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Abstrak. Multilevel Thresholding untuk Segmentasi Citra Berwarna berbasis Inspired
GWO dengan M. Masi Entropy. Segmentasi citra sangat penting dalam pemrosesan citra
dan visi komputer, dengan Multilevel Thresholding Image Segmentation Problem (ML-
ISP) yang menawarkan solusi tangguh untuk citra kompleks. Namun, penerapan ML-ISP
secara efektif pada citra berwarna RGB masih menjadi tantangan karena kompleksitas
komputasi dan keterbatasan algoritma optimasi tradisional seperti Grey Wolf Optimizer
(GWO). Studi ini mengusulkan Inspired Grey Wolf Optimizer (IGWO) untuk mengatasi
masalah ini dan meningkatkan ML-ISP untuk citra berwarna RGB. Stabilitas kinerja
IGWO dievaluasi secara komprehensif menggunakan tiga fungsi objektif yang berbeda:
metode Otsu, Kapur Entropy, dan M. Masi Entropy. Analisis kualitatif dan kuantitatif,
menggunakan PSNR, SSIM, dan UQI, dilakukan pada citra acuan. Hasil secara konsisten
menunjukkan bahwa IGWO, khususnya dengan M. Masi Entropy, mencapai kualitas
segmentasi yang unggul. Penelitian ini menggabungkan penyetelan hiperparameter
berbasis GridSearch. Temuan ini menyoroti efektivitas dan ketahanan pendekatan IGWO
yvang diusulkan untuk tugas ML-ISP kompleks pada citra berwarna.

Keywords: Inspired Grey Wolf Optimizer, Multilevel Thresholding Segmentasi Citra
Berwarna, Metode Otsu, Kapur Entropy, M. Masi Entropy

Abstract. Image segmentation is crucial in image processing and computer vision, with
multilevel thresholding (ML-ISP) offering robust solutions for complex images. However,
effectively applying ML-ISP to RGB color images remains a challenge due to
computational complexity and the limitations of traditional optimization algorithms, such
as the Grey Wolf Optimizer (GWO). This study proposes an Inspired Grey Wolf Optimizer
(IGWO) to address these issues and enhance ML-ISP for RGB color images. The
performance stability of IGWO is comprehensively evaluated using three distinct objective
functions: the Otsu method, the Kapur Entropy, and the M. Masi Entropy. Qualitative and
quantitative analyses using PSNR, SSIM, and UQI were conducted on benchmark images.
Results consistently demonstrate that IGWO, particularly with M. Masi Entropy, achieves
superior segmentation quality. This research incorporates GridSearch-based
hyperparameter tuning. The findings highlight the effectiveness and robustness of the
proposed IGWO approach for complex ML-ISP tasks on color images.

Kata Kunci: Inspired Grey Wolf Optimizer, Multilevel Color Image Thresholding, Otsu
Method, Kapur Entropy, M. Masi Entropy

1. Introduction

Image analysis is an essential process in computer vision, involving image segmentation.
Thresholding is a simple and efficient segmentation technique that determines optimal threshold
values based on pixel intensities [1], [2]. However, multilevel thresholding (ML-ISP) is more
challenging. Non-parametric approaches such as Otsu's method, Kapur entropy, and minimal
cross entropy are effective for bi-level thresholding of grayscale images. These methods often
become ineffective and computationally complex [1], [2], [3] when extended to ML-ISP,
particularly as the number of thresholds increases.


mailto:satriabimantara@unud.ac.id
mailto:3emailtiga@blabla.edu
mailto:4sarasvananda@unud.ac.id

Bimantara, Inspired GWO-based Multilevel Thresholding for Color Images Segmentation via M. Masi Entropy 53

Entropy plays a crucial role in optimizing ML-ISP, a complex problem that requires
metaheuristic optimization algorithms based on swarm intelligence (SI) [3], [4]. Otsu, Kapur, and
M. Masi entropy techniques have been used in various optimization methods, demonstrating
superior efficiency and accuracy compared to exhaustive search and traditional evolutionary
algorithms. For instance, the Otsu method has been used with MFO [5], KHO [4], WOA [5],
GWO [6], and improved WOA [4]. Kapur Entropy has been explored with WOA-SMA [7], a
multistage hybrid SI method [3], DA [8], GWO [6], and KHO [4], while M. Masi Entropy has
been tested with GWO [1] and PSO [8].

Existing SI-based ML-ISP research often focuses on grayscale images [1], overlooking
color information. The No Free Lunch (NFL) theorem suggests that no single optimization
algorithm is universally optimal. Existing SI approaches often suffer from slow convergence,
premature convergence, and susceptibility to local optima, leading to suboptimal segmentation
quality [2], [3]. Evaluating performance across multiple objective functions is crucial for
consistency and robustness.

To address these limitations, this study proposes an Inspired Grey Wolf Optimizer
(IGWO) for solving ML-ISP on RGB color images, enhancing performance over traditional
population-based algorithms. IGWO's non-linear adjustment strategy and modified wolf position
update mechanism balance exploration and exploitation. IGWO was chosen for its superior
performance compared to conventional population-based algorithms. Benchmark images from
BSD300 Berkeley and USC-SIPI demonstrate its efficacy, assessing PSNR, SSIM, and UQI.
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2. Research Methodology

As shown in Figure 1, this section outlines the procedures used to address the research
objectives and the dataset used in the study. A clear visual overview of the entire process for
resolving ML-ISP using the proposed IGWO method is provided in Figure 2. We make reference
to the objective functions of the Otsu, Kapur, and M. Masi entropy approaches, as well as the
ML-ISP problem, to the findings of earlier studies [9].

2.1 Dataset

This study used a common benchmark dataset, the Berkeley Segmentation Dataset!
(BSDS300), and the USC-SIPI image database’. Six images serve as test data (retrieved from
USC-SIPI), while ten images serve as training data (retrieved from BSDS300), as shown in Table
1. These files were selected for their multimodal histogram features, which enable the objective
selection of each model's optimal hyperparameters. The training data is used for the ML-ISP
IGWO model construction, including hyperparameter tuning for each model. The performance of
the proposed method is evaluated using the test data. The histogram of the test data's pixel
intensities is shown in Figure 3.

Table 1. Benchmark images used in this experiment

Type Filename Dimension (pixels) Colorspace
Testing  House —4.1.05 512x512 Color (24 bits/pixel)
Testing  Splash —4.2.01 512x512 Color (24 bits/pixel)
Testing  Mandrill (a.k.a. Baboon) — 4.2.03 512x512 Color (24 bits/pixel)
Testing  Tree —4.1.06 256x256 Color (24 bits/pixel)
Testing  Jelly beans — 4.1.08 256x256 Color (24 bits/pixel)
Testing  Female —4.1.04 256x256 Color (24 bits/pixel)
Training  35010.jpg 481x321 Color (24 bits/pixel)
Training  95006.jpg 481x321 Color (24 bits/pixel)
Training  112082.jpg 481x321 Color (24 bits/pixel)
Training  124084.jpg 481x321 Color (24 bits/pixel)
Training  140055.jpg 481x321 Color (24 bits/pixel)
Training  156079.jpg 481x321 Color (24 bits/pixel)
Training  169012.jpg 481x321 Color (24 bits/pixel)
Training  189003.jpg 481x321 Color (24 bits/pixel)
Training  232038.jpg 481x321 Color (24 bits/pixel)
Training  317080.jpg 481x321 Color (24 bits/pixel)
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Figure 3. One of the benchmarks (RGB) test image data used to evaluate the method's performance
came from the USC-SIPI image database. The images have their own RGB histogram (a'') and
grayscale histogram (a') with (a) House — 4.1.05

! https://www?2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
2 https://sipi.usc.edu/database/
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2.2 Classical GWO vs IGWO

Mirjalili et al. (2014) [10] introduced the Grey Wolf Optimizer (GWO) as a metaheuristic
algorithm inspired by the hunting habits and hierarchical social structure of grey wolves. These
wolves typically form packs of 5-12 individuals, adhering to a strict social hierarchy composed
of alpha (a), beta (), delta (&), and omega (w) ranks [6]. In the mathematical formulation of
GWO, the a, B, and § wolves are designated as the first, second, and third-best solutions,
respectively, guiding the optimization process. In contrast, the remaining w wolves follow their

lead [6]. The encirclement of prey is modeled by Equations 1, 2, and 3, where X;()r)ey is the prey's

position and X I(t) is the wolf's position. The control parameter linearly decreases from 2 to 0
(Equation 4), while 77 and 7, are random vectors in [0,1] [11]. All other wolves update their
positions based on the superior knowledge of the &, 8, and § wolves (Equations 5 and 6). Vectors

A_; and amanage the balance between exploration and exploitation: |ﬁ| < 1 and/or |W| <

1, signifies attacking the prey (exploitation), while |ﬁ| > 1 and/or |W| > 1 indicates

exploration of new search areas to avoid local optima [6], [11]. This dynamic adjustment of a in
each iteration effectively balances these two operators.

N < e - »
Qi=2a-7—a )
=271 3)
q=2 (1 - %) )

The Inspired Grey Wolf Optimizer (IGWO) was proposed to address limitations of
traditional GWO in real-world optimization [11], [12]. It incorporates individual and global best
positions into its update process, addressing premature convergence or entrapment in local
optima. This nonlinear adjustment strategy enhances the optimization process.
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IGWO enhances GWO through two primary modifications. Firstly, it replaces the linear
decay of parameter a with a logarithmic decay method, calculated by Equation 7. This non-linear
adjustment aims to achieve a better balance between exploration and exploitation, facilitating
convergence to the global optimum [12]. Secondly, IGWO modifies the equation for updwolf
position vector. Unlike conventional GWO, which relies only on «, ﬁ and 6 wolves (Equations

5 and 6), IGWO incorporates each wolf's best individual position ( b est,;) and the global best

position (X ) as shown in Equation 8. This modification, inspired by PSO, enhances the

alpha
algorithm's ability to avoid local optima. Coefficients ¢; and ¢, represent individual memory and
population communication, respectively (both in [0,1]), with 75 and 7, r as random vectors in
[0,1]. Furthermore, similar to PSO, IGWO includes an inertia weight (@), which linearly declines
from an initial (W;ntiqr) to a final (Wfing;) value, as defined by Equation (9).
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2.3 M. Masi Entropy for Multilevel Thresholding in Color Image Segmentation

M. Masi Entropy is an objective criterion used to determine the optimal thresholds in
multilevel color image segmentation (ML-ISP). An RGB color image is defined as a 3D array of
size R X K X 3, consisting of red (C]), green (Cig ), and blue (Cib ) color channels. The purpose
of multilevel thresholding is to find m optimal thresholds, namely {t;,t,, ..., t;;} that divide the
image into m + 1 areas based on predefined criteria, such as M. Masi Entropy, Kapur Entropy,
or the Otsu Method.

Fyasi(t1, ta, ..., t,) measures segmentation quality by maximizing the variance within
each image segment. The value of Fj,,g; is calculated by summing the M. Masi Entropy values
(MME;) from each divided segment according to Equation (10). Each MME; is calculated using
Equation (11), while the value ¢@; is the pixel probability distribution in the j-th segment, which

is calculated using Equation (12). The value PY in Equation (12) is the probability that the z-th
gray level occurs at C{* and is calculated using Equation (13). The value of @ in these equations
is typically experimented on in the interval -1 to 3 with a step of 0.1, and values of ¢ < 1 have
shown steady and high quality. The best segmented image is the one that yields the highest Fy;4;
score among all possible threshold combinations.

Fuasi(t, ta, o tm) = ST MME; = MMEy + MME, + -+ MME,, (10)
MME; = log(1-(-a) x ) (11)
(1-a)
o AP, (e 1 p 12
om = Bhzh, 2 log (), wy = 5424, PO (12)
m m
O _n ® -1 p® _
B =1 (0<B <1)A (TSR =1) (13)

2.4 IGWO for Solving ML-ISP

Code 1 presents the pseudocode for implementing the IGWO to solve the ML-ISP. This
study uses the IGWO method to determine optimal threshold values, represented by the wolf's
vector position, at the m-th level for segmenting images into up to m + 1 distinct regions. The
process takes the image's histogram as its input, and its output is the alpha wolf's position vector

at the final iteration (X g;",‘fg) ), corresponding to the derived optimal threshold values.

Code 1. IGWO with M. Masi Entropy to determine the m optimum thresholds
Input:
Nyoif < wolves population size

Thmax < maximum iteration
Frunc <« M. Masi Entropy, Otsu Method, or Kapur Entropy

Output: Best individual solution at final iteration Xg;",‘ﬁ;) and best individual
solution’s fitness Fit(XgZ‘,‘:;))
Initialization:

GreyWolfs < Initialize 2D matrix using Equation 14 of N,y grey wolf

position.

Frync is used to calculate each individual fitness

. 0 (0) (0
Find Xalpha’ Xbeta’ dan Xdelta

FOR t in range (0, Tpnex) DO
Use Equation 7.to update d
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FOR individual in GreyWolfs DO
Use Equation 2 and 3 to update ATC and E; respectively.

B T S

Use Equation 5 to calculate Xl(t),Xz(t),XBEt)

Use Equation 8 to update X,(t)

Use Equation 15 to update X,(t) boundaries solution space
ENDFOR

Update each individual fitness value using Frypc

) ® ®
Update Xalpha’ Xpotar dan Xy,
ENDFOR
Return X g;";;;’ , Fit (nglﬁz))

Equation 14 is used to initialize the positional vector representation of each i-th wolf,
which is expressed as )7,) . Nyois represents the total number of wolves that were initiated. The

gray level of an image represents the threshold value, which is x(; x) € X I(t). All wolves' fitness
is determined at the start of the iteration (t = 0) using a preset objective function, specifically the
Otsu method, Kapur Entropy, or M. Masi Entropy [9]. Next, we define three wolves with optimal

fitness values at initial as follows: X ((1?7)) har X, Igg)t @ X (gg)lt @

its position based on IGWQO's new formulation for each iteration during a predefined maximum

dan Each wolfuses Equation 8 to update

iteration T,4,. Vector /T, vector € , and vector d are determined using Equations 2, 3, and 7,
respectively, prior to the positions being updated.

14
XI(O) = [x(l,l)'x(I,Z)' ...,X(I,m)], (1 = 1,2, ,N) A (0 < x(I,l)... < .X'(I,m) < L) ( )
Xk = randint(0, (L — 1))
X](t+1) — (15)

L — round(random(0,1) * randominteger(0,L)), (x; 1)) > L
0, (xqu) <0 v

' x(I,k)EXI(Hl)
X(1 k), Otherwise

When the value x(j ) is outside the range of gray level G, the updated vector X I(Hl) may

not be inside the bounds of ML-ISP. Consequently, X I(Hl) is adjusted to be in the problem
solution space in this study using Equation 15. Then, using the same formula as when t = 0, the
fitness value of each j-th agent is expressed as F it(?,).

2.5 Segmenting Images with the Best Threshold

Each channel in the test image is then segmented using the optimal threshold determined
by the IGWO-based optimization procedure. Using the pseudocode shown in Algorithm 3 from
prior research [9], the Cj* image is partitioned into m + 1 regions using an optimal {t, t;, ..., t,;,}.
SRSB for RGB color images, and S{qmy for grayscale images are the representations of the C}*

image segmented with the ideal m threshold.

RGB T
S

is obtained by merging the segmentation results from C;, C ig ,and C l-b. Assume m,,
my, and m,, as the thresholding levels for each of the RGB image's r, g, and b channels. The
optimal threshold for each channel is determined using the SI method. Using the pseudocode
shown in Algorithm 3 from prior research [9], each channel is segmented using the optimal
threshold. Each channel's segmented picture is represented by S/, Slfg , and Sl-b , such that SLRGB =
[Sl-r, Sl.g,Sib]. Thus, Sl-RGB has less color levels than CL-RGB and has the most m, X m,; X my, [13].
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2.6 Environmental and Experiment Setup

The performance stability of the suggested IGWO for ML-ISP was assessed through
experiments using three objective functions: M. Masi Entropy, the Otsu method, and Kapur
Entropy. To ensure a fair comparison, all methods used consistent stopping criteria, including a
maximum of 100 iterations, a population size of 25 solutions, and 30 trials per method [5].
Consistent with prior research [1], [2], test images were evaluated for 2, 3, 4, and 5 thresholds.
All algorithms were implemented and executed using Python v3.8.5 on a Windows 10 (64-bit)
environment, powered by an AMD Ryzen Al HX 370 w/ Radeon 890M @2000 Mhz and 32GB
of RAM.

To determine the optimal hyperparameter combination for each method, a GridSearch
technique was employed. This systematic approach explores all possible hyperparameter value
combinations within a defined search space (Table 2) to identify the configuration that yields the
best results. The optimization metric used for hyperparameter tuning was the average fitness value
across all training data, specifically for five thresholds using the M. Masi Entropy as the fitness
function. For IGWO, tuned parameters included the population communication coefficient (c;),
individual memory coefficient (c,), initial inertia weight (w;ipitiqr), and final inertia weight

(wfinal)-

Table 2. List of hyperparameters along with the solution space for IGWO method
No Parameter Search space

Population communication coefficient (¢;)  [0.1,0.3.0.5,0.7, 0.9]

Individual memory coefficient (c,) [0.2,0.4,0.6,0.8, 1]

Initial value of vector d [1,2]

Initial value of inertia weight (Wipnitiar) [0.5,0.7,0.9]

Final value of inertia weight (wﬁnal) [0.1]

N[ |W|N|[—

2.7 Evaluation Metrics

Both qualitative and quantitative methods were utilized to evaluate the segmented
images. Qualitative assessment involved visual comparison between the original and segmented
images at each threshold level. The quantitative evaluation was conducted using six primary
metrics: Peak Signal-to-Noise Ratio (PSNR), Universal Quality Index (UQI), and Structural
Similarity Index Metric (SSIM). In essence, PSNR uses an image's pixel intensity value to
determine the difference between S; and C;. Equation 16 is used to determine the PSNR, while
Equation 17 is used to determine the MSE value. S ) represents the gray level pixels at the
coordinates (x,y) of the segmented image, whereas C(, yy represents the original image's gray
level pixels.

SSIM (Equation 18) and UQI (Equation 19) assess structural similarities, brightness, and
distortion, providing a more comprehensive quality measure than PSNR alone [7]. The average
intensity values of C; and S; are represented by the u. and pg values, respectively. The standard
deviations of C; and S; are represented by the values of g, and o5, respectively. The covariance
between C; and S; is defined by the value of cov(c 5. The values of a and b are constant at 6.5025
and 58.52252, respectively.

_ 255255 (16)

PSNR(C,S) = 10log,, (MSE(C,5)>
252155115 ~Cay)| (17)

MSE(C,S) = 2x=1ay P~y

_ (zﬂSﬂC+a)(2COV(C,S)+b) (] 8)
S5IMcs) = (uc?+us?+a)(oc®+os2+b)

4cov(cs)hcUs

UQlis) = () (19)

(uc?+us?)(oc?+0s?)
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3. Results and Discussion

Using GridSearch to select the best hyperparameter combinations in IGWO, ¢; = 0.9,
¢z = 1, Winitiar = 0.7, Wfingr = 0.1, dan @) = 1 were found to have an average fitness
value of 2870.383, an average PSNR of 19.244, an average SSIM of 0.8145, and an average UQI
of 0.888. An IGWO model with three objective functions—the M. Masi Entropy, Kapur Entropy,
and Otsu Method—is then created using the optimal hyperparameter combination.

This section thoroughly evaluates the IGWO for multilevel color image segmentation
(ML-ISP), using both quantitative and qualitative assessments. The performance, measured by
PSNR, SSIM, and UQI metrics, along with visual inspection, consistently shows that the IGWO
framework, combined with the M. Masi Entropy objective function, provides superior
segmentation results across most test images and threshold levels. A detailed analysis of the
quantitative metrics in Table 3 reveals distinct trends. For instance, the IGWO-M. Masi Entropy
configuration frequently achieves the highest PSNR values, especially as the number of thresholds
increases, as seen in "Female — 4.1.04" and "Mandrill (a.k.a. Baboon) —4.2.03". IGWO-M. Masi
Entropy consistently outperforms in all m configurations, yielding PSNRs of 10.303, 10.380,
10.510, and 10.579, respectively. While IGWO-Otsu shows competitive performance at lower
thresholds for some images, [IGWO-Kapur Entropy generally exhibits lower PSNR values, except
for "Splash — 4.2.01" atm = 2.

Further analysis of the SSIM and UQI metrics in Table 3 largely confirms the superiority
of IGWO with M. Masi Entropy. For images like "Jelly beans — 4.1.08" and "Mandrill (a.k.a.
Baboon) — 4.2.03," M. Masi Entropy consistently yields the highest values across all threshold
levels, indicating better preservation of structural information and overall image quality. For
example, "Jelly beans — 4.1.08" achieves an SSIM 0of 0.762 and UQI of 0.861 with IGWO-M.Masi
Entropy at m = 5. Conversely, while generally underperforming, IGWO-Kapur Entropy
demonstrates exceptional results for "Splash — 4.2.01," leading across all SSIM and UQI values,
which suggests its specific suitability for certain image characteristics. These comprehensive
quantitative findings highlight the robust and adaptable performance of IGWO when optimized
with the appropriate objective functions for challenging ML-ISP tasks.

Table 3. Mean PSNR, SSIM, and UQI values for all test images
Test Images m IGWO Otsu Method IGWO Kapur Entropy IGWO M. Masi Entropy
PSNR  SSIM UQI PSNR SSIM UQI PSNR  SSIM UQI

Female — 2 9.998 0.506 0.785 9.379 0.484 0.773 9.706 0.495 0.776
4.1.04 3 10.506 0.531 0.821 9.774 0.513 0.801 10.898  0.550 0.831
4 11.303 0.569 0.850 10.315 0.542 0.825 11.056  0.559 0.844
5 11.070 0.568 0.850 10.809 0.572 0.844 11.229  0.568 0.853
House — 2 8.428 0.506 0.767 7.972 0.483 0.745 8.575 0.508 0.771
4.1.05 3 10.199 0.568 0.830 8.476 0.504 0.772 9.608 0.546 0.811
4 9.831 0.554 0.821 9.313 0.533 0.803 9.975 0.554 0.824
5 10.380 0.573 0.840 9.368 0.539 0.810  10.677  0.586 0.850
Tree — 2 12.262 0.642 0.852 11.702 0.607 0.847 11.843  0.617 0.839
4.1.06 3 12.639 0.665 0.872 12.475 0.658 0.876 12.619  0.666 0.874
4 12.906 0.681 0.882 12.402 0.660 0.880  13.286  0.704 0.893
5 13.456 0.716 0.900 12.638 0.677 0.888 13.344  0.706 0.896
Jelly beans— 2 10.261 0.737 0.844 9.471 0.691 0.818  10.303  0.742 0.845
4.1.08 3 10.360 0.745 0.851 9.946 0.713 0.838  10.380  0.748 0.851
4 10.504 0.755 0.859 10.056 0.721 0.843  10.510  0.759 0.858
5 10.524 0.759 0.861 10.141 0.728 0.847 10.579  0.762 0.861
Splash — 2 12.878 0.587 0.796 13.033 0.605 0.828 13.017  0.592 0.796
4.2.01 3 14.159 0.630 0.828 14.054 0.641 0.866 14.199  0.626 0.836
4 14.785 0.644 0.864 14.717 0.681 0.887 14.552  0.642 0.851
5 15.231 0.674 0.882 14.624 0.690 0.889 15.083  0.662 0.875
Mandrill 2 9.860 0.490 0.791 9.178 0.454 0.767 9.816 0.489 0.790
(ak.a. 3 10.539 0.533 0.820 9.746 0.493 0.796  10.539  0.535 0.823
Baboon) — 4 10.849 0.550 0.834 10.046 0.509 0.808  10.883  0.554 0.836
4.2.03 5 11.224 0.572 0.848 10.211 0.520 0.818 11.426  0.580 0.853
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Figure 4. Results of 3-level segmented RGB test images from IGWO using Kapur Entropy, Otsu
Method, and M. Masi Entropy

The quantitative findings, supported by higher PSNR, SSIM, and UQI values, were
visually confirmed by qualitative results presented in segmented images (Figure 4). Visual
inspection of the 3-level segmented RGB test images revealed that segmentations generated with
the M.Masi Entropy objective function consistently produced more precise boundaries, more
distinct regions, and a better overall representation of the original image's semantic content than
those generated with the Otsu method or Kapur Entropy. For example, images like "Mandrill
(a.k.a. Baboon) — 4.2.03" and "Jelly beans — 4.1.08," which had higher quantitative metrics with
M. Masi Entropy, also appeared more visually coherent and had less over-segmentation. This
strong correlation between quantitative metrics and visual outputs affirms that the Inspired Grey
Wolf Optimizer (IGWO), especially with M. Masi Entropy, effectively captures essential image
features. The experimental results demonstrate that the M. Masi Entropy objective function
provides superior, stable performance across diverse benchmark images and varying threshold
levels, establishing the IGWO and M. Masi Entropy combination as a robust solution for
challenging multilevel color image segmentation tasks.

Table 4. Additional test data for benchmarking our proposed IGWO and M. Masi Entropy

Type Filename Dimension (pixels) Colospace
Testing  Sailboat on lake — 4.2.06 512x512 Color (24 bits/pixel)
Testing Peppers —4.2.07 512x512 Color (24 bits/pixel)
Testing House 512x512 Color (24 bits/pixel)
Testing 249061.jpg 481x321 Color (24 bits/pixel)
Testing 247085.jpg 481x321 Color (24 bits/pixel)
Testing 173036.jpg 481x321 Color (24 bits/pixel)
Testing 76002.jpg 481x321 Color (24 bits/pixel)
Testing 68077.jpg 481x321 Color (24 bits/pixel)

To evaluate the effectiveness of the IGWO and M. Masi Entropy combination for ML-
ISP, eight additional test datasets from BSDS300 and USC-SIPI were used, as shown in Table 4.
The image data were selected based on their diverse, multimodal pixel intensity distributions
across the R, G, and B channels, which are similar to the histogram distributions of the benchmark
images shown in Figure 3. As summarized in Table 5, the IGWO model, when integrated with
the M. Masi Entropy objective function, consistently achieved higher average PSNR and UQI
scores than the Kapur Entropy of Entropy function and the Otsu Method. This reinforces the
model's resilience, as demonstrated by earlier findings. Additionally, qualitative inspection of 2-
level segmented RGB images from the supplementary test set (Figure 5) showed that M. Masi
Entropy on IGWO provides a better overall representation of the original image's semantic
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content, with more distinct regions and more precise edges than images generated by the Otsu
method or Kapur Entropy.

Table 5. Mean PSNR and UQI values for all test images

Test Images m IGWO Otsu Method IGWO Kapur Entropy IGWO M. Masi Entropy

PSNR UQI PSNR UQI PSNR UQI

173036.jpg 2 7.621 0.619 7.540 0.615 12.037 0.751
3 8.850 0.695 8.428 0.678 12.165 0.793

4 10.664 0.770 9.851 0.748 14.416 0.853

5 12.166 0.825 11.579 0.809 14.294 0.872

247085.jpg 2 7.877 0.685 7.695 0.677 9.217 0.756
3 9.097 0.756 9.071 0.756 9.697 0.789

4 9.488 0.782 9.338 0.777 10.052 0.809

5 9.712 0.798 9.790 0.800 10.245 0.820

249061.jpg 2 8.981 0.797 8.907 0.793 9.291 0.809
3 9.593 0.819 9.317 0.810 9.757 0.826

4 10.019 0.836 10.131 0.839 10.179 0.843

5 10.185 0.842 10.410 0.849 10.664 0.858

Sailboat on lake —4.2.06 2 11.287 0.804 10.804 0.791 10.134 0.782
3 11.414 0.828 11.913 0.841 10.991 0.822

4 12.432 0.863 12.189 0.856 11.485 0.843

5 12.284 0.866 12.613 0.875 11.563 0.854

Peppers —4.2.07 2 9.554 0.708 9.748 0.714 10.353 0.746
3 10.091 0.745 9.917 0.739 10.642 0.772

4 10.875 0.787 11.094 0.794 10.928 0.795

5 11477 0.810 11.171 0.805 11.368 0.815

68077 jpg 2 9.455 0.768 9.212 0.758 8.591 0.740
3 10.141 0.798 10.515 0.809 11.048 0.833

4 11.079 0.831 10.777 0.823 10.930 0.834

5 11.810 0.852 11.853 0.858 11.604 0.854

76002.jpg 2 10.524 0.693 10.508 0.696 10.674 0.699
3 11.141 0.753 11.250 0.757 11.580 0.765

4 11.508 0.787 11.771 0.795 12.280 0.801

5 11.809 0.812 11.905 0.813 12.317 0.822

House 2 10.256 0.835 10.329 0.836 9.962 0.828
3 10.755 0.855 10.918 0.860 10.287 0.842

4 10.792 0.860 11.164 0.870 10.411 0.850

5 11.270 0.874 11.182 0.872 10.526 0.855

IGWO OTSU IGWP KAPUR IGWO MASI IGWO OTSU IGWO KAPUR IGWO MASI

e

==

17036.jpg 247085.jpg
IGWO OTSU IGWO KAPUR IGWO MASI IGWO OTSU ~ IGWO KAPUR IGWO MASI
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Figure 5. Results of 2-level segmented RGB additional test images from IGWO using Kapur
Entropy, Otsu Method, and M. Masi Entropy

4. Conclusion and Future Works

This research introduces and evaluates an Inspired Grey Wolf Optimizer (IGWO) for
multilevel image segmentation (ML-ISP) specifically for RGB color images. The study addresses
the limitations of prior work by assessing IGWO's performance alongside M. Masi Entropy and
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other baseline methods, such as Kapur Entropy and the Otsu Method. Experimental results from
rigorous quantitative (PSNR, SSIM, UQI) and qualitative analyses consistently show that the M.
Masi Entropy objective function, when integrated with IGWO, delivers superior segmentation
performance across most benchmark images and various threshold levels. This enhanced
performance, attributed to IGWO's improved exploration-exploitation balance, confirms its
robustness for challenging ML-ISP on color images.

Future work could explore the application of IGWO with other advanced objective
functions or investigate its integration with deep learning frameworks to further enhance
segmentation capabilities and computational efficiency.
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