Kecerdasan Buatan dalam Teknologi Kedokteran: Survey Paper


  • Wendy Halim Universitas Atma Jaya Yogyakarta
  • Paulus Mudjihartono Universitas Atma Jaya Yogyakarta


Pencitraan Medis, Ilmu Diagnostik, Klasifikasi, Kecerdasan Buatan (AI)


Dalam makalah ini, akan diberikan gambaran mengenai penerapan kecerdasan buatan dalam bidang medis, khususnya untuk pembuatan keputusan serta pengklasifikasian dalam ilmu diagnostik berdasarkan gambar biomedis. Beberapa teknologi kecerdasan buatan (AI) terbukti mampu melakukan optimasi klasifikasi gambar biomedis. Studi ini mengumpulkan studi representatif yang menunjukan bagaimana AI digunakan untuk memecahkan masalah pada ilmu diagnostik. Ini juga mengakui metode kecerdasan buatan yang sering digunakan dalam memecahkan masalah pada ilmu diagnostik, seperti metode jaringan syaraf tiruan, support vector machine, pohon keputusan, serta metode particle swarm optimization. Masalah-masalah dalam ilmu diagnostik yang dapat terpecahkan menggunakan metode tersebut diantaranya yaitu analisis tumor otak MRI dan kanker payudara. Berdasarkan hasil survei yang penulis lakukan, untuk metode yang paling efektif dan efisien dalam melakukan diagnosis pada bidang medis adalah metode CNN hanya saja metode CNN membutuhkan data yang cukup besar untuk melakukan klasifikasi.

Author Biographies

Wendy Halim, Universitas Atma Jaya Yogyakarta

Magister Informatika, Universitas Atma Jaya Yogyakarta

Paulus Mudjihartono, Universitas Atma Jaya Yogyakarta

Dosen Magister Informatika, Universitas Atma Jaya Yogyakarta


E. Brynjolfsson, T. Mitchell, and D. Rock, “What Can Machines Learn and What Does It Mean for Occupations and the Economy?,” AEA Papers and Proceedings, vol. 108, pp. 43–47, 2018, doi: 10.1257/pandp.20181019.

F. Jiang, L. Ma, T. Broyd, and K. Chen, “Digital twin and its implementations in the civil engineering sector,” Automation in Construction, vol. 130, pp. 21–23, 2021, doi: 10.1016/j.autcon.2021.103838.

Y. J. Jo et al., “Quantitative Phase Imaging and Artificial Intelligence: A Review,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 25, no. 1, pp. 1–15, 2018, doi: 10.1109/JSTQE.2018.2859234.

G. Y. P. Yang Song BS, Yu-Dong Zhang MD, PhD, Xu Yan PhD, Hui Liu PhD, Minxiong Zhou PhD, Bingwen Hu PhD, “Computer-aided diagnosis of prostate cancer using a deep convolutional neural network from multiparametric MRI,” Journal of Magnetic Resonance Imaging, vol. 48, no. 6, pp. 1570–1577, 2018, doi:

J. Yanase and E. Triantaphyllou, “A Systematic Survey of Computer-Aided Diagnosis in Medicine: Past and Present Developments,” Expert Systems with Applications, vol. 138, pp. 1–46, 2019, doi: 10.1016/j.eswa.2019.112821.

M. Field et al., “Implementation of the Australian Computer-Assisted Theragnostics (AusCAT) network for radiation oncology data extraction, reporting and distributed learning,” Journal of Medical Imaging and Radiation Oncology, vol. 65, no. 5, pp. 627–636, 2021, doi: 10.1111/1754-9485.13287.

P. Eun Cho MD, Eun-Kyung Kim MD, PhD, Mi Kyung Song MS, Jung Hyun Yoon MD, “Application of Computer-Aided Diagnosis on Breast Ultrasonography: Evaluation of Diagnostic Performances and Agreement of Radiologists According to Di?erent Levels of Experience,” Journal of Ultrasound in Medicine, vol. 37, no. 1, pp. 209–216, 2017, doi:

Z. Cao, L. Duan, G. Yang, T. Yue, and Q. Chen, “An experimental study on breast lesion detection and classification from ultrasound images using deep learning architectures,” BMC Medical Imaging, vol. 19, no. 1, pp. 1–26, 2019, doi: 10.1186/s12880-019-0349-x.

M. A. Al-antari, M. A. Al-masni, M. T. Choi, S. M. Han, and T. S. Kim, “A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification,” International Journal of Medical Informatics, vol. 117, no. May, pp. 44–54, 2018, doi: 10.1016/j.ijmedinf.2018.06.003.

M. Koenigkam-Santos, J. R. FerreiraJunior, D. T. Wada, A. P. M. Tenoria, M. H. Nogueira-Barbosa, and P. M. Azevedo-Marques, “Artificial intelligence, machine learning, computer-aided diagnosis, and radiomics: advances in imaging towards to precision medicine,” Radiologia Brasileira, vol. 52, no. 6, pp. 387–396, 2019.

R. F. Mansour, “Deep-learning-based automatic computer-aided diagnosis system for diabetic retinopathy,” Biomedical Engineering Letters, vol. 8, no. 1, pp. 41–57, 2018, doi: 10.1007/s13534-017-0047-y.

N. Asiri, M. Hussain, F. al Adel, and N. Alzaidi, “Deep learning based computer-aided diagnosis systems for diabetic retinopathy: A survey,” Artificial Intelligence in Medicine, vol. 99, no. Dl, 2019, doi: 10.1016/j.artmed.2019.07.009.

N. I. R. Yassin, S. Omran, E. M. F. el Houby, and H. Allam, “Machine learning techniques for breast cancer computer aided diagnosis using different image modalities: A systematic review,” Computer Methods and Programs in Biomedicine, vol. 156, pp. 25–45, 2018, doi: 10.1016/j.cmpb.2017.12.012.

P. Perera and V. M. Patel, “Learning Deep Features for One-Class Classification,” IEEE Transactions on Image Processing, vol. 28, no. 11, pp. 5450–5463, 2019, doi: 10.1109/TIP.2019.2917862.

K. jian Xia, H. sheng Yin, and Y. dong Zhang, “Deep Semantic Segmentation of Kidney and Space-Occupying Lesion Area Based on SCNN and ResNet Models Combined with SIFT-Flow Algorithm,” Journal of Medical Systems, vol. 43, no. 1, pp. 1–16, 2019, doi: 10.1007/s10916-018-1116-1.

Z. Zhai et al., “Automatic quantitative analysis of pulmonary vascular morphology in CT images,” Medical Physics, vol. 46, no. 9, pp. 3985–3997, 2019, doi: 10.1002/mp.13659.

S. Chowdhury and P. pratim Chakraborty, “Overview of artificial intelligence in medicine,” Journal of Family Medicine and Primary Care, vol. 8, no. 7, pp. 2328–2331, 2019, doi: 10.4103/jfmpc.jfmpc.

A. Holzinger, G. Langs, H. Denk, K. Zatloukal, and H. Müller, “Causability and explainability of artificial intelligence in medicine,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 9, no. 4, pp. 1–13, 2019, doi: 10.1002/widm.1312.

B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman, “Building machines that learn and think like people,” Behavioral and Brain Sciences, vol. 40, no. 2012, pp. 1–58, 2017, doi: 10.1017/S0140525X16001837.

T. Pedersen, C. Johansen, and A. Jøsang, “Behavioural Computer Science: an agenda for combining modelling of human and system behaviours,” Human-centric Computing and Information Sciences, vol. 8, no. 1, pp. 1–39, 2018, doi: 10.1186/s13673-018-0130-0.

M. B. Patel, J. N. Patel, and U. M. Bhilota, “Comprehensive Modeling of ANN. In: Research Anthology on Artificial Neural Network Applications,” IGI Global, pp. 31–40, 2022, doi: 10.4018/978-1-6684-2408-7.ch002.

Y. chen Wu and J. wen Feng, “Development and Application of Artificial Neural Network,” Wireless Personal Communications, vol. 102, no. 2, pp. 1645–1656, 2018, doi: 10.1007/s11277-017-5224-x.

N. Shahid, T. Rappon, and W. Berta, “Applications of artificial neural networks in health care organizational decision-making: A scoping review,” PLoS ONE, vol. 14, no. 2, pp. 1–15, 2019, doi: 10.1371/journal.pone.0212356.

M. Wang and H. Chen, “Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis,” Applied Soft Computing Journal, vol. 88, pp. 11–13, 2020, doi: 10.1016/j.asoc.2019.105946.

Y. Q. Wang, Z. F. Wang, and W. C. Cheng, “A review on land subsidence caused by groundwater withdrawal in Xi’an, China,” Bulletin of Engineering Geology and the Environment, vol. 78, no. 4, pp. 2851–2863, 2019, doi: 10.1007/s10064-018-1278-6.

W. Li, R. Dong, H. Fu, J. Wang, L. Yu, and P. Gong, “Integrating Google Earth imagery with Landsat data to improve 30-m resolution land cover mapping,” Remote Sensing of Environment, vol. 237, no. 111563, 2020, doi: 10.1016/j.rse.2019.111563.

H. O. Alanazi, A. H. Abdullah, and K. N. Qureshi, “A Critical Review for Developing Accurate and Dynamic Predictive Models Using Machine Learning Methods in Medicine and Health Care,” Journal of Medical Systems, vol. 41, no. 4, 2017, doi: 10.1007/s10916-017-0715-6.

S. Huang, C. A. I. Nianguang, P. Penzuti Pacheco, S. Narandes, Y. Wang, and X. U. Wayne, “Applications of support vector machine (SVM) learning in cancer genomics,” Cancer Genomics and Proteomics, vol. 15, no. 1, pp. 41–51, 2018, doi: 10.21873/cgp.20063.

H. Wang, B. Zheng, S. W. Yoon, and H. S. Ko, “A support vector machine-based ensemble algorithm for breast cancer diagnosis,” European Journal of Operational Research, vol. 267, no. 2, pp. 687–699, 2018, doi: 10.1016/j.ejor.2017.12.001.

M. Rout, J. K. Rout, and H. Das, “Performance evaluation of different machine learning methods and deep-learning based convolutional neural network for health decision making. In: Nature inspired computing for data science,” Springer, Cham, pp. 2001–2012, 2020, doi: 10.1007/978-3-030-33820-6_12.

S. Sakr et al., “Comparison of machine learning techniques to predict all-cause mortality using fitness data: The Henry Ford exercIse testing (FIT) project,” BMC Medical Informatics and Decision Making, vol. 17, no. 1, pp. 1–28, 2017, doi: 10.1186/s12911-017-0566-6.

Y. Wei et al., “A review of data-driven approaches for prediction and classification of building energy consumption,” Renewable and Sustainable Energy Reviews, vol. 82, pp. 1027–1047, 2018, doi: 10.1016/j.rser.2017.09.108.

C. M. A. Gomes and L. S. Almeida, “Advocating the broad use of the decision tree method in education,” Practical Assessment, Research and Evaluation, vol. 22, no. 10, pp. 1–10, 2017.

S. J. Park, C. W. Lee, S. Lee, and M. J. Lee, “Landslide susceptibility mapping and comparison using decision tree models: A case study of Jumunjin Area, Korea,” Remote Sensing, vol. 10, no. 1545, p. 16, 2018, doi: 10.3390/rs10101545.

Y. K. Qawqzeh, M. M. Otoom, and F. Al-Fayez, “A Proposed Decision Tree Classifier for Atherosclerosis Prediction and Classification,” International Journal of Computer Science and Network Security (IJCSNS), vol. 19, no. 12, pp. 197–202, 2019.

T. Article, I. S. Part, O. F. The, and T. O. F. Contents, “Deep Learning-Based Decision-Tree Classifier for COVID-19 Diagnosis From Chest X-ray Imaging,” Frontiers in medicine, vol. 7, p. 427, 2020, doi:

S. Cheng, H. Lu, X. Lei, and Y. Shi, “A quarter century of particle swarm optimization,” Complex & Intelligent Systems, vol. 4, no. 3, pp. 227–239, 2018, doi: 10.1007/s40747-018-0071-2.

B. Jana, S. Mitra, and S. Acharyya, “Repository and Mutation based Particle Swarm Optimization (RMPSO): A new PSO variant applied to reconstruction of Gene Regulatory Network,” Applied Soft Computing Journal, vol. 74, pp. 330–355, 2019, doi: 10.1016/j.asoc.2018.09.027.

B. Qolomany, M. Maabreh, A. Al-Fuqaha, A. Gupta, and D. Benhaddou, “Parameters optimization of deep learning models using Particle swarm optimization,” 2017 13th International Wireless Communications and Mobile Computing Conference, IWCMC 2017, no. Iwcmc, pp. 1285–1290, 2017, doi: 10.1109/IWCMC.2017.7986470.

A. Jaafari, E. K. Zenner, M. Panahi, and H. Shahabi, “Hybrid artificial intelligence models based on a neuro-fuzzy system and metaheuristic optimization algorithms for spatial prediction of wildfire probability,” Agricultural and Forest Meteorology, vol. 266–267, pp. 198–207, 2019, doi: 10.1016/j.agrformet.2018.12.015.

D. Kusumoto and S. Yuasa, “The application of convolutional neural network to stem cell biology,” Inflammation and Regeneration, vol. 39, no. 14, pp. 1–7, 2019, doi: 10.1186/s41232-019-0103-3.

R. Yang et al., “CNN-LSTM deep learning architecture for computer vision-based modal frequency detection,” Mechanical Systems and Signal Processing, vol. 144, pp. 1–20, 2020, doi: 10.1016/j.ymssp.2020.106885.

K. Hernandez-Diaz, F. Alonso-Fernandez, and J. Bigun, “Periocular Recognition Using CNN Features Off-the-Shelf,” 2018 International Conference of the Biometrics Special Interest Group, BIOSIG 2018, pp. 1–5, 2018, doi: 10.23919/BIOSIG.2018.8553348.

et al ALSAEDI, Abdullah, “TON_IoT Telemetry Dataset: A New Generation Dataset of IoT and IIoT for Data-Driven Intrusion Detection Systems,” IEEE Access, vol. 8, pp. 165130–165150, 2020, doi: DOI:10.1109/ACCESS.2020.3022862.

M. Desai and M. Shah, “An anatomization on breast cancer detection and diagnosis employing multi-layer perceptron neural network (MLP) and Convolutional neural network (CNN),” Clinical eHealth, vol. 4, pp. 1–11, 2021, doi: 10.1016/j.ceh.2020.11.002.

F. Schiefer et al., “Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 170, pp. 205–215, 2020, doi: 10.1016/j.isprsjprs.2020.10.015.

F. Gao et al., “SD-CNN: a Shallow-Deep CNN for Improved Breast Cancer Diagnosis,” Computerized Medical Imaging and Graphics, vol. 70, pp. 53–62, 2018, doi:

C. Narmatha, S. M. Eljack, A. A. R. M. Tuka, S. Manimurugan, and M. Mustafa, “A hybrid fuzzy brain-storm optimization algorithm for the classification of brain tumor MRI images,” Journal of Ambient Intelligence and Humanized Computing, pp. 1–13, 2020, doi: 10.1007/s12652-020-02470-5.

L. Lu et al., “Cryptotanshinone inhibits human glioma cell proliferation in vitro and in vivo through SHP-2-dependent inhibition of STAT3 activation,” Cell Death and Disease, vol. 8, no. 5, pp. e2767-10, 2017, doi: 10.1038/cddis.2017.174.

A. Kabir Anaraki, M. Ayati, and F. Kazemi, “Magnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithms,” Biocybernetics and Biomedical Engineering, vol. 39, no. 1, pp. 63–74, 2019, doi: 10.1016/j.bbe.2018.10.004.

Q. Yang, H. Zhang, J. Xia, and X. Zhang, “Evaluation of Magnetic Resonance Image Segmentation in Brain Low-Grade Gliomas using Support Vector Machine and Convolutional Neural Network,” Quantitative Imaging in Medicine and Surgery, vol. 11, no. 1, pp. 300–316, 2021, doi: 10.21037/QIMS-20-783.

S. Lahmiri, “Glioma detection based on multi-fractal features of segmented brain MRI by particle swarm optimization techniques,” Biomedical Signal Processing and Control, vol. 31, pp. 148–155, 2017, doi: 10.1016/j.bspc.2016.07.008.

Z. Momenimovahed and H. Salehiniya, “Epidemiological characteristics of and risk factors for breast cancer in the world,” Breast Cancer: Targets and Therapy, vol. 11, pp. 151–164, 2019, doi: 10.2147/BCTT.S176070.

A. Akselrod-Ballin et al., “Predicting breast cancer by applying deep learning to linked health records and mammograms,” Radiology, vol. 292, no. 2, pp. 331–342, 2019, doi: 10.1148/radiol.2019182622.