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Abstrak. Layanan on-demand food delivery terus tumbuh didorong dengan pesatnya perkembangan 

teknologi dan internet yang memberikan kenyamanan bagi pelanggan untuk memesan makanan dari 

restoran dan mengirimnya sampai ke tangan mereka. Namun, peningkatan jumlah kendaraan 

berdampak pada terjadinya kemacetan, peningkatan biaya, dan dampak lingkungan. Penggunaa 

drone dapat menjadi solusi untuk mengatasi permasalahan tersebut. Akan tetapi, keterbatasan 

jangkauan terbang menjadi tantangan penggunaan drone. Oleh karena itu, dalam penelitian ini 

dikembangkan algoritma untuk menentukan lokasi drone charging station agar dapat 

memaksimalkan cakupan layanan. Metode optimasi yang digunakan dalam algoritma berupa ant 

colony optimization. Sementara itu, pengujian algoritma menggunakan studi kasus area dalam Ring 

Road Yogyakarta, dengan OpenStreetMap sebagai sumber data. Hasil optimasi menunjukkan 

cakupan demand sebesar 22357 titik atau 93,56% dari total titik potential demand yang ada. Selain 

itu, dalam penelitian ini juga dibangun tiga skenario untuk mengidentifikasi pengaruh jenis 

kendaraan terhadap rute pengiriman dan dampak lingkungan yang dihasilkan. Ketiga jenis 

kendaraan yang digunakan sebagai skenario berupa drone jangkauan 2 km, drone jangkauan 4 km, 

dan sepeda motor. 

Kata kunci: On-demand food delivery; drone charging station; facility location problem; sistem 

informasi geografis; routing problem. 

Abstract. On-Demand Food Delivery (ODFD) services have witnessed significant growth, driven 

by advancements in technology and internet accessibility. This has facilitated consumer convenience 

by enabling food orders from restaurants to be delivered directly to their doorstep. However, this 

rapid expansion has contributed to an increase in vehicular traffic and associated travel routes, 

particularly within urban areas. This surge in vehicle usage has resulted in traffic congestion, higher 

costs, and environmental impacts, hindering the efficiency of the supply chain system. The utilization 

of drones presents a promising solution to overcome those challenges. However, their limited flight 

range poses a significant obstacle to widespread implementation. To address this limitation, this 

research focuses on developing an algorithm to optimize the location of drone charging stations, 

thereby maximizing service coverage. Ant Colony Optimization is used as the optimization method 

within the algorithm. A case study is conducted within the Yogyakarta Ring Road area, utilizing 

OpenStreetMap as the data source, to evaluate the algorithm's performance. The optimization 

results show a demand coverage of 22357 points, representing 93.56% of the total potential demand 
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points. In addition, three distinct delivery mode scenarios are established: drone with 2 km flight 

range, drone with 4 km flight range, and motorcycle. These scenarios are implemented to assess the 

influence of vehicle types on delivery routes and environmental impact. 

Keywords: On-demand food delivery; drone charging stations; facility location problem; 

geographic information system; routing problem. 

 

1. Introduction 

Recent technological advancements have profoundly transformed consumer behavior, particularly in the 

realm of food consumption. The widespread adoption of the internet and the proliferation of mobile devices 

have facilitated the emergence of on-demand food delivery (ODFD) services, enabling consumers to easily 

order meals from restaurants through mobile applications. This phenomenon has witnessed remarkable 

growth across Southeast Asia, with the Gross Merchandise Value (GMV), representing the total value of 

goods purchased through ODFD platforms, experiencing a significant surge. Between 2015 and 2019, the 
GMV in Southeast Asia increased by nearly fifteenfold, reaching an estimated USD 6 billion. This rapid 

growth is projected to continue, with forecasts suggesting that the GMV will exceed USD 20 billion by 

2025 [1]. Globally, the market for ODFD services is also experiencing substantial expansion, with estimates 

indicating that the total sales value will reach USD 559.2 billion between 2024 and 2028 [2]. 

The rapid growth of the ODFD sector presents both significant opportunities and critical challenges. 

While offering benefits such as increased consumer convenience, the creation of new employment 

opportunities, and enhanced customer relationships [3]. This expansion also presents challenges, these 

include the need for robust technological infrastructure, concerns related to data privacy and security [4]. 

Most critically, the potential negative impacts on urban transportation and logistics. The surge in ODFD 

services has inevitably led to a significant increase in the number of vehicles and associated travel routes, 

particularly within urban areas [5]. This increase in vehicular traffic contributes to traffic congestion, 

exacerbates environmental pollution, and poses challenges to urban planning and infrastructure. Moreover, 

the reliance on individual delivery can lead to inefficiencies in the overall supply chain, including increased 

delivery times and higher operational costs [3]. 

Addressing these challenges requires a comprehensive approach that considers the principles of urban 

logistics. City logistics, also referred to as urban (freight) distribution, last mile logistics, urban logistics, 

or city distribution [6]. Last mile delivery, a critical component of urban logistics, specifically refers to the 

final stage of the delivery process, encompassing the movement of goods from a distribution center to the 

final customer destination [7]. In the context of ODFD services, last mile delivery has evolved significantly, 

driven by the increasing consumer demand for same-day delivery, often referred to as on-demand delivery 

[8]. 

Martínez-Sykora, McLeod, Cherrett, and Friday [9] and Xue, Wang, and Wang [10] conducted research 

on optimizing order scheduling and delivery routes within On-Demand Food Delivery (ODFD) services. 

Their research involved the development of models and heuristic solution algorithms to address the 

challenges posed by fluctuating demand across different time periods and geographical locations. These 

algorithms aimed to ensure equitable order distribution among couriers while minimizing workload. 

Whereas, Zhou, Ye, and Hu [11] developed a heuristic algorithm to enhance the efficiency of ODFD 

services. This algorithm leverages the potential for order consolidation by grouping multiple orders from 

the same restaurant for delivery by a single courier. The research demonstrated that the developed algorithm 

effectively improved service quality while minimizing delivery distances. 

In contrast to these studies, which primarily focused on optimizing conventional ODFD services, 

recent research has explored the integration of drones as a mode of delivery. Liu [12] and Lu, Jiang, Bi, and 

Gao [13] conducted research on optimizing delivery routes specifically for drone-based ODFD systems. 

Furthermore, some recent research has incorporated environmental considerations into the analysis of on-

demand delivery systems utilizing drones. Troudi, Addouche, Dellagi, and ElMhamedi [14] and Kirschstein 
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[15] incorporated environmental criteria, such as the energy consumption of delivery modes, into their 

research. While Baldisseri, Siragusa, Seghezzi, Mangiaracina, and Tumino [16] conducted a comprehensive 

assessment of both economic and environmental impacts within last-mile delivery systems by using a Life 

Cycle Assessment (LCA) methodology. 

Another prominent research area within the context of on-demand delivery is the Facility Location 

Problem (FLP). FLP has been widely studied because of its applicability in various real-world problems 

[17]. Fundamentally, FLP involves the identification of optimal locations for facilities or equipment to 

effectively serve a group of demand points or customers distributed in planar area [18], [19]. As a well-

established research domain, FLP has been actively investigated since the 1960s, with a focus on developing 

sophisticated models, devising effective solution techniques, and exploring real-world applications [18]. 

Blanco and Gázquez [20] developed a solution model for FLP within a continuous framework, allowing for 

the placement of facilities anywhere within the designated solution space. Similarly, Baldomero-Naranjo, 

Martínez-Merino, and Rodríguez-Chía [21] investigated a two-level facility location problem, specifically 

focusing on the placement of warehouses that serve as intermediaries, which stored the products that have 

been manufactured in the first level, between manufacturing facilities and customers. 

Technological advancements have significantly contributed to the ongoing evolution of FLP research. 

Saldanha-da-Gama [18] emphasized the strong interdisciplinary nature of FLP, highlighting its significant 

interactions with fields such as geography, economics, transportation, and logistics. Geographic 

Information Systems (GIS) have emerged as a crucial tool for addressing real-world location problems, as 

they facilitate the integration and analysis of spatial data. Alizadeh and Nishi [22] and Medrano-Gómez, 

Ferreira, Toso, and Ibarra-Rojas [23] effectively utilized GIS in their respective research, utilizing GIS data 

to identify optimal locations for first aid centers and recycling facilities. Furthermore, GIS is also used as a 

source of data for determining the location of potential demand, such as research conducted by Mohamad 

and Sopha [24] and Wirawan [25]. 

Based on the literature reviewed, it is evident that research on facility location problems, particularly 

those leveraging Geographic Information Systems (GIS), continues to evolve. While GIS-based models and 

solution approaches have been developed, their capabilities remain limited, with many relying on heuristic 

algorithms to obtain feasible solutions [18]. Moreover, a comprehensive literature review on drone-based 

delivery and FLP conducted by Dukkanci, Campbell, and Kara [26] revealed that only 16% of the studies 

considered coverage-based objectives. Thus, this research focuses on determining the optimal locations for 

drone charging stations based on the coverage of potential demand within the Yogyakarta Ring Road area. 

This research leverages Geographic Information Systems (GIS) as the source of data. Furthermore, three 

distinct delivery mode scenarios are established: drone with 2 km flight range, drone with 4 km flight range, 

and motorcycle. These scenarios are implemented to assess the influence of vehicle types on delivery routes 

and environmental impact. 

 

2. Research Method 

The stages conducted in this research are outlined in the flowchart depicted in Figure 1. This flowchart 

illustrated the ten stages of the research process, encompassing data collection and preprocessing, road 

network data processing, data validation, building the covering algorithm, running the optimization process 

of covering problem, scenarios planning, building the routing algorithm, running the optimization process 

of routing problem, environmental impact assessment, and results analysis. Python is utilized as the 

programming language in this research. 
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Figure 1. Flowchart of Research Stages 

 

2.1. Data Collection and Preprocessing 
OSMnx Python package was used to acquire road network data. OSMnx is a Python library that facilitates 

the retrieval of road networks, building footprints, and administrative boundaries directly from 

OpenStreetMap [27]. The obtained data underwent a series of preprocessing steps, including road network 

topology simplification and removal of nodes that did not represent the actual intersections by eliminating 

the periphery road. In addition, population data for each sub-district within the Yogyakarta city area was 

also collected. The data collection, preprocessing, and subsequent road network processing steps refer to 

the methodology outlined in the research conducted by Wirawan [25]. 

 

2.2. Road Network Data Processing 

Road network information utilized in this study comprises node coordinates, edges, and road categories. 

Road categories served as the basis for determining the weight assigned to each node within the dataset for 

the optimization process. The demand weight of a node represents the priority of the associated road. Areas 

characterized by high population density tend to be reflected by a higher concentration of nodes located 

along the main road. The weighting for each node was assigned according to Table 1. 
 

Table 1. Weighting Reference according to Road Categories in OpenStreetMap 

Road Categories Explanation Weight 

motorway, 

motorway_link 

A restricted access major divided highway, normally with two or 

more running lanes plus emergency hard shoulder 
7 

trunk, trunk_link 
The most important roads in a country's system that are not 

motorways (Need not necessarily be a divided highway) 
6 

primary, primary_link 
The next most important roads in a country's system  

(Often link larger towns) 
5 

secondary, 
secondary_link 

The next most important roads in a country's system  

(Often link towns) 
4 

tertiary, tertiary_link 
The next most important roads in a country's system  

(Often link smaller towns and villages) 
3 

unclassified 

The least important through roads in a country's system, but which 

serve a purpose other than access to properties  

(Often link villages and hamlets) 

2 

residential, 
living_street 

Roads which serve as an access to housing, without function of 
connecting settlements. Often lined with housing. 

1 
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2.3. Data Validation 
Data validation of the road network aims to assess the extent to which the nodes accurately represent the 

population distribution within the study area. Pearson correlation was used as the statistical method for this 

validation. Pearson correlation is a statistical test used to measure the strength and direction of the linear 

relationship between two numerical variables, which can be measured on an interval or ratio scale [28]. 

 

2.4. Building the Covering Algorithm 

The algorithm development was based on the basic model of Maximal Covering Location Problem 

(MCLP), with additional constraint which requires interconnectivity between all the charging station 

facilities that is decided to be opened. This constraint was added to accommodate the flight range limitations 

of drones, ensuring that drones can move from one facility to another. The proposed model is shown in 

equations (1) to (8). In addition, the Ant Colony Optimization (ACO) was utilized as the optimization 

method within the algorithm. 

𝑀𝑎𝑥 ∑ 𝑎𝑖𝑥𝑖𝑖∈𝐼 ,    (1) 

𝑑𝑖𝑗 ≤ 𝑆 (∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, 𝑖 ≠ 𝑗),  (2) 

∑ 𝑦𝑗 = 𝑝𝑗∈𝐽 ,    (3) 

𝑥𝑖 ≤ ∑ 𝑦𝑗𝑗∈{𝐽|𝑑𝑖𝑗 ≤ 𝑆}
 (∀𝑖 ∈ 𝐼),  (4) 

𝑥𝑖 ∈ {0,1} ( ∀𝑖 ∈ 𝐼),   (5) 

𝑦𝑗 ∈ {0,1} (∀𝑗 ∈ 𝐽),   (6) 

𝑑𝑗𝑘 ≤ 2𝑆 (∀𝑗, 𝑘 ∈ 𝐽, 𝑗 ≠ 𝑘),  (7) 

∑ 𝑦𝑗𝑗∈{𝐽|𝑑𝑗𝑘≤2𝑆} ≥ 1,   (8) 

Equation (1) represents the objective function, which aims to maximize the demand coverage. 

Equations (2) to (8) represent the constraints of the model. Equation (2) defines the distance constraint 

between demand point i and facility j, ensuring that it must be less than or equal to the coverage radius of 

the facility. Equation (3) limits the number of facilities that can be opened. Equation (4) ensures that each 

demand point i is served by at least one facility. Equations (5) and (6) indicate that the variables x (demand) 

and y (facility) are binary, assuming values of either zero or one. Equations (7) and (8) enforce the constraint 

that a facility can only be opened if at least one other facility exists within less than twice its coverage 

radius. 

 

2.5. Running the Optimization Process of Covering Problem 

The optimization process commenced with inputting necessary parameters, including the facility coverage 

radius and the maximum number of facilities to be established. Subsequently, the dataset that was generated 

before was also inputted. The optimization process was then executed by running the algorithm, yielding 

results such as the number of demand coverage and the optimal locations of the drone charging stations. 

 

2.6. Scenarios Planning 
Three scenarios were defined based on the type of delivery mode, drone with 2 km flight range, drone with 

4 km flight range, and motorcycle. The aim of establishing these scenarios is to compare the resulting 

delivery routes and environmental impact. 
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2.7. Building the Routing Algorithm 
The algorithm development was based on the basic model of Vehicle Routing Problem (VRP), with 

additional constraint to limit the distance between nodes (charging stations, customers, and food sellers) to 

accommodate the maximum flight range of drones [29], [30]. The proposed model is shown in equations 

(9) to (15). 

𝑀𝑖𝑛 𝑧 = ∑ ∑ 𝑥𝑖𝑗𝑐𝑖𝑗
𝑁𝑎
𝑗=1

𝑁𝑎
𝑖=1 ,    (9) 

𝑐𝑖𝑗 ≤ 𝑆 (∀𝑖, 𝑗 ∈ 𝑁𝑎 , 𝑖 ≠ 𝑗),    (10) 

∑ 𝑥0𝑗𝑗∈{𝑁𝑎|𝑐𝑖𝑗≤𝑆,   𝑖≠𝑗} = 1,    (11) 

∑ 𝑥𝑖𝑛+1𝑗∈{𝑁𝑎|𝑐𝑖𝑗≤𝑆,   𝑖≠𝑗} = 1,   (12) 

∑ 𝑥𝑖𝑗𝑗∈{𝑁𝑎|𝑐𝑖𝑗≤𝑆,   𝑖≠𝑗} = 1 (∀𝑖 ∈ 𝑁𝑟),   (13) 

∑ 𝑥𝑖𝑗𝑖∈𝑁𝑎
= ∑ 𝑥𝑗𝑘𝑘∈𝑁𝑎

 (∀𝑗 ∈ 𝑁𝑎 , 𝑖 ≠ 𝑗 ≠ 𝑘),  (14) 

𝑥𝑖𝑗 ∈ {0,1} (∀𝑖, 𝑗 ∈ 𝑁𝑎 , 𝑖 ≠ 𝑗),   (15) 

Equation (9) represents the objective function, which aims to minimize the total travel distance of the 

drone. The distance between nodes is calculated using the Euclidean Distance method. Equations (10) to 

(15) represent the constraints of the model. Equation (10) defines the distance constraint, ensuring that the 

distance between node i and node j must be less than or equal to the maximum flight range of the drone. 

Equations (11) and (12) ensure that the route originates from the food-seller node and terminates at the 

customer node. Equation (13) ensures that the drone can only travel from node i to exactly one other node. 

Equation (14) ensures that if the drone visits node j, then node j becomes the starting point for the next 

flight of the drone. Equation (15) indicates that the variable x (route from i to j) is binary, assuming a value 

of either zero or one. 

 

2.8. Running the Optimization Process of Routing Problem 

The optimization process commenced with inputting necessary parameters, including the maximum flight 

range of the drone. For drone-based scenarios, the locations of charging stations obtained from the previous 

optimization process were also inputted as a dataset. The optimization process was then executed by running 

the algorithm, yielding results such as the total travel distance and the projection of delivery routes for each 

scenario. The optimization process for drone-based scenarios used the previously developed VRP 

algorithm. Whereas the optimization process for motorcycle-based scenario utilized the routing module 

within the OSMnx Python package. 

 

2.9. Environmental Impact Assessment 

Environmental impact analysis was conducted by evaluating three indicators, Global Warming Potential 

(GWP), Acidification Potential (AP), and Abiotic Depletion Potential (ADP). These indicators were 

assessed based on the results of existing Life Cycle Assessment (LCA) studies, with adjustments made to 

align with the specific problem of this research. Furthermore, the environmental impact analysis was limited 

to only two phases, fuel production and operational, for both drones and motorcycle scenarios. The 

functional unit used in this analysis is defined as the environmental impact per food order per meter. 

 

2.10. Results Analysis 
The analysis would involve identifying patterns in drone charging station placement across different 

predefined numbers of facilities. Furthermore, the analysis would also investigate the influence of delivery 

mode on the resulting routes and environmental impacts. 
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3. Results and Discussion 

3.1. Road Network Data Processing 

Figure 2 (a) presents the projection of the road network within the Yogyakarta Ring Road area obtained 

from OpenStreetMap using the OSMnx Python package. In this figure, nodes represent intersections, while 

edges represent road segments. The acquired road network data was subsequently processed based on road 

categories, which were used to determine the priority of each road segment. This process resulted in a 

dataset of nodes that are assumed to represent potential demand locations. The distribution of potential 

demand locations within the Yogyakarta Ring Road area can be seen in Figure 2 (b), represented by orange 

dots. 

 

 
Figure 2. Road Network Projection (a) The Projection of Potential Demand Distribution Based on Road 

Network Data Processing (b) 

 

3.2. Data Validation 

Validation of the road network dataset was conducted using pearson correlation analysis. The analyzed 

variables are population and the number of potential demand nodes within each sub-district of Yogyakarta 

City. 

Pearson correlation analysis revealed a correlation coefficient of 0.958, indicating a strong positive 

correlation between the two variables. This high value, approaching +1 (perfect positive correlation), 

signifies a strong linear relationship between the number of nodes and population. Furthermore, the p-value 

was found to be 0.000, as depicted in Table 2. This p-value was significantly lower than the significance 

level of 0.05, confirming a statistically significant correlation between the two variables. 

 

Table 2. The Result of Road Network Data Validation using Pearson Correlation Method 

Pearson Correlation P-value 

0,958 0,000 

 

3.3. Validation of the Covering Algorithm 

Validation of the MCLP algorithm was conducted by incrementally increasing the number of facilities that 

can be opened. As illustrated in Figure 3, the increasing margin in demand coverage diminishes as the 

number of charging stations increases. This result indicated that the proposed algorithm effectively 

prioritizes selecting facility locations with higher potential demand densities before selecting locations with 

lower densities. 
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Figure 3. Graph of Total Demand Coverages against Predefined Numbers of Facilities 

 

In addition, it also can be seen in Figure 3 that there is a slight decrease in demand coverage when the 

number of facilities increases from 36 to 37. This phenomenon can be attributed to the heuristic nature of 

the ACO algorithm, which does not guarantee the identification of the global optimum solution. When the 

percentage of demand coverage reaches a sufficiently high value (exceeding 94% in this case), and only a 

small portion of the potential demand remains unserved, the use of a heuristic approach, such as the ACO 

algorithm, may result in minor fluctuations in the solution quality. 

 

3.4. Validation of the Routing Algorithm 

Validation of the VRP algorithm was conducted by running the model on a small scenario and subsequently 

comparing the results with those obtained through enumeration method. This validation process was 

executed using a scenario with only six charging stations that were opened, with the projected location of 

each facility as depicted in Figure 4. 

 

 
Figure 4. Projection of Drone Charging Station Locations for the Routing Algorithm Validation Process 

(a) Route Projection of the Routing Algorithm Validation Process (b) 

 

By considering the interconnectivity between all six facilities, the enumeration method revealed a total 

of four possible routes from the seller to the customer, as stated in Table 3. Based on the enumeration results, 

the shortest total distance achieved was 8753 meters, corresponding to route A-B-C-E-F. This result aligns 
perfectly with the optimal solution obtained through the proposed VRP algorithm, as indicated in Figure 4. 
 



Prosiding KONSTELASI 

Vol. 2 No.1, Juni 2025  

 

 

 

239 
 
 

Table 3. The Result of Total Distance for Each Possible Route using Enumeration Method 

Possible Routes Total Distance (meters) 

A-B-C-E-F 8753 

A-B-C-D-E-F 10782 

A-B-D-E-F 8787 

A-B-D-C-E-F 10456 
 

3.5. Optimization Results of Drone Charging Station Locations 

The optimization process was initiated by defining the number of drone charging stations that can be opened 

at 35 units. This number of facilities was determined based on the previous algorithm validation results, 

which indicated that at 35 units, the algorithm exhibited stable performance without fluctuations arising 

from the heuristic nature. Furthermore, the optimization process was executed with five repetitions. This 

approach aims to observe variations in demand coverage and obtain an average result across the five 

repetitions. 

 

 
Figure 5. Projection of Drone Charging Station Locations Resulting from Optimization Process (a)  

Graph of Total Demand Coverages along Iterations in the Optimization Process (b) 

 

The projection of drone charging station locations from one of those repetitions result is depicted in 

Figure 5 (a). While Figure 5 (b) shows the search orders for the optimal demand coverage within defined 

number of iterations in the optimization process. The result achieved a total demand coverage of 22,357 

nodes with a computational time of 2486 seconds. The result of this repetition was selected to represent all 

the repetitions that were conducted because the demand coverage was the closest to the average of all five 

repetitions, as summarized in Table 4. 
 

Table 4. Optimization Results for Each Repetition that is Conducted 

Repetition Computational Time (seconds) Total Demand Coverages (nodes) 

1 2486 22357 

2 2367 22309 

3 2277 22319 

4 2401 22372 

5 2307 22374 

Average 22346.2 nodes 
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3.6. Optimization Results of Delivery Routes 
The locations of drone charging stations obtained through the MCLP optimization process were 

subsequently utilized as input data for the route optimization process. Other necessary data that is also 

needed are the starting point and endpoint of delivery. In this study, the starting point, referred to as "sellers," 

was defined as the location of a restaurant, fast-food outlet, or cafe. Those locations were also obtained 

from OpenStreetMap using the OSMnx Python package. Whereas the endpoint, referred to as "customers," 

was randomly selected from the set of potential demand nodes that previously identified during the MCLP 

optimization process. 

 

 
Figure 6. Route Projection of the Optimization Results for Each Scenario:  

Drone with 2 km Flight Range (a), Drone with 4 km Flight Range (b), and Motorcycle (c) 

 

The optimization process was conducted for two drone flight range scenarios: 2 km and 4 km. The 

scenario with a 2 km drone flight range resulted in a total delivery distance of 9269 meters. In contrast, the 

scenario with a 4 km drone flight range yielded a shorter delivery distance of 7347 meters. These results 

are visually represented in Figure 6 (a) and (b), which depict the flight routes for each scenario. In both 

optimization processes, the starting point (Sushi Tei restaurant) was randomly selected, denoted by a small 

pink circle. The ending point (customer) was also randomly selected, denoted by an inverted purple triangle. 

This study also investigated the optimal route for ground delivery, assuming the use of motorcycle, 

mirroring current conventional food delivery practices. This comparison aims to evaluate the performance 

of drone-based delivery against ground-based delivery. The route optimization process for ground-based 

delivery utilized the routing module within the OSMnx Python package. This optimization process 

generated the shortest route based, with a total distance of 8684 meters, as depicted in Figure 6 (c) as a blue 

line. 

 

3.7. Results of Environmental Impact Assessment 
3.7.1. Environmental Impact for Drone-Based Delivery 

The research conducted by Stolaroff, Samaras, O’Neill, Lubers, Mitchell, and Ceperly [31] investigated the 

relationship between battery weight, flight range, and energy consumption in drones. Two types of drones 

were utilized in their study: the 3D Robotics’ Iris quadcopter and the Turbo Ace’s Infinity 9 octocopter. 

These two drone models would serve as a reference for this study.  

Meanwhile, the research conducted by Nugroho, Hanafi, Shobatake, Chun, Tahara, and Purwanto [32] 

would be used as a reference for determining the environmental impact of electricity production per kWh. 

This research was selected as it focuses on electricity production in Indonesia, specifically in Java, Madura, 

and Bali (Jamali). 
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Subsequently, the environmental impact of drone usage for delivery per meter can be calculated by 

multiplying the energy consumption of each drone by the environmental impact value. The calculated 

environmental impacts for both drone types are presented in Table 5 and Table 6. 

Table 5. Environmental Impact Per Meters with the Usage of 2 km Flight Range Drone 

Environmental 

Impact Indicators 

Environmental Impact Value 

Fuel Production Phase Operational Phase 

GWP (kg CO2 eq.) 7,420 x 10-6 0 

AP (kg SO2 eq.) 4,123 x 10-8 0 

ADP (kg Sb eq.) 1,610 x 10-8 0 
 

Table 6. Environmental Impact Per Meters with the Usage of 4 km Flight Range Drone 

Environmental 

Impact Indicators 

Environmental Impact Value 

Fuel Production Phase Operational Phase 

GWP (kg CO2 eq.) 7,219 x 10-5 0 
AP (kg SO2 eq.) 4,011 x 10-7 0 

ADP (kg Sb eq.) 1,566 x 10-7 0 

 

3.7.2. Environmental Impact for Motorcycle-Based Delivery 

The environmental impact assessment of motorcycle delivery is based on the findings of Sopha, Setiowati, 

and Ma’mun [33]. This research was selected as the reference due to the use of a similar functional unit 

(per kilometer) and the utilization of Indonesian case study data. The data obtained from this research are 

the total environmental impact value and its corresponding percentage only for the operational phase.  

For the fuel production phase, the research conducted by Restianti and Gheewala [34] was used as a 

reference. Like the rationale for selecting the research by Nugroho, Hanafi, Shobatake, Chun, Tahara, and 

Purwanto [32] as electricity production reference, the study by Restianti and Gheewala was chosen due to 

its focus on gasoline production that also particularly for Indonesia. 

Subsequently, the environmental impact of motorcycle delivery during the operational phase was 

calculated by multiplying the total environmental impact by its corresponding percentage and then 

converting the functional unit to per meter. For the fuel production phase, the environmental impact was 

calculated by multiplying the total environmental impact by the fuel efficiency of the motorcycle (Supra X 

125), which is 26.71 km/L. This fuel efficiency value was obtained from the research conducted by Sopha, 

Setiowati, and Ma’mun [33]. The environmental impacts for motorcycle delivery per meter are presented 

in Table 7. 
 

Table 7. Environmental Impact Per Meter with the Usage of Motorcycle 

Environmental 

Impact Indicators 

Environmental Impact Value 

Fuel Production Phase Operational Phase 

GWP (kg CO2 eq.) 7,980 x 10-6 1,003 x 10-4 

AP (kg SO2 eq.) 4,191 x 10-8 2,176 x 10-7 

ADP (kg Sb eq.) 8,012 x 10-10 0 
 

3.8. Discussion 

3.8.1. Drone Charging Station Locations 

The optimization results for the scenario with five facilities that can be opened, as depicted in Figure 7 (a), 

show that the optimal locations are situated in the eastern region of the study area, characterized by the 

highest density of potential demand nodes. This observation indicated that the implemented algorithm 

effectively identifies optimal locations. However, in optimization scenarios with a higher number of 

facilities, some facilities were observed to be in areas with relatively low potential demand density. For 

instance, in the optimization results with 11 facilities that were opened, a facility was observed to be located 
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in the center of the study area as can be seen in Figure 7 (b), where the density of potential demand points 

is visibly low. This phenomenon can be attributed to the interconnectivity constraint imposed on the 

algorithm. This constraint, implemented to accommodate the battery capacity limitations of real-world 

drones, may sometimes compel the algorithm to select locations that are suboptimal from the perspective 

of maximizing demand coverage. 

 

 
Figure 7. Optimization Results of Covering Problem with Predefined Numbers of Facilities:  

5 (a), 11 (b), 17 (c) 

 

The analysis revealed that there were areas with significant potential demand that were not selected as 

facility locations, or the selected location of the facilities slightly shifted from those areas. For instance, in 

the optimization scenario with seventeen facilities that were opened, a facility was observed to be located 

at the southern boundary of the study area, resulting in a portion of its coverage area encompassing no 

potential demand points. Conversely, areas with high potential demand that were close to the selected 

facility location remained unserved. This phenomenon can be attributed to the heuristic nature of the ACO 

algorithm, which may not always converge to the global optimum solution. 

 

3.8.2. Delivery Routes 
The analysis of the total delivery distance, as summarized in Table 8, revealed significant variations among 

the three delivery modes. The 2 km range drone exhibited longer delivery routes compared to motorcycle-

based delivery. Conversely, the 4 km range drone showed shorter delivery routes than motorcycle-based 

delivery. 
 

Table 8. Total Delivery Distance of the Optimization Results for Each Scenarios 

Delivery Modes Total Delivery Distance (meters) 

Drone with 2 km flight range 9269 

Drone with 4 km flight range 7347 

Motorcycle 8684 

 

This disparity can be attributed to the strong dependence of drone delivery routes on the location of 

charging stations. While drones can fly in a straight line without adhering to road networks, as is the case 

with motorcycle deliveries, this advantage is contingent upon the alignment of all charging station locations 

along a straight line between the seller and the customer. Furthermore, the significant difference in total 

distance between the two drone types can be attributed to the greater flexibility afforded to drones with 

longer flight ranges in selecting appropriate charging stations. 

 

3.8.3. Environmental Impacts 
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The total environmental impact was calculated by multiplying the total delivery distance by the 

environmental impact per meter, as calculated previously in sub-section 3.7. The total environmental impact 

results are presented in three separate graphs corresponding to each environmental impact indicator, as 

shown in Figure 8. 

The results indicate that for the operational phase, the GWP and AP indicators had zero values. This is 

because electric-powered drones do not generate emissions during operation [35]. Conversely, the result 

for the motorcycle-based scenario showed that most of its environmental impact comes up from the 

operational phase. This is because a combustion engine used in motorcycles generates substantial amounts 

of greenhouse gas emissions and other pollutants, which contribute to climate change and air pollution. 

Meanwhile, the ADP indicator for the operational phase in all scenarios was zero as no non-renewable raw 

materials were used during this stage. 

 

 
Figure 8. Graphs of Total Environmental Impact for Each Indicators 

 

Furthermore, based on the three environmental impact graphs, it is evident that, considering the fuel 

production phase, the 4 km range drone exhibited the highest emissions across all environmental impact 

indicators compared to the other two modes. This can be attributed to the dominance of non-renewable 

energy sources in the electricity generation mix used to power the drones [32]. 

 

4. Conclusion 

The optimization results for the location of drone charging stations within the area of Yogyakarta Ring Road 

revealed a demand coverage of 22,357 nodes, representing 93.56% of the total potential demand nodes. The 

optimization results also indicate that some areas with relatively low potential demand density were selected 

as facility locations. This phenomenon can be attributed to the constraint within the algorithm that compels 

interconnectivities for all facilities that were opened, this requirement necessary to accommodate the battery 

capacity limitations of real-world drones. Furthermore, the optimization results exhibit that some areas with 

significant potential demand were not selected as facility locations, or the selected location of the facilities 

slightly shifted from those areas. This can be attributed to the heuristic nature of the algorithm, which does 

not always guarantee to obtain global optimum results. 

The optimized routes for each delivery scenario, drone with 2 km flight range, drone with 4 km flight 

range, and motorcycle, were determined to be 9,269 meters, 7,347 meters, and 8,684 meters, respectively. 

Meanwhile, the results of environmental impact assessments with the same scenarios were divided based 

on three indicators, Global Warming Potential (GWP), Acidification Potential (AP), and Abiotic Depletion 

Potential (ADP). The total environmental impact associated with GWP was calculated to be 6.88x10-2, 

5.30x10-1, and 9.40x10-1 for each scenario, respectively. Similarly, the total environmental impact 

associated with AP was determined to be 3.82x10-4, 2.95x10-3, and 2.25x10-3, respectively. Finally, the total 

environmental impact associated with ADP was found to be 1.49x10-4, 1.15x10-3, and 6.96x10-6, 

respectively. 
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Future research could consider using exact optimization methods to ensure the solution is global 

optimum. Moreover, incorporating other parameters such as land availability, investment costs, and 

charging station capacity could help identify not only the optimal location of the charging station but also 

the allocation of drones for each facility. For the routing problem, the Euclidean shortest path method could 

be considered as it can accommodate real-world conditions, such as obstacles or restricted areas [36]. 

Regarding the environmental impact assessment, a more comprehensive and systematical life cycle 

assessment (LCA) could be conducted. 
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