
Widiasari, Design and Implementation of Load Balancing for Quality of Service Improvement 121

Design and Implementation of Load Balancing for Quality of Service
Improvement

Indrastanti Ratna Widiasari*1, Rissal Efendi2

1Program Studi Teknik Informatika, 2Program Studi Pendidikan Teknik Informatika dan Komputer
Fakultas Teknologi Informasi, Universitas Kristen Satya Wacana

Jl. O Notohamidjojo 1-10 Salatiga 50715, Jawa Tengah, Indonesia
Email: 1indrastanti@uksw.edu, 2rissal.efendi@uksw.edu

Abstrak. Desain dan Implementasi Load Balancing untuk Peningkatan Kualitas
Layanan. Di Fakultas Teknologi Informasi UKSW diterapkan sistem load balancing
dimana web server melayani maksimal 500 user dalam waktu yang sama. Hal ini untuk
mencegah kelebihan beban atau downtime server selama akses simultan ke server web.
Hasil pengujian menunjukkan perbedaan yang signifikan dalam penggunaan CPU, request
time, dan throughput. Penggunaan load balancing lebih efektif dibandingkan hanya
mengandalkan satu server, terbukti dari hasil pengujian. Penggunaan CPU dengan
penyeimbangan beban jauh lebih rendah, dengan perbedaan hingga 45% dibandingkan
dengan server tunggal. Waktu permintaan dengan penyeimbangan beban juga sedikit lebih
baik, hanya 21,5 md dibandingkan dengan 42 md untuk satu server, menunjukkan
perbedaan sebesar 20,5 md. Namun perbedaan bandwidth antara load balancing dan satu
server tidak terlalu signifikan. Throughout tertinggi yang tercatat pada satu server adalah
182kb/s, sedangkan dengan load balancing mencapai 165kb/s, dengan selisih hanya 17kb/s
di antara keduanya.
Kata Kunci: load balancing, throughput, quality of service

Abstract. At the Information Technology Faculty, Satya Wacana Christian University, load
balancing systems are implemented where the web server serves 500 users. This is to
prevent server overload or downtime during simultaneous access to the web server. Test
results indicate significant differences in CPU usage, request time, and bandwidth between
load balancing and single servers. The use of load balancing is more effective than relying
on a single server, as evidenced by test results. The CPU usage with load balancing is
significantly lower, with a difference of up to 45% compared to a single server. The request
time with load balancing is also slightly better, with only 21.5ms compared to 42ms for a
single server. However, the difference in bandwidth between load balancing and a single
server is not very significant. The highest bandwidth recorded on a single server is 182kb/s,
while with load balancing it reaches 165kb/s.
Keywords: load balancing, throughput, quality of service

1. Introduction

The internet has become the backbone of digital society. It is a packet-switched

distributed network that connects nearly all digital devices and is accessible worldwide [1]. As

computer network technology advances, good performance is required, so a good network

management system is needed. Network management can monitor existing conditions on the

network so that it can avoid and minimize errors that occur [2] [3]. In the ever-evolving landscape

of network infrastructure, ensuring optimal performance and service reliability is paramount. For

organizations relying increasingly on digital resources and services, the demand for server

resources continues to grow. However, the traditional approach of relying on a single server to

handle all incoming requests is often insufficient in meeting the dynamically changing demands

of users. The expansion of networks, the rise in user numbers, and the emergence of new

technologies like cloud computing and big data have made managing traditional networks

challenging. Load balancing is particularly crucial for meeting quality of service requirements, as

it helps control and regulate data traffic across multiple resources, thereby enhancing network

responsiveness, reliability, and capacity [4].

mailto:emailsatu@blabla.edu
mailto:2emaildua@blabla.edu

122 Jurnal Buana Informatika, Volume 15, Nomor 2, Oktober 2024: 121-132

A computer network connects two or more physically and logically connected devices,

enabling them to exchange data [5] [6]. If the devices in the network can exchange data and share

their resources, then the network is considered to be connected. A computer network is the

"interconnection" of two or more autonomous computers, linked by transmission media either

through cables or wirelessly. Autonomous means that a computer does not have full control over

another computer, such as making the other computer restart, shut down, lose files, or suffer

system damage [7]. Certainly, one of the significant factors influencing the present configuration

of the worldwide network and how information traverses it is the matter of traffic distribution,

particularly within server infrastructures associated with World Wide Web (WWW) services.

These infrastructures ensure users with efficient and dependable web browsing capabilities [8].

Internet connectivity issues can arise from either device malfunctions or problems with links.

Even the gateway router, serving as the sole pathway to the internet service provider network,

may encounter downtimes [9].

Quality of Service (QoS) is a term used to characterize the attributes of a network service,

assessing the level of quality provided by that service [10]. Through the implementation of

Quality of Service (QoS), bandwidth can be efficiently utilized, leading to an improvement in the

quality of internet services experienced by users. The phenomenon of increasing traffic, coupled

with varying resource demands, presents challenges in maintaining consistent Quality of Service

(QoS). Issues such as high CPU usage, prolonged request times, and potential bottlenecks in

bandwidth allocation can hinder the overall user experience. Recognizing these challenges, there

arises a need for a more robust solution to distribute the workload efficiently across multiple

servers while maintaining or enhancing QoS. The utilization of computer network technology as

a means of data communication has been increasing steadily up to the present. Computer networks

are employed to share resources efficiently in terms of both time and distance [11] [12]. The

necessity for shared usage of resources within the network, whether software or hardware, has led

to various advancements in network technology [13] [14]. Alongside the rising demand and the

increasing number of network users seeking a network infrastructure that can provide maximum

results in terms of efficiency and network security enhancement. Quality of Service (QoS) is a

technology that allows network administrators to handle various congestion effects on the packet

flow of different services to optimize network resource utilization instead of increasing the

network's physical capacity [15] [16]. The objective of QoS mechanisms is to influence at least

one of the four basic QoS parameters that have been specified [17].

Currently, numerous organizations are adopting cloud-based applications and platforms

due to their on-demand services and rapid responsiveness. The primary concern with cloud

computing is the potential for system overload for individuals, groups, or organizations. As a

result, load balancing is becoming increasingly popular, with its algorithms and solutions

continually improving [18]. Load balancing is a beneficial procedure that redistributes the

workload across nodes, ensuring that no single node bears an excessive burden. Its primary goal

is to achieve equilibrium among virtual machines, ensuring they are neither underloaded nor

overloaded [19]. Load balancing emerges as a promising solution to address these challenges. By

distributing incoming network traffic across multiple servers, load balancing optimizes resource

utilization, minimizes response times, and enhances system reliability. However, the successful

implementation of load balancing requires careful design and consideration of factors such as

server capacity, network architecture, and traffic patterns.

Load Balancing involves evenly distributing resources and shifting heavily loaded tasks

from overloaded nodes to those with lighter loads. Each node independently manages load

balancing at the lowest level, utilizing its unique processing speed and capabilities to address

tasks. To expedite task processing, workloads must be evenly distributed across all nodes within

the grid computing system, each with varying processing capacities. Therefore, an imperative is

to implement a uniform load-balancing algorithm capable of dynamically distributing workloads

among nodes. There are two components: the front end and the back end. The front end is on the

user side and is accessible via internet connections [20], and the back end is accessible via the

Widiasari, Design and Implementation of Load Balancing for Quality of Service Improvement 123

local network. Several algorithms have been proposed to attain efficient load balancing, each

aiming to effectively distribute data and enhance related performance metrics [21].

The Round-Robin (RR) Algorithm [22] operates sequentially and cyclically, where each

process is allocated a fixed time slot with no assigned priority. This algorithm is widely used due

to its straightforward implementation. To meet the constraints of Quality of Service (QoS) despite

limited network availability, load balancing has been identified as a crucial factor. Consequently,

multiple servers can be utilized with load balancers acting as the front end [23]. Load balancing

software like HAProxy (High Availability Proxy) plays a crucial role in modern web service

delivery. It distributes incoming requests among web servers to ensure efficient handling of traffic

[24], so it will make the flexible architectural approach, easy to handle, cost-efficient, and easily

adaptable, making it highly suitable for high-bandwidth and dynamic applications in today's

context [25]. HAproxy has been utilized within the cloud environment, effectively handling all

six million requests, each with four connections simultaneously. Instead of directing HTTP server

traffic to a single server, it can be evenly distributed among a pool of servers. Consequently,

HAproxy delivers prompt response times without dropping any requests, even under the load of

six million simultaneous requests. This implementation aids in enhancing availability and

reducing latency for HTTP requests through the utilization of an HTTP load balancer [26].

The case study at FTI UKSW provides a valuable opportunity to explore the design and

implementation of load balancing as a means to improve QoS within an academic environment.

By analyzing the existing infrastructure, assessing performance metrics, and deploying

appropriate load-balancing techniques, insights can be gained into the effectiveness of this

approach in enhancing the overall reliability and efficiency of network services. Therefore, this

study aims to investigate the design and implementation of load-balancing strategies tailored to

the specific requirements of FTI UKSW. Through rigorous testing and evaluation, the

effectiveness of load balancing in improving QoS parameters such as CPU utilization, request

times, and bandwidth allocation will be assessed. Additionally, considerations for scalability and

future expansion, including the potential integration of database synchronization, will be explored

to provide comprehensive insights into optimizing network performance within educational

institutions.

2. Method

This type of research is development-oriented. The design method employed in the study

utilizes the PPDIOO method, as shown in Figure 1. PPDIOO is a method developed by CISCO,

capable of providing key steps in the success of network planning, whether in the stages of design,

implementation, or operation. The phases in this PPDIOO method are prepare, plan, design,

implement, operate, and optimize.

Figure 1. PPDIOO Method

124 Jurnal Buana Informatika, Volume 15, Nomor 2, Oktober 2024: 121-132

The preparation stage involves defining organizational and business needs, developing

network strategies, and proposing architectural concepts. During this stage, observations and

interviews are conducted with the Information Technology Faculty UKSW to understand server

issues during learning and teaching activities. In the planning stage, the analysis of existing

problems, planning network requirements, conducting analysis, and project scheduling are carried

out.

The planning stage involves identifying network requirements based on objectives,

facilities, and user needs. After interviewing the network administrator in the Information

Technology Faculty UKSW, it was concluded that there were issues with server overload during

learning and teaching sessions. Therefore, load balancing implementation will be carried out on

the server, focusing primarily on the web server using the HAProxy. HAProxy was chosen

because it is easy to configure, capable of load balancing across multiple servers, and can

implement a master-slave model, where if the main server fails, it will be automatically replaced

by another slave/server.

The Design stage is the initial phase of designing the system based on the method to be

used in building the load-balancing system, in the form of a network topology that will facilitate

the construction of the network infrastructure. The general architecture design of the system

installed at Information Technology Faculty UKSW, obtained after observation and interviews,

explains the topology and overview of the network system used, as shown in Figure 2.

Figure 2. Load Balancing Topology with Multiple Servers Design

Figure 2 represents a general topology design, consisting of four servers: the web server,

which contains the web content to be used during learning and teaching. Server 1 has the IP

address of 192.168.33.1/24, server 2 has the IP address of 192.168.34.1/24, and server 3 has the

IP address of 192.168.35.1/24. HAProxy itself has the IP address 192.168.15.15/24. In this

topology, users will access the available web content, which will be received by HAProxy as an

intermediary between the user and the server. HAProxy then checks all servers. If all servers are

in an inadequate condition, HAProxy will direct the user's request to one of the servers. With 500

users, HAProxy will evenly distribute the requests to the servers to avoid overloading any single

server. Once the server receives the request, it responds and displays the result in the user's web

browser.

The implementation phase stands as the culmination of preceding preparatory steps and

doubles as a crucial testing phase before transitioning into full operation. During this stage, load

balancing is integrated into Ubuntu Server 16.04. Before this integration, essential packages like

the Linux, Apache, MySQL, and PHP (LAMP) Server are installed on server 1, server 2, and

server 3 these servers will undergo load balancing. Additionally, a separate PC is designated to

function as the load balancer, employing HAProxy for this purpose. Once the implementation

phase concludes, rigorous testing ensues, particularly during teaching and learning sessions. This

testing phase ensures the efficacy and reliability of the load balancing setup, validating its ability

to distribute workload efficiently and maintain system stability under real-world conditions.

Widiasari, Design and Implementation of Load Balancing for Quality of Service Improvement 125

Through meticulous testing and refinement, any potential issues or bottlenecks can be identified

and addressed, paving the way for a seamless transition to the operational stage with enhanced

performance and reliability.

Operating involves maintaining server resilience on a day-to-day basis. It includes

managing and monitoring components, managing upgrade activities, managing performance, and

identifying and correcting errors. During operation, the stability and performance of servers must

be continuously monitored, errors detected, configurations corrected, and performance

monitoring activities conducted. In this stage, monitoring is carried out on the previously tested

servers.

Optimization is the stage of fine-tuning. In this stage, evaluation is conducted based on

the design and testing carried out in the previous stages. If any issues arise, optimization is

performed to improve the system and achieve good final results.

3. Result and Discussion

This research utilizes HAProxy version 1.6.3 running on Ubuntu Server 16.04. The

HAProxy configuration is located in the haproxy.cfg file in the directory

/etc/haproxy/haproxy.cfg. The configuration in /etc/haproxy/haproxy.cfg consists of two parts:

the default section that already exists in the file and does not need to be changed. Manual

configuration involves adding a front end and a back end. The frontend determines how a request

should be forwarded to the backend, while the backend is a collection of servers that receive

requests. The backend can contain one or multiple servers, and adding more servers to the backend

increases the potential load capacity by distributing the load across several servers [7]. The

configuration for the front end and back end can be seen in Figure 6. In the frontend section,

identity is given as a label to forward requests to the backend with the name web frontend. Inside

the web front end, there is a bind *:80, which connects web server 1, web server 2, and web server

3. HTTP mode is the primary focus for load balancing, as in this research, load balancing is

performed on web servers using HTTP mode. Default_backend web endpoint serves as a

connector between the front end and the backend to inform the backend about what is inside the

front end.

The backend section is given the identity web endpoint. The round-robin balance

algorithm is used, and the forward for option instructs the load balancer to forward the client's IP

to the server. The server ubuntu1 192.168.35.1:80 check part checks the IP 192.168.35.1:80 using

HAProxy and then assigns it as the IP to be load balanced with other server IPs. ubuntu1, ubuntu2,

and ubuntu3 are the hostnames of the servers to be load balanced. A simple test was conducted to

verify that the configuration was successful by accessing the HAProxy IP (192.168.15.15), and

the previously configured web content appeared. The data in Table 1, Table 2, and Table 3 are

the results of tests using the web server tool conducted for five minutes (300 seconds), and then

the data is presented in graphical form to compare load balancing and single server performance.

The graphs can be seen in Figure 3, Figure 4, and Figure 5.

Table 1. Percentage of CPU Usage

Time (second) Number of Users Load Balancing (%) Single Server (%)

0 0 0 0

25 100 11,5 15

50 150 13 18

100 200 19 32

125 250 17 30

150 300 23 40

200 350 22 49

225 400 22 67

250 450 21 43

300 500 30 48

126 Jurnal Buana Informatika, Volume 15, Nomor 2, Oktober 2024: 121-132

Table 1 serves as a visual representation of CPU usage dynamics in both load balancing

and single server configurations across different time intervals. At the 0th second, a period marked

by system inactivity, neither load balancing nor the single server experiences any CPU usage.

This initial observation establishes a baseline of idle CPU activity, where no computational tasks

are being executed due to the absence of user interactions or data processing requirements. At the

25th second, the scenario changes as 100 users begin accessing the system. With this increase in

user activity, CPU usage begins to register, albeit at varying levels for load balancing and the

single server. Load balancing demonstrates a CPU usage of 11.5%, while the single server

exhibits a slightly higher usage of 15%. This discrepancy reflects the differing efficiencies in

resource utilization between the two configurations, influenced by factors such as load

distribution algorithms and hardware capabilities.

By the 50th second, the user count escalates to 150, triggering further adjustments in CPU

usage. Load balancing maintains its efficiency, with CPU usage increasing marginally to 13%,

indicative of its ability to scale resources in response to growing demands. Conversely, the single

server configuration shows a more pronounced increase in CPU usage, reaching 18%. This

disparity underscores the challenges inherent in managing resource allocation within a singular

infrastructure, where spikes in user activity can exert greater strain on available resources. This

pattern persists throughout the observation period until the 300th second, when the system

experiences peak activity with 500 users accessing simultaneously. At this point, load balancing

and the single server exhibit distinct CPU usage levels, reflecting their respective capacities to

handle the heightened workload efficiently. Table 1 shows how CPU usage varies across different

user load scenarios in both load balancing and single server setups. These insights enable

administrators to make informed decisions regarding resource allocation, capacity planning, and

system optimization strategies, ultimately enhancing overall system performance and user

experience.

Table 2. Request Time

Time (second) Number of Users Load Balancing (ms) Single Server (ms)

0 0 0 0

25 100 27,5 40

50 150 26,5 37

100 200 29 27

125 250 21,5 28

150 300 22,5 30

200 350 24 37

225 400 21,5 39

250 450 25,5 42

300 500 23 38

Table 2 presents a sequential depiction of events as follows: initially, at the 0th second,

the absence of activity is evident, with no users accessing the system. Consequently, both load

balancing and single server setups exhibit idle states in terms of request time, reflecting the lack

of ongoing processing or user interaction. However, as the timeline progresses, user engagement

initiates, with 100 users accessing the system by the 25th second. This influx of user activity

prompts a corresponding increase in request time, with load balancing and the single server

experiencing request times of 27.5ms and 40ms, respectively. This disparity in request time

suggests that load balancing is more efficient in handling user requests, exhibiting a quicker

response compared to the single server configuration.

Subsequently, at the 50th second, the user count escalates to 150, resulting in further

adjustments to request time. Load balancing demonstrates resilience in managing the increased

workload, maintaining a request time of 26.5ms, while the single server experiences a slight

increase to 37ms. This trend underscores the comparative efficiency of load balancing in

distributing requests across multiple servers, mitigating the impact of increased user loads on

response times. The subsequent intervals continue to reflect this pattern, with user count

Widiasari, Design and Implementation of Load Balancing for Quality of Service Improvement 127

fluctuations corresponding to request time variations. This dynamic is exemplified at the 300th

second when the system experiences peak activity with 500 users accessing simultaneously. At

this critical juncture, load balancing and the single server exhibit distinct request times, reflecting

their respective capabilities in handling the heightened demand. In essence, Table 2 offers insight

into the responsiveness of load balancing and single server setups to varying user loads. By

presenting a granular view of request time dynamics, it facilitates a nuanced understanding of

system performance under different conditions, informing decision-making processes related to

resource allocation and optimization strategies.

Table 3. Throughput

Time (second) Number of Users Load Balancing (ms) Single Server (ms)

0 0 0 0

25 100 126 127

50 150 118 120

100 200 87 154

125 250 143 180

150 300 140 182

200 350 98 120

225 400 110 130

250 450 160 182

300 500 166 177

In Table 3, the initial observation at the 0th second indicates a lack of activity, with no

users accessing the system. Consequently, both load balancing and single server setups exhibit

negligible bandwidth usage, reflecting the absence of data transmission. However, as time

progresses, user activity initiates, with 100 users accessing the system by the 25th second. This

uptick in user engagement prompts a corresponding increase in bandwidth utilization, with load

balancing and the single server recording 126kb/s and 127kb/s, respectively.

Subsequently, at the 50th second, the user count escalates to 150, resulting in adjustments

to bandwidth consumption. Load balancing registers a bandwidth usage of 118kb/s, while the

single server shows a slight increase to 120kb/s. This pattern continues as the user count

fluctuates, reaching its zenith at the 300th second when 500 users are actively engaging with the

system. At this juncture, load balancing and the single server exhibit corresponding bandwidth

usage, reflecting the culmination of user activity and the consequent strain on network resources.

The progression depicted in Table 3 underscores the dynamic nature of bandwidth utilization in

response to varying user loads. As user activity intensifies, both load balancing and single server

setups adapt by allocating and managing network resources to maintain optimal performance and

user experience.

 Figure 3. CPU Usage

128 Jurnal Buana Informatika, Volume 15, Nomor 2, Oktober 2024: 121-132

Figure 3 provides a stark comparison between the utilization of load balancing and a

single server. In the context of load balancing, the utilization of CPU resources maintains a

relatively stable pattern over time, fluctuating within the range of 10% to 30%. This consistency

suggests an efficient distribution of workload across multiple servers, ensuring that no single

server bears an excessive burden. Conversely, the utilization of CPU resources in the single server

setup exhibits notable instability, with fluctuations spanning from 15% to 70%. This erratic

behavior indicates resource allocation and management challenges within a single-server

environment. The most pronounced surge in CPU usage within the single server setup occurs at

the 225th second, coinciding with a load of 400 users, nearly peaking at 70%. This surge

highlights the strain experienced by the solitary server when confronted with a sudden increase

in user demand. Such spikes in CPU usage can lead to performance degradation, as the server

struggles to cope with the heightened workload.

The contrasting patterns of CPU utilization between load balancing and a single server

underscore the advantages of employing load balancing techniques. Load balancing facilitates a

more even distribution of computational tasks, thereby preventing individual servers from

becoming overwhelmed. This balanced distribution not only promotes stability in CPU usage but

also enhances overall system resilience and responsiveness. In contrast, the fluctuations and

occasional spikes in CPU usage observed in the single server setup underscore the inherent

limitations of relying on a solitary resource for handling variable workloads. Without the ability

to distribute tasks across multiple servers, the single server is susceptible to performance

bottlenecks and resource exhaustion during periods of high demand. Overall, Figure 3 illustrates

the performance disparities between load balancing and single server usage. By maintaining

consistent CPU usage levels and effectively managing workload distribution, load balancing

emerges as a more robust solution for accommodating fluctuating user demands and ensuring

optimal system performance.

Figure 4. Request Time

The analysis of request time occurrence in load balancing displays variations, with a

noticeable surge identified around the 100th second, reaching nearly 30 ms. Request duration

under load balancing varies between 20 ms and 30 ms. Likewise, within a single-server

arrangement, fluctuations in request time are present, albeit generally higher compared to load

balancing. The lowest point arises at the 100th second with 200 users, approximately at 27 ms,

whereas the apex is noted at the 250th second with 450 users. As request time escalates, the

server's handling of requests prolongs. Fluctuations in request time are typical in server settings

and can be affected by diverse factors such as the number of active users, server burden, and

resource availability. In the context of load balancing, these fluctuations may be influenced by

Widiasari, Design and Implementation of Load Balancing for Quality of Service Improvement 129

the system's methodology in distributing traffic across available servers. At specific intervals, one

server may endure a heavier load than others, resulting in spikes in request time for that server.

Nevertheless, a comparison between load balancing and a solitary server configuration

reveals that while fluctuations persist in both scenarios, request time tends to exhibit greater

stability in load balancing. This is because load balancing actively oversees and evens out traffic

distribution among available servers, mitigating the likelihood of significant spikes in request

time on any particular server. It's essential to acknowledge that heightened request times can

detrimentally affect application performance and user experience. With increasing request times,

users may encounter extended response durations or even encounter difficulty accessing services.

Hence, monitoring and managing request time represent pivotal components of server

infrastructure management to ensure operational efficiency and optimal performance. Through

comprehension of the patterns of request time fluctuations in both load balancing and single-

server setups, system administrators can implement measures to enhance system performance and

elevate overall user experience. This could involve adjustments to server configurations,

augmentation of resource capacities, or adoption of more efficient load-balancing strategies.

Thus, an in-depth understanding of request time serves as a cornerstone in constructing resilient

and dependable server infrastructure.

Figure 5. Throughput

Figure 5 presents a detailed comparison of throughput utilization between single server

and load balancing configurations, revealing subtle distinctions in their performance. In the case

of the single server setup, bandwidth usage fluctuates within a relatively narrow range, spanning

from 120kb/s to 185kb/s. The highest bandwidth consumption occurs at the 150th second,

registering 182kb/s while accommodating 300 users. This peak indicates a period of heightened

data transfer demands, potentially straining the server's network resources. Conversely, in the

load balancing scenario, bandwidth usage also demonstrates variability but within a slightly

different range, ranging from 80kb/s to 165kb/s. The peak bandwidth utilization in the load

balancing setup is observed at the 300th second, coinciding with 500 users, reaching 165kb/s.

This peak underscores a moment of intensified data transmission requirements across the load-

balanced servers, possibly due to a surge in user activity or data-intensive operations. While the

disparities in bandwidth utilization between the single server and load balancing setups are

relatively modest, they offer insights into resource allocation and workload distribution

efficiency. The narrower bandwidth fluctuations in the single server setup suggest a more

consistent usage pattern, possibly indicating optimized network management strategies or less

dynamic user activity. On the other hand, the broader range of bandwidth utilization in load

balancing reflects the dynamic nature of distributing network traffic across multiple servers,

adapting to fluctuating user demands, and ensuring optimal resource utilization. Overall, Figure

130 Jurnal Buana Informatika, Volume 15, Nomor 2, Oktober 2024: 121-132

1 illustrates the nuanced differences in bandwidth utilization between a single server and load-

balancing configurations. By evaluating these patterns, administrators can gain valuable insights

into network performance and make informed decisions regarding resource allocation and system

optimization strategies.

4. Conclusion

Based on the research conducted, namely the design and implementation web server

load balancing using HAProxy, it can be concluded that using load balancing on the Information

Technology Faculty UKSW server can reduce the load on the server used for CBT which

previously only used a single server, where if only using a single server could result in overload

if accessed by 500 students. The use of load balancing is more effective than just using a single

server, it can be seen in the test results that CPU usage in load balancing is less, and the difference

in CPU usage between load balancing and a single server can reach 45%. Request time on load

balancing is slightly better than a single server, which reaches 42ms, while load balancing is only

21.5ms; the difference is 20.5ms. The bandwidth on load balancing and single server is not that

significant; on a single server, the highest bandwidth is 182kb/s, and on load balancing, the

highest is 165kb/s; the difference between the two is only 17kb/s. From the results of

implementing load balancing on the Information Technology Faculty Satya Wacana Christian

University server, it is necessary to add servers both in software and hardware so that their

performance is even better, and perhaps we can add a database server which in the future can be

developed to include database synchronization.

References

[1] S. K. Keshari, V. Kansal, and S. Kumar, "A Systematic Review of Quality of Services (QoS)

in Software Defined Networking (SDN)," Wireless Personal Communications, vol. 116, no.

3, pp. 2593–2614, 2021. doi: 10.1007/s11277-020-07812-2.

[2] J. Moedjahedy, "Implementasi Point to Point Jaringan Internet Nirkabel di SMA Universitas

Klabat," CogITo Smart Journal, vol. 2, no. 2, pp. 240–249, 2016. doi:

10.31154/cogito.v2i2.33.240-249.

[3] F. G. J. Rupilele and A. Palilu, "Rancang Bangun Sistem Informasi Manajemen Pengaduan

Masyarakat dan Monitoring Knerja Akademik Perguruan Tinggi," Jurnal Sistem Informasi

dan Komputer, vol. 8, no. 2, pp. 141–148, 2019. doi: 10.32736/sisfokom.v8i2.672.

[4] K. A. Jadhav, M. M. Mulla, and D. G. Narayan, "An Efficient Load Balancing Mechanism

in Software Defined Networks," in 2020 12th International Conference on Computational

Intelligence and Communication Networks (CICN), Sep. 2020, pp. 116–122. doi:

10.1109/CICN49253.2020.9242601.

[5] K. Nugroho and A. Y. Kurniawan, "Uji Performansi Jaringan menggunakan Kabel UTP dan

STP," ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, dan Teknik

Elektronika, vol. 5, no. 1, p. 48, 2018. doi: 10.26760/elkomika.v5i1.48.

[6] Q. A. H. H. Rohman and N. S. Salahuddin, "Rancang Bangun Prototipe Mobil Penjelajah

Dengan Kendali Jarak Jauh Melalui Jaringan Wi-Fi Berbasis Antarmuka Web," Teknika, vol.

7, no. 1, pp. 1–7, 2018. doi: 10.34148/teknika.v7i1.79.

[7] A. S. Dina and D. Manivannan, "Intrusion Detection Based on Machine Learning Techniques

in Computer Networks," Internet of Things, vol. 16, 100462, 2021. doi:

10.1016/j.iot.2021.100462.

[8] P. Dymora, M. Mazurek, and B. Sudek, "Comparative Analysis of Selected Open-Source

Solutions for Traffic Balancing in Server Infrastructures Providing WWW Service,"

Energies, vol. 14, no. 22, p. 7719, 2021. doi: 10.3390/en14227719.

[9] F. U. Raharjo, F. Khair, J. G. A. Ginting, and E. F. Cahyadi, "TCP and UDP Traffic

Performance Trade-off on VRRP-BGP Routing Protocol in VyOS," in 2023 IEEE

International Conference on Communication, Networks and Satellite (COMNETSAT), Nov.

2023, pp. 536–541. doi: 10.1109/COMNETSAT59769.2023.10420818.

Widiasari, Design and Implementation of Load Balancing for Quality of Service Improvement 131

[10] V. Y. P. Ardhana and M. D. Mulyodiputro, "Analisis Quality of Service (QoS) Jaringan

Internet Universitas Menggunakan Metode Hierarchical Token Bucket (HTB)," Journal of

Informatics Management and Information Technology, vol. 3, no. 2, pp. 70–76, 2023. doi:

10.47065/jimat.v3i2.257.

[11] S. K. Shandilya, S. Upadhyay, A. Kumar, and A. K. Nagar, "AI-assisted Computer Network

Operations testbed for Nature-Inspired Cyber Security based adaptive defense simulation

and analysis," Future Generation Computer Systems, vol. 127, pp. 297–308, 2022. doi:

10.1016/j.future.2021.09.018.

[12] X. Zhu and S. Luo, "The influence of computer network technology on national income

distribution under the background of social economy," Computer Communications, vol. 177,

pp. 166–175, 2021. doi: 10.1016/j.comcom.2021.06.025.

[13] A. Burik, "Using Technology to Help Students Set, Achieve, and Publicize Goals," Adult

Literacy Education: The International Journal of Literacy, Language, and Numeracy, vol.

3, no. 1, pp. 83–89, 2021. doi: 10.35847/ABurik.3.1.83.

[14] H. G. Ogelman, H. Güngör, Ö. Körükçü, and H. Erten Sarkaya, "Examination of the

relationship between technology use of 5–6 year-old children and their social skills and social

status," Early Child Development and Care, vol. 188, no. 2, pp. 168–182, 2018. doi:

10.1080/03004430.2016.1208190.

[15] Y. Ben Slimen, J. Balcerzak, A. Pagès, F. Agraz, S. Spadaro, K. Koutsopoulos, M. Al-Bado,

T. Truong, P. G. Giardina, and G. Bernini, "Quality of perception prediction in 5G slices for

e-Health services using user-perceived QoS," Computer Communications, vol. 178, pp. 1–

13, 2021. doi: 10.1016/j.comcom.2021.07.002.

[16] B. Vijay Kumar, S. Musthak Ahmed, and M. N. Giri Prasad, "Efficient method to identify

hidden node collision and improving Quality-of-Service (QoS) in wireless sensor networks,"

Materials Today: Proceedings, vol. 80, pp. 1747–1750, 2023. doi:

10.1016/j.matpr.2021.05.498.

[17] D. H. H. Hailu, G. G. Lema, B. G. Gebrehaweria, and S. H. Kebede, "Quality of Service

(QoS) improving schemes in optical networks," Heliyon, vol. 6, no. 4, e03772, 2020. doi:

10.1016/j.heliyon.2020.e03772.

[18] S. Khare, U. Chourasia, and A. J. Deen, "Load Balancing in Cloud Computing," in

Proceedings of the International Conference on Cognitive and Intelligent Computing, 2022,

pp. 601–608. doi: 10.1007/978-981-19-2350-0_58.

[19] K. D. Patel and T. M. Bhalodia, "An Efficient Dynamic Load Balancing Algorithm for

Virtual Machine in Cloud Computing," in 2019 International Conference on Intelligent

Computing and Control Systems (ICCS), May 2019, pp. 145–150. doi:

10.1109/ICCS45141.2019.9065292.

[20] I. Odun-Ayo, M. Ananya, F. Agono, and R. Goddy-Worlu, "Cloud Computing Architecture:

A Critical Analysis," in 2018 18th International Conference on Computational Science and

Applications (ICCSA), Jul. 2018, pp. 1–7. doi: 10.1109/ICCSA.2018.8439638.

[21] A. Jangra and N. Mangla, "Cloud Load Balancing Using Optimization Techniques," in

Proceedings of the International Conference on Cognitive and Intelligent Computing, 2021,

pp. 735–744. doi: 10.1007/978-981-15-7130-5_60.

[22] N. S. Kaurav and P. Yadav, "A genetic algorithm-based load balancing approach for resource

optimization for cloud computing environment," International Journal of Information and

Computing Science, vol. 6, no. 3, pp. 175–184, 2019.

[23] H. Babbar, S. Parthiban, G. Radhakrishnan, and S. Rani, "A genetic load balancing algorithm

to improve the QoS metrics for software defined networking for multimedia applications,"

Multimedia Tools and Applications, vol. 81, no. 7, pp. 9111–9129, 2022. doi:

10.1007/s11042-021-11467-x.

[24] A. Kumar, G. Somani, and M. Agarwal, "Comparing HAProxy Scheduling Algorithms

During the DDoS Attacks," IEEE Networking Letters, vol. 1, pp. 1–1, 2024. doi:

10.1109/LNET.2024.3383601.

132 Jurnal Buana Informatika, Volume 15, Nomor 2, Oktober 2024: 121-132

[25] A. Khaliq, M. A. Tahir, G. Nadeem, S. H. Adil, J. Jamshid, and J. A. Memon, "Performance

comparison of Webservers load balancing using HAProxy in SDN," in 2023 4th

International Conference on Computing, Mathematics and Engineering Technologies

(ICoMET), Mar. 2023, pp. 1–5. doi: 10.1109/iCoMET57998.2023.10099326.

[26] Y. A. H. Omer, M. A. Mohammedel-Amin, and A. B. A. Mustafa, "Load Balance in Cloud

Computing using Software Defined Networking," in 2020 International Conference on

Computer, Control, Electrical, and Electronics Engineering (ICCCEEE), Feb. 2021, pp. 1–

6. doi: 10.1109/ICCCEEE49695.2021.9429607.

