Segmentasi Citra Ikan Tuna dengan Mahalanobis Histogram Thresholding dan Mahalanobis Fuzzy C-Means

Andi Baso Kaswar, Agus Zainal Arifin, Arya Yudhi Wijaya

Abstract


Abstract. Fuzzy C-Means segmentation algorithm based on Mahalanobis distance can be utilized to segment tuna fish image. However, initialization of pixels membership value and clusters centroid randomly cause the segmentation process become inefficient in terms of iteration and time of computation. This paper proposes a new method for tuna fish image segmentation by Mahalanobis Histogram Thresholding (M-HT) and Mahalanobis Fuzzy C-Means (MFCM). The proposed method consists of three main phases, namely: centroid initialization, pixel clustering and accuracy improvement. The experiment carried out obtained average of iteration amount is as many as 66 iteration with average of segmentation time as many as 162.03 second. While the average of Accuracy is 98.54%, average of Missclassification Error is 1.46%. The result shows that the proposed method can improve the efficiency of segmentation method in terms of number of iterations and time of segmentation. Besides that, the proposed method can give more accurate segmentation result compared with the conventional method.

Keywords: Tuna Fish Image, Segmentation, Fuzzy Clustering, Histogram Thresholding, Mahalanobis Distance.

 

Abstrak. Algoritma segmentasi Fuzzy C-Means berbasis jarak Mahalanobis dapat digunakan untuk mensegmentasi ikan tuna. Namun, inisialisasi derajat keanggotaan piksel dan centroid klaster secara random mengakibatkan proses segmentasi menjadi tidak efisien dalam hal iterasi dan waktu komputasi. Penelitian ini mengusulkan metode baru untuk segmentasi citra ikan tuna dengan Mahalanobis Histogram Thresholding (M-HT) dan Mahalanobis Fuzzy C-Means (MFCM). Metode ini terdiri atas tiga tahap utama, yaitu: inisialisasi centroid, pengklasteran piksel dan peningkatan akurasi. Berdasarkan hasil ekseprimen, diperoleh rata-rata jumlah iterasi sebanyak 66 iterasi dengan rata-rata waktu segmentasi 162,03 detik. Rata-rata Akurasi 98,54% dengan rata-rata tingkat Missclassification Error 1,46%. Hasil yang diperoleh menunjukkan bahwa metode yang diusulkan dapat meningkatkan efisiensi metode segmentasi dalam hal jumlah iterasi dan waktu segmentasi. Selain itu, metode yang diusulkan dapat memberikan hasil segmentasi yang lebih akurat dibandingkan dengan metode konvensional.

Kata Kunci: Citra Ikan Tuna, Segmentasi, Fuzzy Clustering, Histogram Thresholding, Jarak Mahalanobis.


Full Text:

PDF

References


. Ahmed, M. N., Yamany, S. M., Mohamed, N., Farag, A. A., & Moriarty, T. 2002. A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data. Medical Imaging, IEEE Transactions on, 21(3), 193-199.

. Arifin, A. Z., & Asano, A. 2006. Image segmentation by histogram thresholding using hierarchical cluster analysis. Pattern Recognition Letters, 27(13), 1515-1521.

. Bezdek, J. C., Ehrlich, R., & Full, W. 1984. FCM: The fuzzy c-means clustering algorithm. Computers & Geosciences, 10(2), 191-203.

. Cai, W., Chen, S., & Zhang, D. 2007. Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recognition, 40(3), 825-838.

. Ghosh, M., Das, D., Chakraborty, C., & Ray, A. K. 2010. Automated leukocyte recognition using fuzzy divergence. Micron, 41(7), 840-846.

. Jati, A., Singh, G., Mukherjee, R., Ghosh, M., Konar, A., Chakraborty, C., & Nagar, A. K. 2014. Automatic leukocyte nucleus segmentation by intuitionistic fuzzy divergence based thresholding. Micron, 58, 55-65.

. Kelly, P. M. 1994. An algorithm for merging hyperellipsoidal clusters. Los Alamos National Laboratory, Tech. Rep.

. Liu, H. C., Jeng, B. C., Yih, J. M., & Yu, Y. K. 2009. Fuzzy C-means algorithm based on standard mahalanobis distances. In Proceedings of the 2009 International Symposium on Information Processing (pp. 422-427).

. Liu, X., Lin, L., & Yuille, A. 2013. Robust region grouping via internal patch statistics. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1931-1938).

. Puspita, S.D., Arifin, A.Z. & Khotimah, N., 2015. Penggunaan multi texton co-occurrence descriptor untuk klasifikasi ikan tuna. Jurnal Teknik ITS, 4(1),1–6.

. Tan, K. S., & Isa, N. A. M. 2011. Color image segmentation using histogram thresholding–Fuzzy C-means hybrid approach. Pattern Recognition, 44(1), 1-15.

. Yao, H., Duan, Q., Li, D., & Wang, J. 2013. An improved K-means clustering algorithm for fish image segmentation. Mathematical and Computer Modelling, 58(3), 790-798.

. Yu, Z., Au, O. C., Zou, R., Yu, W., & Tian, J. 2010. An adaptive unsupervised approach toward pixel clustering and color image segmentation. Pattern Recognition, 43(5), 1889-1906.

. Zhao, F., Liu, H., & Fan, J. 2015a. A multiobjective spatial fuzzy clustering algorithm for image segmentation. Applied Soft Computing, 30, 48-57.

. Zhao, X., Li, Y., & Zhao, Q. 2015b. Mahalanobis distance based on fuzzy clustering algorithm for image segmentation. Digital Signal Processing, 43, 8-16.




DOI: https://doi.org/10.24002/jbi.v7i3.658

Refbacks

  • There are currently no refbacks.