝑜𝑚𝐼𝑛𝑡𝑒𝑔𝑒𝑟(0, 𝐿)), (𝑥(𝐼,𝑘)) > 𝐿  

0, (𝑥(𝐼,𝑘)) < 0 

𝑥(𝐼,𝑘), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, ∀
𝑥(𝐼,𝑘)∈𝑋𝐼

(𝑡+1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    

(15) 

 

When the value  𝑥(𝐽,𝑘) is outside the range of gray level G, the updated vector 𝑋𝐼
(𝑡+1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

 may 

not be inside the bounds of ML-ISP. Consequently, 𝑋𝐼
(𝑡+1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

 is adjusted to be in the problem 

solution space in this study using Equation 15. Then, using the same formula as when 𝑡 = 0, the 

fitness value of each 𝑗-th agent is expressed as 𝐹𝑖𝑡(𝑋𝐼
⃗⃗  ⃗). 

 

2.5 Segmenting Images with the Best Threshold 

Each channel in the test image is then segmented using the optimal threshold determined 

by the IGWO-based optimization procedure. Using the pseudocode shown in Algorithm 3 from 

prior research [9], the 𝐶𝑖
𝑥 image is partitioned into 𝑚 + 1 regions using an optimal {𝑡1, 𝑡2, … , 𝑡𝑚}. 

𝑆𝑖
𝑅𝐺𝐵 for RGB color images, and 𝑆𝑖

𝑔𝑟𝑎𝑦
 for grayscale images are the representations of the 𝐶𝑖

𝑥 

image segmented with the ideal 𝑚 threshold.  

𝑆𝑖
𝑅𝐺𝐵  is obtained by merging the segmentation results from 𝐶𝑖

𝑟, 𝐶𝑖
𝑔

, and 𝐶𝑖
𝑏. Assume 𝑚𝑟, 

𝑚𝑔, and 𝑚𝑏 as the thresholding levels for each of the RGB image's r, g, and b channels. The 

optimal threshold for each channel is determined using the SI method. Using the pseudocode 

shown in Algorithm 3 from prior research [9], each channel is segmented using the optimal 

threshold. Each channel's segmented picture is represented by 𝑆𝑖
𝑟, 𝑆𝑖

𝑔
, and 𝑆𝑖

𝑏, such that 𝑆𝑖
𝑅𝐺𝐵 =

 [𝑆𝑖
𝑟, 𝑆𝑖

𝑔
, 𝑆𝑖

𝑏]. Thus, 𝑆𝑖
𝑅𝐺𝐵 has less color levels than 𝐶𝑖

𝑅𝐺𝐵 and has the most 𝑚𝑟  × 𝑚𝑔  ×  𝑚𝑏 [13]. 
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2.6 Environmental and Experiment Setup 

The performance stability of the suggested IGWO for ML-ISP was assessed through 

experiments using three objective functions: M. Masi Entropy, the Otsu method, and Kapur 

Entropy. To ensure a fair comparison, all methods used consistent stopping criteria, including a 

maximum of 100 iterations, a population size of 25 solutions, and 30 trials per method [5]. 

Consistent with prior research [1], [2], test images were evaluated for 2, 3, 4, and 5 thresholds. 

All algorithms were implemented and executed using Python v3.8.5 on a Windows 10 (64-bit) 

environment, powered by an AMD Ryzen AI HX 370 w/ Radeon 890M @2000 Mhz and 32GB 

of RAM. 

To determine the optimal hyperparameter combination for each method, a GridSearch 

technique was employed. This systematic approach explores all possible hyperparameter value 

combinations within a defined search space (Table 2) to identify the configuration that yields the 

best results. The optimization metric used for hyperparameter tuning was the average fitness value 

across all training data, specifically for five thresholds using the M. Masi Entropy as the fitness 

function. For IGWO, tuned parameters included the population communication coefficient (𝑐1), 
individual memory coefficient (𝑐2), initial inertia weight (𝜔𝑖𝑛𝑖𝑡𝑖𝑎𝑙), and final inertia weight 

(𝜔𝑓𝑖𝑛𝑎𝑙). 

 
Table 2. List of hyperparameters along with the solution space for IGWO method 

No Parameter Search space 

1 Population communication coefficient (𝑐1) [0.1, 0.3. 0.5, 0.7, 0.9] 

2 Individual memory coefficient (𝑐2) [0.2, 0.4, 0.6, 0.8, 1] 

3 Initial value of vector 𝑎    [1,2] 

4 Initial value of inertia weight (𝜔𝑖𝑛𝑖𝑡𝑖𝑎𝑙) [0.5, 0.7, 0.9] 

5 Final value of inertia weight (𝜔𝑓𝑖𝑛𝑎𝑙) [0.1] 

 

2.7 Evaluation Metrics 

Both qualitative and quantitative methods were utilized to evaluate the segmented 

images. Qualitative assessment involved visual comparison between the original and segmented 

images at each threshold level. The quantitative evaluation was conducted using six primary 

metrics: Peak Signal-to-Noise Ratio (PSNR), Universal Quality Index (UQI), and Structural 

Similarity Index Metric (SSIM). In essence, PSNR uses an image's pixel intensity value to 

determine the difference between 𝑆𝑖 and 𝐶𝑖. Equation 16 is used to determine the PSNR, while 

Equation 17 is used to determine the MSE value. 𝑆(𝑥,𝑦) represents the gray level pixels at the 

coordinates (𝑥, 𝑦) of the segmented image, whereas 𝐶(𝑥,𝑦) represents the original image's gray 

level pixels.  

SSIM (Equation 18) and UQI (Equation 19) assess structural similarities, brightness, and 

distortion, providing a more comprehensive quality measure than PSNR alone [7]. The average 

intensity values of 𝐶𝑖 and 𝑆𝑖 are represented by the 𝜇𝐶 and 𝜇𝑠 values, respectively. The standard 

deviations of 𝐶𝑖 and 𝑆𝑖  are represented by the values of 𝜎𝐶 and 𝜎𝑆, respectively. The covariance 

between 𝐶𝑖 and 𝑆𝑖 is defined by the value of 𝑐𝑜𝑣(𝐶,𝑆). The values of 𝑎 and 𝑏 are constant at 6.5025 

and 58.52252, respectively. 

 

𝑃𝑆𝑁𝑅(𝐶,𝑆) = 10𝑙𝑜𝑔10 (
255×255

𝑀𝑆𝐸(𝐶,𝑆)
)  (16) 

𝑀𝑆𝐸(𝐶,𝑆) = 
∑ ∑ |𝑆(𝑥,𝑦)−𝐶(𝑥,𝑦)|

𝐾
𝑦=1

𝑅
𝑥=1

𝑅×𝐾
  

(17) 

𝑆𝑆𝐼𝑀(𝐶,𝑆) = 
(2𝜇𝑆𝜇𝐶+𝑎)(2𝑐𝑜𝑣(𝐶,𝑆)+𝑏)

(𝜇𝐶
2+𝜇𝑆

2+𝑎)(𝜎𝐶
2+𝜎𝑆

2+𝑏)
   

(18) 

𝑈𝑄𝐼(𝐶,𝑆) = 
4𝑐𝑜𝑣(𝐶,𝑆)𝜇𝐶𝜇𝑆

(𝜇𝐶
2+𝜇𝑆

2)(𝜎𝐶
2+𝜎𝑆

2)
  (19) 
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3. Results and Discussion 

Using GridSearch to select the best hyperparameter combinations in IGWO, 𝑐1 = 0.9, 

𝑐2 = 1, 𝜔𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 0.7, 𝜔𝑓𝑖𝑛𝑎𝑙 = 0.1, dan 𝑎𝑖𝑛𝑖𝑡𝑖𝑎𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 1  were found to have an average fitness 

value of 2870.383, an average PSNR of 19.244, an average SSIM of 0.8145, and an average UQI 

of 0.888. An IGWO model with three objective functions—the M. Masi Entropy, Kapur Entropy, 

and Otsu Method—is then created using the optimal hyperparameter combination. 

This section thoroughly evaluates the IGWO for multilevel color image segmentation 

(ML-ISP), using both quantitative and qualitative assessments. The performance, measured by 

PSNR, SSIM, and UQI metrics, along with visual inspection, consistently shows that the IGWO 

framework, combined with the M. Masi Entropy objective function, provides superior 

segmentation results across most test images and threshold levels. A detailed analysis of the 

quantitative metrics in Table 3 reveals distinct trends. For instance, the IGWO-M. Masi Entropy 

configuration frequently achieves the highest PSNR values, especially as the number of thresholds 

increases, as seen in "Female – 4.1.04" and "Mandrill (a.k.a. Baboon) – 4.2.03". IGWO-M. Masi 

Entropy consistently outperforms in all 𝑚 configurations, yielding PSNRs of 10.303, 10.380, 

10.510, and 10.579, respectively. While IGWO-Otsu shows competitive performance at lower 

thresholds for some images, IGWO-Kapur Entropy generally exhibits lower PSNR values, except 

for "Splash – 4.2.01" at 𝑚 = 2. 

Further analysis of the SSIM and UQI metrics in Table 3 largely confirms the superiority 

of IGWO with M. Masi Entropy. For images like "Jelly beans – 4.1.08" and "Mandrill (a.k.a. 

Baboon) – 4.2.03," M. Masi Entropy consistently yields the highest values across all threshold 

levels, indicating better preservation of structural information and overall image quality. For 

example, "Jelly beans – 4.1.08" achieves an SSIM of 0.762 and UQI of 0.861 with IGWO-M.Masi 

Entropy at 𝑚 = 5. Conversely, while generally underperforming, IGWO-Kapur Entropy 

demonstrates exceptional results for "Splash – 4.2.01," leading across all SSIM and UQI values, 

which suggests its specific suitability for certain image characteristics. These comprehensive 

quantitative findings highlight the robust and adaptable performance of IGWO when optimized 

with the appropriate objective functions for challenging ML-ISP tasks. 

 
Table 3. Mean PSNR, SSIM, and UQI values for all test images 

Test Images m IGWO Otsu Method IGWO Kapur Entropy IGWO M. Masi Entropy 

PSNR SSIM UQI PSNR SSIM UQI PSNR SSIM UQI 

Female – 

4.1.04 

2 9.998 0.506 0.785 9.379 0.484 0.773 9.706 0.495 0.776 

3 10.506 0.531 0.821 9.774 0.513 0.801 10.898 0.550 0.831 

4 11.303 0.569 0.850 10.315 0.542 0.825 11.056 0.559 0.844 

5 11.070 0.568 0.850 10.809 0.572 0.844 11.229 0.568 0.853 

House – 

4.1.05 

2 8.428 0.506 0.767 7.972 0.483 0.745 8.575 0.508 0.771 

3 10.199 0.568 0.830 8.476 0.504 0.772 9.608 0.546 0.811 

4 9.831 0.554 0.821 9.313 0.533 0.803 9.975 0.554 0.824 

5 10.380 0.573 0.840 9.368 0.539 0.810 10.677 0.586 0.850 

Tree –  

4.1.06 

2 12.262 0.642 0.852 11.702 0.607 0.847 11.843 0.617 0.839 

3 12.639 0.665 0.872 12.475 0.658 0.876 12.619 0.666 0.874 

4 12.906 0.681 0.882 12.402 0.660 0.880 13.286 0.704 0.893 

5 13.456 0.716 0.900 12.638 0.677 0.888 13.344 0.706 0.896 

Jelly beans – 

4.1.08 

2 10.261 0.737 0.844 9.471 0.691 0.818 10.303 0.742 0.845 

3 10.360 0.745 0.851 9.946 0.713 0.838 10.380 0.748 0.851 

4 10.504 0.755 0.859 10.056 0.721 0.843 10.510 0.759 0.858 

5 10.524 0.759 0.861 10.141 0.728 0.847 10.579 0.762 0.861 

Splash – 

4.2.01 

2 12.878 0.587 0.796 13.033 0.605 0.828 13.017 0.592 0.796 

3 14.159 0.630 0.828 14.054 0.641 0.866 14.199 0.626 0.836 

4 14.785 0.644 0.864 14.717 0.681 0.887 14.552 0.642 0.851 

5 15.231 0.674 0.882 14.624 0.690 0.889 15.083 0.662 0.875 

Mandrill 

(a.k.a. 

Baboon) – 

4.2.03 

2 9.860 0.490 0.791 9.178 0.454 0.767 9.816 0.489 0.790 

3 10.539 0.533 0.820 9.746 0.493 0.796 10.539 0.535 0.823 

4 10.849 0.550 0.834 10.046 0.509 0.808 10.883 0.554 0.836 

5 11.224 0.572 0.848 10.211 0.520 0.818 11.426 0.580 0.853 
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House – 4.1.05 

 
Tree – 4.1.06 

 
Mandrill (a.k.a. Baboon) – 4.2.03 

 
Jelly beans – 4.1.08 

 
Figure 4. Results of 3-level segmented RGB test images from IGWO using Kapur Entropy, Otsu 

Method, and M. Masi Entropy 

 

The quantitative findings, supported by higher PSNR, SSIM, and UQI values, were 

visually confirmed by qualitative results presented in segmented images (Figure 4). Visual 

inspection of the 3-level segmented RGB test images revealed that segmentations generated with 

the M.Masi Entropy objective function consistently produced more precise boundaries, more 

distinct regions, and a better overall representation of the original image's semantic content than 

those generated with the Otsu method or Kapur Entropy. For example, images like "Mandrill 

(a.k.a. Baboon) – 4.2.03" and "Jelly beans – 4.1.08," which had higher quantitative metrics with 

M. Masi Entropy, also appeared more visually coherent and had less over-segmentation. This 

strong correlation between quantitative metrics and visual outputs affirms that the Inspired Grey 

Wolf Optimizer (IGWO), especially with M. Masi Entropy, effectively captures essential image 

features. The experimental results demonstrate that the M. Masi Entropy objective function 

provides superior, stable performance across diverse benchmark images and varying threshold 

levels, establishing the IGWO and M. Masi Entropy combination as a robust solution for 

challenging multilevel color image segmentation tasks. 

 
Table 4. Additional test data for benchmarking our proposed IGWO and M. Masi Entropy 

Type Filename Dimension (pixels) Colospace 

Testing Sailboat on lake – 4.2.06 512x512 Color (24 bits/pixel) 

Testing Peppers – 4.2.07 512x512 Color (24 bits/pixel) 

Testing House 512x512 Color (24 bits/pixel) 

Testing 249061.jpg 481x321 Color (24 bits/pixel) 

Testing 247085.jpg 481x321 Color (24 bits/pixel) 

Testing 173036.jpg 481x321 Color (24 bits/pixel) 

Testing 76002.jpg 481x321 Color (24 bits/pixel) 

Testing 68077.jpg 481x321 Color (24 bits/pixel) 

 

To evaluate the effectiveness of the IGWO and M. Masi Entropy combination for ML-

ISP, eight additional test datasets from BSDS300 and USC-SIPI were used, as shown in Table 4. 

The image data were selected based on their diverse, multimodal pixel intensity distributions 

across the R, G, and B channels, which are similar to the histogram distributions of the benchmark 

images shown in Figure 3. As summarized in Table 5, the IGWO model, when integrated with 

the M. Masi Entropy objective function, consistently achieved higher average PSNR and UQI 

scores than the Kapur Entropy of Entropy function and the Otsu Method. This reinforces the 

model's resilience, as demonstrated by earlier findings. Additionally, qualitative inspection of 2-

level segmented RGB images from the supplementary test set (Figure 5) showed that M. Masi 

Entropy on IGWO provides a better overall representation of the original image's semantic 



Bimantara, Inspired GWO-based Multilevel Thresholding for Color Images Segmentation via M. Masi Entropy    61 

 

content, with more distinct regions and more precise edges than images generated by the Otsu 

method or Kapur Entropy. 

 
Table 5. Mean PSNR and UQI values for all test images 

Test Images m IGWO Otsu Method IGWO Kapur Entropy IGWO M. Masi Entropy 

PSNR UQI PSNR UQI PSNR UQI 

173036.jpg 2 7.621 0.619 7.540 0.615 12.037 0.751 

3 8.850 0.695 8.428 0.678 12.165 0.793 

4 10.664 0.770 9.851 0.748 14.416 0.853 

5 12.166 0.825 11.579 0.809 14.294 0.872 

247085.jpg 2 7.877 0.685 7.695 0.677 9.217 0.756 

3 9.097 0.756 9.071 0.756 9.697 0.789 

4 9.488 0.782 9.338 0.777 10.052 0.809 

5 9.712 0.798 9.790 0.800 10.245 0.820 

249061.jpg 2 8.981 0.797 8.907 0.793 9.291 0.809 

3 9.593 0.819 9.317 0.810 9.757 0.826 

4 10.019 0.836 10.131 0.839 10.179 0.843 

5 10.185 0.842 10.410 0.849 10.664 0.858 

Sailboat on lake – 4.2.06 2 11.287 0.804 10.804 0.791 10.134 0.782 

3 11.414 0.828 11.913 0.841 10.991 0.822 

4 12.432 0.863 12.189 0.856 11.485 0.843 

5 12.284 0.866 12.613 0.875 11.563 0.854 

Peppers – 4.2.07 2 9.554 0.708 9.748 0.714 10.353 0.746 

3 10.091 0.745 9.917 0.739 10.642 0.772 

4 10.875 0.787 11.094 0.794 10.928 0.795 

5 11.477 0.810 11.171 0.805 11.368 0.815 

68077.jpg 2 9.455 0.768 9.212 0.758 8.591 0.740 

3 10.141 0.798 10.515 0.809 11.048 0.833 

4 11.079 0.831 10.777 0.823 10.930 0.834 

5 11.810 0.852 11.853 0.858 11.604 0.854 

76002.jpg 2 10.524 0.693 10.508 0.696 10.674 0.699 

3 11.141 0.753 11.250 0.757 11.580 0.765 

4 11.508 0.787 11.771 0.795 12.280 0.801 

5 11.809 0.812 11.905 0.813 12.317 0.822 

House 2 10.256 0.835 10.329 0.836 9.962 0.828 

3 10.755 0.855 10.918 0.860 10.287 0.842 

4 10.792 0.860 11.164 0.870 10.411 0.850 

5 11.270 0.874 11.182 0.872 10.526 0.855 

 

 

 
17036.jpg 

 
247085.jpg 

 
249061.jpg 

 
76002.jpg 

 

Figure 5. Results of 2-level segmented RGB additional test images from IGWO using Kapur 

Entropy, Otsu Method, and M. Masi Entropy 

 

4. Conclusion and Future Works 

This research introduces and evaluates an Inspired Grey Wolf Optimizer (IGWO) for 

multilevel image segmentation (ML-ISP) specifically for RGB color images. The study addresses 

the limitations of prior work by assessing IGWO's performance alongside M. Masi Entropy and 
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other baseline methods, such as Kapur Entropy and the Otsu Method. Experimental results from 

rigorous quantitative (PSNR, SSIM, UQI) and qualitative analyses consistently show that the M. 

Masi Entropy objective function, when integrated with IGWO, delivers superior segmentation 

performance across most benchmark images and various threshold levels. This enhanced 

performance, attributed to IGWO's improved exploration-exploitation balance, confirms its 

robustness for challenging ML-ISP on color images. 

Future work could explore the application of IGWO with other advanced objective 

functions or investigate its integration with deep learning frameworks to further enhance 

segmentation capabilities and computational efficiency. 
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