Jurnal Buana Informatika
https://ojs.uajy.ac.id/index.php/jbi
<p><strong><a href="https://fti.uajy.ac.id/informatika/">Universitas Atma Jaya Yogyakarta - Prodi Informatika</a></strong></p> <table class="data" width="100%" bgcolor="#f0f0f0"> <tbody> <tr valign="top"> <td width="20%">Journal title</td> <td width="40%"><strong>Jurnal Buana Informatika</strong></td> <!--td rowspan="8" width="40%"> <img style="width: 80%; height: Auto; max-width: 300px; display: block; margin-left: auto; margin-right: auto;" src="/public/journals/1/homepageImage_en_US.png" alt="" /></td--></tr> <tr valign="top"> <td width="20%">Abbreviation</td> <td width="40%"><strong>JBI</strong></td> </tr> <tr valign="top"> <td width="20%">Frequency</td> <td width="40%"><strong>Two issues per year (April and October)<br /></strong></td> </tr> <tr valign="top"> <td width="20%">DOI</td> <td width="40%"><strong>prefix 10.24002 </strong><strong><br /></strong></td> </tr> <tr valign="top"> <td width="20%">Print ISSN</td> <td width="40%"><strong><a href="https://issn.brin.go.id/terbit/detail/1271083534">2087-2534</a></strong></td> </tr> <tr valign="top"> <td width="20%">Online ISSN</td> <td width="40%"><strong><a href="https://issn.brin.go.id/terbit/detail/1326768860">2089-7642</a> </strong></td> </tr> <tr valign="top"> <td width="20%">Editor-in-chief</td> <td width="40%"><strong><a href="https://scholar.google.com/citations?user=S054sdEAAAAJ&hl=en">Yonathan Dri Handarkho, S.T., M.T., Ph.D.</a></strong></td> </tr> <tr valign="top"> <td width="20%">Publisher</td> <td width="40%"><strong><a href="http://www.uajy.ac.id/">Universitas Atma Jaya Yogyakarta</a></strong></td> </tr> </tbody> </table> <hr /> <p><strong>Journal of Buana Informatika </strong>is published by Faculty of Industrial Technology University of Atma Jaya Yogyakarta as a medium to channel understanding about technological aspects of information technology in the form of result of field research or laboratory or literature study. This journal is published twice a year in April and October. The editor receives manuscript contributions from lecturers, researchers, students and practitioners discussing the scopes of computational science, graphics and visualization, human-computer interaction, information management, information assurance and security, platform-based development, parallel and distributed computing, and software engineering. Please kindly follow the checklist of writing guideline and the manuscript template that can be downloaded in this site.</p>Universitas Atma Jaya Yogyakartaen-USJurnal Buana Informatika2087-2534<p>Copyright of this journal is assigned to Jurnal Buana Informatika as the journal publisher by the knowledge of author, whilst the moral right of the publication belongs to author. Every printed and electronic publications are open access for educational purposes, research, and library. The editorial board is not responsible for copyright violation to the other than them aims mentioned before. The reproduction of any part of this journal (printed or online) will be allowed only with a written permission from Jurnal Buana Informatika.</p><p>This work is licensed under a <a href="http://creativecommons.org/licenses/by-sa/4.0/">Creative Commons Attribution-ShareAlike 4.0 International License</a>.</p><p><img src="" alt="" /></p>Penerapan Algoritma Gradient Boosting dalam Mendiagnosa Penyakit Kucing dan Anjing
https://ojs.uajy.ac.id/index.php/jbi/article/view/12634
<p><em>Royal Canin selaku lembaga riset hewan domestik mengungkapkan bahwa hewan peliharaan di Indonesia jarang sekali melakukan pemeriksaan rutin ke klinik hewan, jika dipersentasekan hanya berada di angka 29,5%. Dengan persentase tersebut, semakin khawatir hewan dapat menularkan penyakit ke manusia atau disebut sebagai zoonosis, jika hewan sama sekali tidak mendapatkan perawatan dan identifikasi dini penyakit yang dialami. Pada penelitian ini menggunakan metode gradient boosting sebagai fokus utama untuk memprediksi penyakit berdasarkan gejala-gejala yang dialami hewan peliharaan. Melalui proses hyperparameter tuning menggunakan gridsearch, diperoleh model terbaik dengan kombinasi parameter: learning_rate 0,05, max_depth 7, min_samples_leaf 1, </em><em>min_samples_split 2, n_estimators 200, dan subsample 0,9. Dari hasil hyperparameter tuning, model tersebut menunjukkan performa terbaik dengan accuracy 88%, precision 97%, recall 96%, f1-score 96%, dan hamming loss 0,29%. Hasil tersebut menunjukkan bahwa model memiliki kemampuan memprediksi multilabel yang akurat.</em></p>VincentNur Rachmat
Copyright (c) 2025
https://creativecommons.org/licenses/by-sa/4.0
2025-10-012025-10-011624251Pengembangan Chatbot Untuk Layanan Informasi Keanggotaan Guru Metode Support Vector Machine
https://ojs.uajy.ac.id/index.php/jbi/article/view/12627
<p><em>Perkembangan aplikasi chat seperti WhatsApp dan Telegram mendorong pengembangan chatbot untuk mendukung interaksi cerdas antara manusia dan komputer. Chatbot berbasis kecerdasan buatan membantu mengurangi waktu respons dan memberikan akses informasi kapan saja. Salah satu permasalahan, yaitu pertanyaan berulang terkait administrasi keanggotaan guru di PGRI Kabupaten Musi Rawas, dapat diatasi dengan chatbot berbasis AI. Penelitian ini bertujuan mengembangkan chatbot yang mampu menyampaikan informasi dan memberikan respons akurat. Chatbot dirancang dengan algoritma Support Vector Machine (SVM) dan Natural Language Processing (NLP). Hasil pengujian menunjukkan model SVM memiliki akurasi 83,54%, presisi 86,09%, dan recall 83,54%, sehingga layak digunakan sebagai model chatbot. Implementasi pada platform WhatsApp mendukung kemudahan akses informasi. Hasil penelitian membuktikan chatbot dapat merespons pertanyaan sesuai kebutuhan pengguna, sedangkan integrasi dengan WhatsApp membuat layanan informasi lebih mudah diakses serta memberikan solusi yang efisien dan responsif.</em></p>Nurkholis SetiawanMuhamad AkbarAndri Anto Tri Susilo
Copyright (c) 2025
https://creativecommons.org/licenses/by-sa/4.0
2025-10-012025-10-011627483Inspired GWO-based Multilevel Thresholding for Color Images Segmentation via M. Masi Entropy
https://ojs.uajy.ac.id/index.php/jbi/article/view/12463
<p><em>Image segmentation is crucial in image processing and computer vision, with multilevel thresholding (ML-ISP) offering robust solutions for complex images. However, effectively applying ML-ISP to RGB color images remains a challenge due to computational complexity and the limitations of traditional optimization algorithms, such as the Grey Wolf Optimizer (GWO). This study proposes an Inspired Grey Wolf Optimizer (IGWO) to address these issues and enhance ML-ISP for RGB color images. The performance stability of IGWO is comprehensively evaluated using three distinct objective functions: the Otsu method, the Kapur Entropy, and the M. Masi Entropy. Qualitative and quantitative analyses using PSNR, SSIM, and UQI were conducted on benchmark images. Results consistently demonstrate that IGWO, particularly with M. Masi Entropy, achieves superior segmentation quality. This research incorporates GridSearch-based hyperparameter tuning. The findings highlight the effectiveness and robustness of the proposed IGWO approach for complex ML-ISP tasks on color images.</em></p>I Made Satria BimantaraI Wayan SuprianaI Komang Arya Ganda WigunaIda Bagus Gede Sarasvananda
Copyright (c) 2025
https://creativecommons.org/licenses/by-sa/4.0
2025-10-012025-10-011625262Deteksi Informasi Kadar Natrium pada Label Produk Kemasan Menggunakan FPN, Faster R-CNN, dan OCR
https://ojs.uajy.ac.id/index.php/jbi/article/view/12446
<p>Informasi nilai gizi, khususnya kandungan natrium, berperan penting dalam mendorong masyarakat memilih makanan yang lebih sehat. Namun, kesadaran terhadap label gizi masih rendah sehingga sering diabaikan. Sistem otomatis dikembangkan untuk mendeteksi dan mengekstraksi informasi kadar natrium dari citra kemasan produk. Sistem menggunakan pendekatan deteksi objek berbasis <em>Feature Pyramid Network</em> (FPN) dan <em>Faster</em> R-CNN melalui <em>framework Detectron2</em>. Ekstraksi teks kadar natrium dilakukan menggunakan <em>Tesseract</em> OCR. Sebanyak 3.028 gambar digunakan dalam proses pelatihan, validasi, dan pengujian FPN. Pada tahap pelatihan diperoleh akurasi deteksi 98,90% (AP50) dan (AR) 85,00%. Sementara itu, pengujian OCR terhadap 400 gambar berbeda dari data pelatihan FPN, menghasilkan rata-rata akurasi ekstraksi teks 85,13%. Kesalahan pengenalan umumnya disebabkan kualitas citra rendah, seperti gambar blur, orientasi label miring, pantulan cahaya, atau teks terlalu tebal. Meskipun terdapat keterbatasan, sistem menunjukkan potensi kuat sebagai alat otomatis membaca informasi gizi, khususnya kandungan natrium, dengan catatan diperlukan penyempurnaan lebih lanjut agar konsisten di kondisi nyata.</p>Ruvina Febrianti MalelakAdriana FanggidaeTiwuk WidiastutiYulianto Triwahyuadi Polly
Copyright (c) 2025
https://creativecommons.org/licenses/by-sa/4.0
2025-10-012025-10-011626373Network Reduction Strategy on YOLOv8 Model for Mango Leaf Disease Detection
https://ojs.uajy.ac.id/index.php/jbi/article/view/12420
<p><em>Detecting diseases on mango leaves is a crucial step in maintaining plant health </em><em>and enhancing agricultural productivity, considering that leaves are one of the vital parts </em><em>involved in the photosynthesis process and plant growth. Diseases that affect mango leaves </em><em>can cause damage that hinders the growth of the plants, making the development of an </em><em>accurate and efficient detection system essential to assist farmers in identifying and </em><em>addressing these issues early on. The objective of this research is to develop a disease </em><em>detection model for mango leaves using the YOLOv8 model optimized with a network </em><em>reduction. The data used consists of images of mango leaves with four classes of diseases. </em><em>The results of the study indicate that the optimized YOLOv8 model can produce a model </em><em>with low complexity without compromising model performance. The model optimized with </em><em>network reduction achieved the highest mAP50-95 value of 0.988, surpassing the baseline </em><em>model by 0.3%.</em></p>I Gede Khresna Adi Wedanta BerathaNi Putu SutramianiNi Kadek Ayu Wirdiani
Copyright (c) 2025
https://creativecommons.org/licenses/by-sa/4.0
2025-10-012025-10-011623241