Deteksi Website Phishing Menggunakan Teknik Machine Learning

Authors

  • Lukito Universitas Atma Jaya Yogyakarta
  • Wilfridus Bambang Triadi Handaya Universitas Atma Jaya Yogyakarta

DOI:

https://doi.org/10.24002/jiaj.v6i1.11538

Keywords:

Machine Learning, Supervised Learning, Phishing

Abstract

Phishing merupakan teknik penipuan yang memanfaatkan penyamaran sebagai entitas tepercaya untuk mencuri data sensitif. Metode deteksi berbasis machine learning, seperti XGBoost, Random Forest, dan Decision Tree, efektif dalam mengenali pola website phishing. Hasil penelitian menunjukkan bahwa XGBoost dengan hyperparameter tuning memberikan akurasi tertinggi, yaitu 96%. Model ini kemudian diimplementasikan dalam web service menggunakan Flask atau FastAPI, sehingga pengguna dapat memeriksa URL secara real-time. Sistem juga dilengkapi mekanisme ekstraksi fitur, termasuk analisis URL, domain age, dan konten halaman, serta pelabelan otomatis untuk memudahkan pelatihan ulang model. Selain itu, integrasi dengan bot Telegram memperluas aksesibilitas, karena pengguna dapat melakukan deteksi phishing kapan saja melalui pesan instan tanpa batasan lokasi atau perangkat.

Author Biographies

Lukito, Universitas Atma Jaya Yogyakarta

Department of Informatics, Faculty of Industrial Technology, Universitas Atma Jaya Yogyakarta

Wilfridus Bambang Triadi Handaya, Universitas Atma Jaya Yogyakarta

Department of Informatics, Faculty of Industrial Technology, Universitas Atma Jaya Yogyakarta

References

[1] S. Kurniawan, “Phising: Pengertian, Cara Kerja dan Langkah Mengatasinya,” Niagahoster Blog, May 22, 2023. https://www.niagahoster.co.id/blog/mengatasi-phishing/

[2] E. Dzuba, “Introducing Cloudflare’s 2023 phishing threats report,” The Cloudflare Blog, Oct. 26, 2023. https://blog.cloudflare.com/2023-phishing-report/

[3] E. Sangra, R. Agrawal, P. R. Gundalwar, K. Sharma, D. Bangri, and D. Nandi, "Malicious Website Detection Using Random Forest and Pearson Correlation for Effective Feature Selection," International Journal of Advanced Computer Science and Applications (IJACSA), vol. 15, no. 8, pp. 772-780, 2024, http://dx.doi.org/10.14569/IJACSA.2024.0150876

[4] K. Adane, Berhanu Beyene, and Mohammed Abebe, “ML and DL-based Phishing Website Detection: The Effects of Varied Size Datasets and Informative Feature Selection Techniques”, Journal of Artificial Intelligence and Technology, vol. 4, no. 1, pp. 18–30, Sep. 2023.

[5] M. Bahaghighat, M. Ghasemi, and F. Ozen, "A high-accuracy phishing website detection method based on machine learning," Journal of Information Security and Applications, vol. 77, p. 103553, 2023. Available: https://doi.org/10.1016/j.jisa.2023.103553.

[6] P. and Dhandayudam, P., “An Optimized Bagging Learning with Ensemble Feature Selection Method for URL Phishing Detection”, Journal of Electrical Engineering & Technology, vol. 19, no. 3, Springer, pp. 1881–1889, 2023. doi:10.1007/s42835-023-01680-z.

[7] D. Komalasari, T. B. Kurniawan, D. A. Dewi, M. Z. Zakaria, Z. Abdullah, and A. Alanda, “Phishing Domain Detection Using Machine Learning Algorithms”, Int. J. Adv. Sci. Eng. Inf. Technol., vol. 15, no. 1, pp. 318–327, Feb. 2025. doi: https://doi.org/10.18517/ijaseit.15.1.12553

[8] A. F. Mahmud and S. Wirawan, "Deteksi Phishing Website menggunakan Machine Learning Metode Klasifikasi," Sistemasi: Jurnal Sistem Informasi, vol. 13, no. 4, pp. 1368-1380, 2024, doi: https://doi.org/10.32520/stmsi.v13i4.3456.

[9] Y. Muliono, M. A. Ma'ruf, and Z. M. Azzahra, "Phishing Site Detection Classification Model Using Machine Learning Approach," Jurnal EMACS (Engineering, Mathematics and Computer Science), vol. 5, no. 2, pp. 63-67, May 2023, doi: 10.21512/emacsjournal.v5i2.995163.

[10] S. K. Ahmad, B. A. Dapshima, and Y. C. Essa, "Detection of Phishing Attacks Using Machine Learning Techniques," International Research Journal of Modernization in Engineering, Technology and Science, vol. 6, no. 7, pp. 1166, July 2024, doi: 10.56726/IRJMETS60054.

[11] N. S. Zaini, D. Stiawan, M. F. Ab Razak, A. Firdaus, W. I. S. Wan Din, S. Kasim, and T. Sutikno, "Phishing Detection System Using Machine Learning Classifiers," Indonesian Journal of Electrical Engineering and Computer Science, vol. 17, no. 3, pp. 1165-1171, Mar. 2020, doi: 10.11591/ijeecs.v17.i3.pp1165-1171.

[12] V. Borate, D. Adsul, M. Dhakane, M. Gawade, M. Ghodake, and M. Jadhav, "A Comprehensive Review of Phishing Attack Detection Using Machine Learning Techniques," International Journal of Advanced Research in Science Communication and Technology, vol. 4, pp. 435-441, 2024, doi: 10.48175/IJARSCT-19963.

[13] G. Harinahalli Lokesh and G. BoreGowda, "Phishing Website Detection Based on Effective Machine Learning Approach," Journal of Cyber Security Technology, vol. 5, no. 1, pp. 1-14, 2020, doi: 10.1080/23742917.2020.1813396.

[14] A. Hannousse and S. Yahiouche, "Towards Benchmark Datasets for Machine Learning Based Website Phishing Detection: An Experimental Study," Engineering Applications of Artificial Intelligence, vol. 104, 2021, Art. no. 104347, doi: 10.1016/j.engappai.2021.104347.

[15] G. Vrbančič, I. Fister, and V. Podgorelec, “Datasets for phishing websites detection,” Data in Brief, vol. 33, p. 106438, Oct. 2020, doi: 10.1016/j.dib.2020.106438.

Downloads

Published

2025-05-31