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Abstrak. Studi ini menyelidiki optimasi model ConcaveLSTM untuk prediksi kualitas udara, 
berfokus pada interaksi antara panjang urutan masukan dan jumlah unit LSTM untuk 
meningkatkan akurasi peramalan. Melalui evaluasi berbagai konfigurasi model terhadap 
metrik kinerja seperti RMSE, MAE, MAPE, dan R-squared, sebuah setup optimal yang 
menampilkan 50 langkah masukan dan 300 neuron diidentifikasi, menunjukkan 
kemampuan prediktif yang superior. Temuan menekankan peran kritis penyetelan 
parameter model dalam menangkap dependensi temporal dalam data lingkungan. 
Meskipun ada keterbatasan terkait representasi dataset dan variabilitas lingkungan, 
penelitian ini menyediakan dasar yang solid untuk kemajuan masa depan dalam pemodelan 
prediktif lingkungan. Rekomendasi termasuk memperluas keragaman dataset, 
mengeksplorasi model hibrida, dan mengimplementasikan integrasi data waktu nyata 
untuk meningkatkan generalisasi model dan aplikabilitas dalam skenario dunia nyata. 
Kata Kunci: prediksi kualitas udara, model ConcaveLSTM, optimasi parameter, 
dependensi temporal, pemodelan lingkungan 
 
Abstract. This study investigates the optimization of the ConcaveLSTM model for air quality 
prediction, focusing on the interplay between input sequence lengths and the number of 
LSTM units to enhance forecasting accuracy. Through the evaluation of various model 
configurations against performance metrics such as RMSE, MAE, MAPE, and R-squared, 
an optimal setup featuring 50 input steps and 300 neurons was identified, demonstrating 
superior predictive capabilities. The findings underscore the critical role of model 
parameter tuning in capturing temporal dependencies within environmental data. Despite 
limitations related to dataset representativeness and environmental variability, the research 
provides a solid foundation for future advancements in predictive environmental modeling. 
Recommendations include expanding dataset diversity, exploring hybrid models, and 
implementing real-time data integration to improve model generalizability and 
applicability in real-world scenarios. 
Keywords: air quality prediction, ConcaveLSTM model, parameter optimization, temporal 
dependencies, environmental modelling 

 
1. Introduction 

Air quality prediction plays a crucial role in addressing public health challenges, 

economic impacts, and environmental issues caused by air pollution. Poor air quality poses 

serious health risks, including respiratory and cardiovascular diseases, and negatively affects 

economic productivity through increased healthcare burdens and crop yield losses. From an 

environmental perspective, air pollution damages ecosystems and biodiversity, underscoring the 

urgency for effective intervention. Using predictive algorithms in air quality forecasting promises 

significant improvements in accuracy and reliability, enabling more precise and responsive 

decision-making in response to air quality fluctuations. This directly contributes to enhancing 

human well-being and environmental sustainability, highlighting the importance of innovation in 

predictive technology for more effective air quality management. 

Air pollution significantly affects both human health and the environment. The inhalation 

of pollutants like particulate matter, sulfur dioxide, nitrogen oxides, and carbon monoxide is 

linked to a range of adverse health effects, including issues with respiratory, cardiovascular, and 
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reproductive systems, as well as DNA damage and genetic mutations [1]. The rise in air pollution 

levels is largely attributed to factors such as urbanization, industrial activities, and increased 

vehicular traffic [2], [3]. Notably, some urban areas report dangerously high levels of PM2.5 and 

arsenic, presenting considerable health risks [4]. Annually, air pollution is a factor in millions of 

premature deaths, contributing to conditions like pulmonary inflammation, exacerbated asthma, 

and cardiovascular problems [5]. Monitoring and analyzing air quality are essential steps for 

understanding pollution trends, evaluating its environmental impact, and assessing associated 

health risks. To mitigate the negative impacts of air pollution, it is vital to implement effective air 

quality management, adopt renewable energy sources, and enforce policies focused on mitigation 

strategies. 

Predicting air quality accurately is fraught with challenges due to the spatio-temporal 

complexity and nonstationarity of air quality data, which complicates forecasting efforts [6]. The 

accuracy of predictions is further hampered by uncertainties in meteorological condition 

definitions and the use of inadequate data in model training [7]. Additionally, significant 

uncertainties in emissions inventories underscore the urgency for enhancing prediction precision 

[8]. Conventional machine learning techniques often overlook the sequential nature of time series 

data and long-term dependencies, detracting from the accuracy of predictions [9]. Challenges such 

as lower classification accuracy and security vulnerabilities in prediction systems further 

emphasize the necessity for innovative approaches. These should leverage spatial correlations, 

understand complex interdependencies, and utilize time series data effectively to refine the 

accuracy of air quality forecasts. 

This study addresses the specific problem of inaccuracies and limitations inherent in 

existing air quality prediction methods, which often struggle to capture complex atmospheric 

dynamics and environmental interactions, resulting in suboptimal predictive performance. The 

objective of this research is to develop and validate the ConcaveLSTM algorithm, designed to 

enhance air quality prediction accuracy by effectively modeling nonlinear temporal relationships 

and spatial patterns in environmental data. The novelty and contribution of our work lie in the 

introduction of the ConcaveLSTM model, which incorporates a novel architecture that leverages 

concave functions within a Long Short-Term Memory framework to better account for the 

intricacies of air quality fluctuation patterns. This research significantly advances the field of air 

quality prediction by providing a more reliable and precise tool for forecasting, thus facilitating 

improved environmental management and policy-making decisions aimed at mitigating the 

adverse effects of air pollution. 

 

2. Literature Review 

Recent studies have underscored the critical impacts of air quality on human health, 

employing diverse methodologies to elucidate this relationship. Air quality evaluations over 

determined periods have focused on assessing pollutant concentrations such as arsenic, carbon 

monoxide, and PM2.5, highlighting their health implications [3]. Additionally, modeling 

frameworks have been leveraged to explore the intricate connections between air pollution, 

climate change, and their consequent effects on human health [10]. The advent of Artificial 

Intelligence (AI)-based predictive models has marked a significant stride toward forecasting air 

quality impacts on health and quantifying the risks associated with exposure to air pollutants [11]. 

Moreover, the development of Air Quality Health Index (AQHI) systems aims to articulate health 

risks more precisely for particular risk groups, facilitating analysis of their spatiotemporal 

distribution patterns [12]. Such research endeavors have yielded invaluable insights, informing 

strategies devised by stakeholders and policymakers to mitigate air pollution effectively [13]. 

The realm of air quality prediction has seen the application of various models, with the 

long short-term memory network (LSTM) and gated recurrent unit (GRU) being notably prevalent 

[6]. Other employed models include multi-linear regression (MLR), multi-linear perceptron 

(MLP), generalized regression neural network (GRNN), and adaptive Neuro-Fuzzy inference 

system (ANFIS) [8]. The proposition of graph convolutional networks (GCN) for air quality 

prediction represents an innovative approach to model spatial and temporal correlations, further 



Diqi, Machine Learning for Environmental Health: Optimizing ConcaveLSTM for Air Quality Prediction    13 

 

enriched by the introduction of the CoupledGT model, which assimilates geospatial-temporal 

couplings for enhanced predictive accuracy [14], [15]. These models aim to refine air quality 

forecasts by considering various influencing factors, including pollutant sources, meteorological 

conditions, and spatial-temporal data couplings. 

LSTM models, renowned for their efficacy in time series prediction, have been widely 

adopted for air pollution forecasting. Their capability to capture long-term dependencies and 

adapt to rapid changes has been demonstrated through their integration with other deep learning 

methodologies, enhancing predictive precision [16]. The EMD-LSTM algorithm, designed for 

forecasting short time series characterized by uncertainty and swift changes, has outperformed 

conventional prediction methods [17]. Moreover, the LSTM-BNN model, a Bayesian neural 

network built upon LSTM, has significantly reduced forecasting errors for air pollutants [18]. The 

deployment of multi-layer LSTM artificial neural networks for predicting future air pollutant 

concentrations has showcased superior performance over single-layer architectures [19]. 

However, LSTM models exhibit strengths and limitations in air pollution forecasting. 

Their potent architecture for time-series prediction stands out, enabling their application in 

replacing physical sensors for indoor air pollutants and rendering them highly adaptable to diverse 

problems [8], [20]. Conversely, their limited generalization capabilities and challenges in long-

term forecasting due to inadequate representation of atmospheric processes related to pollution 

transport mark their weaknesses [21], [22]. Despite these drawbacks, LSTMs offer promising 

prospects for enhancing air quality forecasting, facilitating real-time monitoring of occupant 

exposure, and improving building operations [23]. 

Air quality prediction models crucially depend on external variables like weather and 

emissions to forecast pollution levels accurately. The significance of these variables is 

emphasized in the literature, advocating for the exploration of their complex interactions with air 

pollutant concentrations through various models, including deep learning techniques, neural 

networks, and fuzzy inference systems [15], [24], [25], [26]. These models aim to establish 

interpretable relationships, improving prediction accuracy and elucidating meteorological 

influences on air pollution. 

The discussion on model complexity and the accuracy-interpretability trade-off in air 

quality prediction highlights the widespread use of deep learning models like LSTM and GRU, 

appreciated for their ability to unravel complex nonlinear relationships and achieve high accuracy 

[8], [27], [28], [29]. However, their interpretability remains a challenge, prompting some studies 

to propose models that blend accuracy with interpretability by analyzing variable contributions 

through techniques like decision plots and Shapley Additive Explanations [23]. 

The ConcaveLSTM model in this research represents a significant leap in air quality 

prediction. By ingeniously incorporating concave functions within the robust framework of 

LSTM, our work not only overcomes the inherent limitations of traditional prediction models but 

also highlights the ability to model complex temporal and spatial dynamics adeptly. This 

innovation addresses the pressing need for precise air quality forecasts, thus facilitating proactive 

and informed decision-making in environmental management and public health policy. The 

originality of this approach is underscored by its potential to provide more accurate predictions 

than existing methodologies, contributing a unique perspective to the ongoing discourse on 

improving air quality monitoring and management. This research advances cutting-edge air 

quality prediction technology. It sets a new standard for future endeavors in the domain, 

positioning the ConcaveLSTM model as a crucial tool for researchers, policymakers, and 

stakeholders committed to combating air pollution and its wide-ranging impacts. 

 

3. Method 

3.1. Dataset and Data Preprocessing 

The air quality dataset, sourced from Kaggle.com, covers the period from March 2004 to 

February 2005, comprising 9470 records across 10 attributes: date, time, CO(GT), PT08.S1(CO), 

NMHC(GT), C6H6(GT), PT08.S2(NMHC), NOx(GT), PT08.S3(NOx), and NO2(GT). Several 

preprocessing steps are undertaken to ensure the dataset's integrity and readiness for analysis. 
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Firstly, records displaying zero volume are purged from the dataset to prevent skewed analyses 

and potential inaccuracies. This elimination is critical as zero-valued records can significantly 

distort the representation and analysis outcomes. 

Subsequently, the dataset undergoes further cleansing to address missing or NaN values 

by removing such entries, which is vital for preserving the dataset's reliability and ensuring 

smooth analysis processes. Following the cleaning phase, normalization is applied to standardize 

the attribute values across the dataset, employing a normalization formula that scales the values 

to a range between 0 and 1. This normalization process is essential for ensuring uniform scales 

across different attributes, thereby enabling accurate and meaningful analysis of the air quality 

data. These preprocessing steps collectively enhance the dataset's reliability and utility for further 

analyses and modeling efforts. 

 

3.2. Data Splitting 

 Following the preprocessing steps, the refined dataset includes 9.357 entries. These 

entries are subsequently segmented into two distinct parts to facilitate the training and testing 

phases. The primary segment contains 9.317 entries, of which 80% (7.453 entries) are earmarked 

for model training, and the remaining 20% (1.863 entries) are set aside for testing. The secondary 

segment, comprising 40 entries, is solely used for testing purposes. This approach to splitting the 

data guarantees a comprehensive use of the dataset for model training while ensuring a separate 

portion is available for performance evaluation. 

 

3.3. ConcaveLSTM 

 The ConcaveLSTM model is a deep learning model designed for air quality prediction, 

leveraging the Long Short-Term Memory (LSTM) network architecture. This model incorporates 

multiple LSTM layers and a Bidirectional LSTM layer, aiming to capture both short-term and 

long-term dependencies in the sequential data of air quality measurements.  

The core component of the ConcaveLSTM model is the LSTM layer. An LSTM unit is 

designed to overcome the vanishing gradient problem common in traditional Recurrent Neural 

Networks (RNNs) by introducing three gates: the input gate, the forget gate, and the output gate. 

These gates regulate the flow of information into and out of the cell, allowing it to retain important 

long-term dependencies and discard irrelevant information. The mathematical equations 

governing an LSTM cell are shown in Equations 1-4. 

 

Forget Gate 

𝑓𝑡 = σ(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)   (1) 

Input Gate 

𝑖𝑡 = σ(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) 

𝐶𝑡̃ = tanh(𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) 
(2) 

Cell State Update 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡̃ (3) 

Output Gate 

𝑜𝑡 = σ(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) 

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡) 
(4) 

 

Here, σ denotes the sigmoid activation function,  tanh is the hyperbolic tangent activation 

function, 𝑊 and 𝑏 represent the weights and biases for each gate, respectively, 𝑥𝑡 is the input at 

time step 𝑡, ℎ𝑡 is the output vector of the LSTM cell, and 𝐶𝑡 is the cell state vector. 

The Bidirectional LSTM processes the data in both forward and backward directions (i.e., 

from past to future and future to past). This allows the model to have both backward and forward 

information about the sequence at every point. The mathematical representation is similar to the 

standard LSTM but processed in two directions and then combined. 
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The Concatenation Layer merges the features learned from the stacked LSTM layers and 

the Bidirectional LSTM layer. The concatenation does not involve a specific mathematical 

operation on the data but combines the feature sets for a comprehensive representation. 

Through its architecture, the ConcaveLSTM model aims to capture the complex temporal 

dynamics in air quality data, providing accurate predictions by effectively handling both the short-

term and long-term dependencies. 

 

3.4. Parameter Settings 

 The setup involves defining specific parameters to optimize performance in configuring 

the model for air quality prediction. The model is structured to forecast 40 steps, utilizing varying 

input sequences of 30, 50, and 70 time steps to capture different temporal dependencies in the 

data. It employs three LSTM layers with a progressive increase in neurons: 100 for the first layer, 

200 for the second, and 300 for the third, ensuring a comprehensive feature extraction capability. 

The output layer is configured with 300 neurons to match the complexity of the predictions. The 

'adam' optimizer is chosen for its effectiveness in handling sparse gradients and adapting learning 

rates, combined with the 'mean squared error' (mse) loss function, which is standard for regression 

problems like air quality forecasting. The training process is set to run for 100 epochs, with a 

batch size of 32, to balance computational efficiency and the model's ability to converge to a 

solution, ensuring that the model is adequately trained to predict air quality with high accuracy. 

 

3.5. Model Evaluation 

The efficacy of the ConcaveLSTM model in forecasting air quality is assessed through 

various metrics, providing distinct perspectives on the accuracy and dependability of its 

predictions. Root Mean Squared Error (RMSE) serves as a conventional metric for quantifying a 

model's error in numerical predictions, calculated as the square root of the mean squared 

deviations between forecasted and observed values, as mathematically outlined in Equation 5. 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖̂)

2

𝑛

𝑖=1

 (5) 

 

where 𝑦𝑖 is the actual value, 𝑦𝑖̂ is the predicted value, and 𝑛 is the number of observations. RMSE 

is particularly useful for highlighting larger errors because it squares the errors before averaging, 

thus penalizing more significant mistakes more heavily than smaller ones. 

Mean Absolute Error (MAE) quantifies the average size of errors in a series of forecasts, 

disregarding the direction of these errors. It is determined by computing the mean of the absolute 

discrepancies between forecasted and real values, as specified in Equation 6. MAE offers a direct 

assessment of the accuracy of predictions, where smaller values denote improved accuracy. 

Contrary to RMSE, MAE assigns equal weight to all errors, making it a stronger metric for 

evaluating performance in the presence of significant outliers. 

 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦𝑖̂|

𝑛

𝑖=1

 (6) 

 

Mean Absolute Percentage Error (MAPE) represents the accuracy of predictions by 

indicating the error as a percentage, offering valuable insights into the relative accuracy of 

forecasts. This measure is detailed in Equation 7. MAPE is advantageous for conducting 

comparisons between various datasets or predictive models because it delivers an error metric 

that is independent of scale, thereby simplifying the understanding of a model's accuracy through 

percentage-based errors. 
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𝑀𝐴𝑃𝐸 =
100%

𝑛
∑ |

𝑦𝑖 − 𝑦𝑖̂

𝑦𝑖
|

𝑛

𝑖=1

 (7) 

 

R-squared (R2), also known as the coefficient of determination, measures the proportion 

of the variance in the dependent variable that is predictable from the independent variables. It is 

calculated in Equation 8. 

 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

 (8) 

 

where 𝑦̅ is the mean of the actual values. R2 is a statistical measure that provides insights into the 

goodness-of-fit of the model, with values closer to 1 indicating a better fit, meaning the model 

can explain a higher proportion of the variance in the observed data. 

Together, these metrics offer a comprehensive evaluation of the ConcaveLSTM model's 

performance, considering both its accuracy and its ability to capture the variance in air quality 

data effectively. 

 

4. Result and Discussion 

4.1. Performance Evaluation 

Table 1 presents a comprehensive summary of the performance evaluation for the 

ConcaveLSTM model applied to air quality prediction based on the testing dataset. The table 

outlines the results of nine distinct predictive configurations, delineating the interplay between 

the number of input steps (`n_steps_in`) and the number of neurons (`n_units`) within the LSTM 

layers. Each configuration has been assessed using four key performance metrics: RMSE, MAE, 

MAPE, and R2.  

 
Table 1. Summary of the performance evaluation for the ConcaveLSTM model 

prediction n_steps_in n_units RMSE MAE MAPE R2 

1 30 100 0,02203 0,01549 0,02722 0,8946 

2 30 200 0,0201 0,01527 0,02792 0,91232 

3 30 300 0,02202 0,01281 0,02162 0,89469 

4 50 100 0,02153 0,01484 0,02572 0,89939 

5 50 200 0,02388 0,01494 0,02574 0,87615 

6 50 300 0,01413 0,00929 0,01612 0,95668 

7 70 100 0,02466 0,01868 0,03407 0,86799 

8 70 200 0,01932 0,01493 0,02686 0,91892 

9 70 300 0,02327 0,01555 0,02694 0,88246 

 

Upon examining Table 1, which delineates the performance of various ConcaveLSTM 

configurations, we observe that the configuration with 50 input steps and 300 LSTM units notably 

outperforms the others, achieving the lowest RMSE and MAE values and the highest R-squared 

value of 0.95668, indicating a strong fit between the predicted and actual values. This suggests 

an optimal balance between the ability to capture temporal dependencies and model complexity, 

reducing the error and improving predictive accuracy. Conversely, configurations with 70 input 

steps do not consistently yield better results, especially with 100 units, where the model's 

performance is the weakest, suggesting potential overfitting or insufficient model complexity for 

longer sequences. It appears that increasing the model's complexity by adding more units does 

not linearly enhance performance and may lead to diminishing returns, as seen with the 70 input 

step configurations. Overall, a mid-range input step size paired with a higher number of units 
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seems to provide the best predictive performance for this dataset, underscoring the necessity of 

fine-tuning model parameters to achieve optimal results.  

Figure 1 provides a graphical illustration of the air quality forecasts over a period of 40 

days, placing the model's predictions against the backdrop of actual observed values. The actual 

air quality measurements are plotted as a blue line, creating a reference point against which the 

predictions can be assessed. The figure includes nine different predictive scenarios, each 

represented by a distinct colored line that traces the predictions yielded by various configurations 

of the ConcaveLSTM model, as delineated in Table 1. This visual format enables a direct and 

detailed comparison between the predicted and actual air quality levels, offering a clear 

perspective on the model's precision and the reliability of its predictions over the given period.  

 

 
Figure 1. Comparison of Actual and Predicted Values  

 

A closer look at Figure 1 reveals that the blue line, indicative of the actual air quality, is 

pivotal for gauging the precision of the model's predictions. The spectrum of colored lines, each 

corresponding to a unique predictive scenario, illustrates the varying degrees of the model's 

accuracy. Some of the model's forecasts align closely with the actual air quality trajectory, 

highlighting its efficacy in capturing and reflecting the relevant temporal patterns. 

 

4.2. Summarization of Key Findings 

The research problem at hand focused on addressing the limitations of existing air quality 

prediction models by implementing and optimizing a ConcaveLSTM model. The major findings 

from the study reveal that the model's performance is sensitive to the configuration of input steps 

and the number of LSTM units. Notably, the optimal model configuration with 50 input steps and 

300 LSTM units achieved the most accurate predictions, indicated by the lowest RMSE and MAE 

and the highest R-squared value. This configuration effectively balanced the complexity of the 

model and its ability to capture temporal dependencies without overfitting. Conversely, 

configurations with 70 input steps did not consistently enhance performance, suggesting a 

nuanced relationship between input sequence length and model complexity. These insights pave 

the way for targeted improvements in air quality forecasting, emphasizing the need for fine-tuning 

model parameters to the characteristics of the specific dataset in question. 

 

4.3. Result Interpretations 

The patterns observed in the data suggest a complex interplay between the length of input 

sequences and the number of neurons in determining the accuracy of the ConcaveLSTM model's 

air quality predictions. While an increase in the number of neurons generally correlates with 

improved accuracy, this trend plateaus and even reverses with longer input sequences, indicating 

a point at which additional complexity ceases to yield benefits and may lead to overfitting. The 

results largely met expectations in the mid-range of input steps, where the model captured 
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temporal patterns effectively; however, the diminishing returns at higher complexity levels were 

somewhat unexpected. This could be attributed to the model's increased difficulty in generalizing 

from the training data to unseen data or to the inherent noise within the longer input sequences 

that may have obscured underlying patterns. Alternative explanations might include the need for 

more nuanced architectures or advanced regularization techniques that can better harness the 

information within longer sequence lengths without compromising the model's predictive power. 

 

4.4. Research Implications 

The research outcomes underscore the critical significance of model parameter 

optimization in the domain of air quality prediction using machine learning algorithms, aligning 

with existing literature that highlights the delicate balance between model complexity and 

overfitting. By demonstrating an optimal configuration for the ConcaveLSTM model, this study 

contributes new insights into the specific dynamics of sequence length and neuron count, thereby 

refining our understanding of time-series prediction for environmental data. These findings are 

particularly relevant for the design of advanced predictive models, providing a concrete 

benchmark for future research in this field. Furthermore, the research bridges a gap in current 

knowledge by quantitatively illustrating the non-linear relationship between input sequence 

length and prediction accuracy, offering a nuanced perspective that could inform the development 

of more sophisticated models with improved generalizability and reliability in real-world air 

quality forecasting applications. 

 

4.5. Research Limitations 

This study concludes that the careful calibration of input sequence lengths and the number 

of neurons in LSTM-based models is pivotal for accurate air quality forecasting, which 

substantiates the hypothesis that model complexity influences prediction performance. Although 

the research faced limitations, such as the potential non-representativeness of the dataset for 

broader applications and the unexplored effects of varying environmental conditions on the 

model's efficacy, the robustness of the results within the studied parameters confirms their 

validity. The findings remain cogent in answering the research question, affirming the 

ConcaveLSTM model's capability to predict air quality when optimally tuned, and they provide 

a foundational methodology for enhancing predictive accuracy in environmental machine 

learning applications. Despite the limitations, these results contribute valuable knowledge to the 

field, offering a methodical approach for future studies to refine and apply to a wider array of 

datasets and conditions. 

 

4.6. Recommendations for Future Research 

For practical implementation, future research should focus on expanding the dataset to 

encompass a wider variety of environmental conditions and geographical areas to enhance the 

generalizability of the ConcaveLSTM model. Concrete ideas for subsequent studies include 

exploring hybrid models that combine LSTM with other machine learning techniques to 

potentially capture more complex patterns and dependencies in air quality data. Additionally, 

research could investigate the integration of real-time data streams to enable dynamic model 

updating, improving the responsiveness of air quality predictions. Incorporating explainable AI 

methodologies would also be valuable, allowing for greater transparency and trust in the model's 

predictions. Finally, examining the model's performance in a live environment could provide 

insights into its real-world efficacy and help identify further refinements needed to optimize its 

predictive capabilities. 

  

5. Conclusion 

The research conducted provides a significant step forward in the predictive modeling of 

air quality using the ConcaveLSTM model. Through rigorous testing and evaluation, we've 

determined an optimal model configuration that offers a balance between input sequence length 

and neuron density, thereby achieving the highest accuracy in air quality forecasting within the 



Diqi, Machine Learning for Environmental Health: Optimizing ConcaveLSTM for Air Quality Prediction    19 

 

constraints of the dataset used. The study reinforces the importance of parameter tuning in LSTM 

models and contributes to the body of knowledge by identifying key factors that influence model 

performance. Despite dataset limitations, the research findings are robust and demonstrate that 

with the right adjustments, LSTM models are a powerful tool for air quality prediction. The study 

lays the groundwork for future exploration in the field, suggesting that expanding the diversity of 

data, integrating real-time monitoring, and developing models with greater interpretability are 

essential next steps. These findings and recommendations serve as a guide for future research 

aimed at enhancing environmental monitoring and policy-making, ultimately contributing to 

better public health and environmental management. 
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