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Abstrak. Dalam sistem manufaktur modern, produk cacat merupakan salah satu bentuk 

pemborosan yang berdampak langsung pada efisiensi produksi, biaya, dan kualitas produk. Pada 

sistem produksi massal, keterlambatan dalam mendeteksi cacat berpotensi menghasilkan produk 

tidak sesuai spesifikasi dalam jumlah besar. Namun, pemanfaatan model prediksi berbasis data 

produksi untuk mendeteksi potensi cacat secara dini masih relatif terbatas dan belum banyak 

dikaji secara komparatif. Penelitian ini bertujuan untuk mengembangkan model awal prediksi 

tingkat cacat produk manufaktur menggunakan pendekatan machine learning. Metode yang 

digunakan adalah Random Forest (RF) dan Multi-Layer Perceptron (MLP) dengan 

memanfaatkan dataset manufaktur terbuka, serta dilakukan analisis feature engineering dan 

hyperparameter tuning. Kinerja model dievaluasi menggunakan train accuracy dan test 

accuracy serta selisihnya sebagai indikator overfitting. Hasil menunjukkan bahwa RF 

menghasilkan akurasi prediksi yang lebih tinggi, terutama setelah hyperparameter tuning, 

dengan penurunan overfitting yang signifikan. Sementara itu, MLP menunjukkan stabilitas yang 

lebih baik tetapi dengan akurasi yang lebih rendah. Penelitian ini menunjukkan bahwa model 

prediksi berbasis data produksi berpotensi menjadi alat bantu awal bagi Quality Control dalam 

mendeteksi risiko cacat secara dini di lingkungan manufaktur. 

Kata Kunci: prediksi produk cacat;’ quality control; machine learning; Random Forest; 

Multilayer Perceptron 

Abstract. In modern manufacturing systems, defective products are a form of waste that directly 

impacts production efficiency, costs, and product quality. In mass production systems, delays in 

defect detection have the potential to result in large quantities of non-conforming products. 

However, the use of production data-based predictive models for the early detection of potential 

defects is still relatively limited and has not been widely studied in a comparative context. This 

study aims to develop an initial model for predicting the defect rate of manufactured products 

using a machine learning approach. The methods employed are Random Forest (RF) and Multi-

Layer Perceptron (MLP), utilizing an open manufacturing dataset. Feature engineering and 

hyperparameter tuning analyses were conducted. Model performance was evaluated using train 

and test accuracy, with the difference between the two as an indicator of overfitting. The results 

show that RF produces higher prediction accuracy, especially after hyperparameter tuning, with 

a significant reduction in overfitting. Meanwhile, MLP exhibits better stability but with lower 

accuracy. This study demonstrates that production data-based predictive models have the 
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potential to be an initial tool for Quality Control in the early detection of defect risks in 

manufacturing environments. 

Keywords: defective product prediction; quality control; machine learning; Random Forest; 

Multilayer Perceptron 

 

1. Pendahuluan  

 Dalam sistem manufaktur modern, khususnya pada lingkungan mass production, keberadaan 

produk cacat merupakan salah satu tantangan yang secara langsung memengaruhi efisiensi operasional, 

biaya produksi, dan kepuasan pelanggan. Dalam kerangka Toyota Production System (TPS), cacat 

(defect) dikategorikan sebagai salah satu bentuk Muda atau pemborosan yang harus dieliminasi secara 

sistematis, dengan tujuan akhir mencapai kondisi zero-defect. Produk cacat tidak hanya menyebabkan 

pemborosan material dan energi, tetapi juga memicu kebutuhan rework, peningkatan waktu siklus, serta 

potensi klaim dan penarikan produk dari pasar [1]. Pada skala industri yang besar, akumulasi kerugian 

akibat cacat dapat menjadi signifikan dan mengganggu daya saing perusahaan secara berkelanjutan. 

Permasalahan cacat menjadi semakin kritis pada sistem produksi berbasis volume tinggi dan batch 

besar. Keterlambatan dalam mendeteksi cacat dapat menyebabkan satu batch produksi menghasilkan 

produk tidak sesuai spesifikasi dalam jumlah besar sebelum tindakan korektif diterapkan. Hal ini tidak 

hanya berdampak pada pemborosan biaya, tetapi juga menurunkan stabilitas proses dan kepercayaan 

pelanggan [2]. Oleh karena itu, konsep deteksi dini (early detection) terhadap potensi cacat menjadi 

signifikan, terutama untuk mencegah penyebaran cacat secara berantai di sepanjang lini produksi. 

Deteksi dini memungkinkan perusahaan untuk menghentikan atau menyesuaikan proses produksi 

lebihcepat, sehingga risiko kerugian dapat ditekan seminimal mungkin. 

Berbagai pendekatan telah diterapkan di dunia industri untuk mengendalikan dan menurunkan 

tingkat cacat, seperti Statistical Process Control (SPC), inspeksi visual oleh petugas Quality Control 

(QC), pengujian produk secara sampling, serta penerapan metodologi peningkatan berkelanjutan seperti 

Kaizen dan Six Sigma. SPC terbukti efektif untuk memonitor stabilitas proses dan mendeteksi variasi 

yang tidak wajar [3]. Namun, pendekatan ini umumnya bersifat kuratif dan bergantung pada batas 

kendali statistik yang telah ditentukan sebelumnya. Selain itu, inspeksi manual masih menjadi praktik 

umum di banyak perusahaan, tetapi metode ini memiliki keterbatasan signifikan, antara lain 

ketergantungan pada pengalaman operator, kelelahan kerja, subjektivitas penilaian, serta keterbatasan 

kemampuan manusia dalam mengenali pola kompleks dari banyak variabel proses secara simultan. 

Seiring meningkatnya ketersediaan data produksi, berbagai penelitian mulai mengadopsi pendekatan 

berbasis machine learning untuk mendukung pengendalian kualitas. Beberapa studi sebelumnya 

menunjukkan bahwa algoritma seperti Decision Tree, Support Vector Machine, Artificial Neural 

Network, dan Ensemble Learning dapat digunakan untuk mengklasifikasikan atau memprediksi cacat 

produk berdasarkan data proses manufaktur [4]. Model-model tersebut mampu menangkap hubungan 

nonlinier antar variabel yang sulit diidentifikasi melalui pendekatan statistik konvensional [5]. Namun, 

sebagian besar penelitian masih berfokus pada domain atau proses tertentu, menggunakan dataset yang 

terbatas, atau tidak secara eksplisit membandingkan risiko overfitting antara model kompleks dan model 

yang lebih sederhana. Selain itu, pemanfaatan dataset terbuka yang merepresentasikan faktor-faktor 

produksi nyata masih relatif jarang dibahas secara komprehensif. 

Dalam praktik manufaktur, produk cacat dapat disebabkan oleh berbagai faktor yang saling 

berkaitan, seperti kondisi dan keandalan mesin, kualitas bahan baku, kapasitas dan beban produksi, 

variasi proses, serta keterampilan dan konsistensi operator [5],[6]. Faktor-faktor tersebut sering kali 

terekam dalam sistem informasi produksi, tetapi belum dimanfaatkan secara optimal sebagai dasar 

prediksi risiko cacat. Padahal, integrasi faktor-faktor tersebut ke dalam model prediktif berpotensi 

menghasilkan early warning system yang mampu mendukung pengambilan keputusan QC secara lebih 

objektif dan berbasis data. Kebutuhan akan sistem prediksi ini semakin mendesak mengingat 

keterbatasan inspeksi manual dan tuntutan industri terhadap kualitas yang semakin tinggi. 

Berdasarkan kondisi tersebut, terdapat celah penelitian berupa masih terbatasnya pengembangan dan 

evaluasi model prediksi produk cacat yang memanfaatkan berbagai faktor produksi secara simultan, 

khususnya dengan pendekatan komparatif antar model machine learning dan analisis overfitting. Oleh 
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karena itu, penelitian ini bertujuan untuk mengembangkan model awal (initial model) dalam 

memprediksi tingkat cacat produk manufaktur menggunakan dataset produksi yang tersedia secara 

publik. Penelitian ini membandingkan kinerja Random Forest (RF) dan Multi-Layer Perceptron (MLP) 

dalam mengklasifikasikan tingkat cacat menjadi low defect dan high defect, dengan mempertimbangkan 

akurasi training dan testing, kesenjangan performa, pemilihan fitur [7], serta pengaruh hyperparameter 

tuning. Hasil penelitian ini diharapkan dapat memberikan kontribusi awal bagi pengembangan sistem 

prediksi cacat berbasis data sebagai alat bantu QC dalam konteks manufaktur modern. 

 

2. Metode 

2.1 Dataset 

Penelitian ini menggunakan dataset opensource yang diperoleh dari Kaggle dengan Digital Object 

Identifier (DOI): https://doi.org/10.34740/kaggle/dsv/8715500 [8]. Dataset ini merepresentasikan data 

produksi pada lingkungan manufaktur dan dirancang untuk mendukung analisis serta pemodelan 

prediksi tingkat cacat produk. Penggunaan dataset opensource memungkinkan penelitian ini untuk 

direplikasi dan dibandingkan dengan studi selanjutnya. 

Dataset memuat sejumlah fitur yang mencerminkan berbagai aspek proses produksi, termasuk 

karakteristik mesin, kondisi operasional, kualitas material, serta parameter proses lainnya yang 

berpotensi memengaruhi terjadinya cacat produk. Seluruh fitur dalam dataset bersifat numerik dan dapat 

langsung digunakan dalam pemodelan machine learning setelah melalui tahap prapemrosesan yang 

diperlukan. Data yang tersedia merepresentasikan kondisi produksi aktual, sehingga relevan untuk 

pengembangan model prediksi dalam konteks QC manufaktur. 

Target atau variabel tujuan dalam penelitian ini adalah tingkat cacat produk, yang dikategorikan ke 

dalam dua kelas, yaitu low defect dan high defect. Pendekatan klasifikasi biner ini dipilih untuk 

merepresentasikan kondisi kualitas produk secara praktis dan operasional, di mana hasil prediksi dapat 

digunakan sebagai indikator awal risiko cacat pada suatu kondisi produksi [9]. Dengan demikian, 

permasalahan yang dikaji dalam penelitian ini diformulasikan sebagai masalah klasifikasi supervised 

learning. Selain menggunakan seluruh fitur yang tersedia dalam dataset, penelitian ini juga 

mengevaluasi pengaruh pemilihan fitur dengan mengidentifikasi lima fitur teratas berdasarkan tingkat 

kepentingannya (feature importance) pada model RF. Pendekatan ini bertujuan untuk menganalisis 

sejauh mana pengurangan jumlah fitur dapat memengaruhi performa model serta potensi generalisasi 

terhadap data uji. Atribut feature yang disediakan dalam dataset ini tertampil pada Tabel 1. 

Tabel 1. Deskripsi Fitur dalam Dataset 

No. Nama Fitur Jenis Data Deskripsi 

1 ProductionVolume Numerik Jumlah produk yang dihasilkan dalam suatu periode 

produksi. 

2 ProductionCost Numerik Total biaya produksi yang dikeluarkan untuk proses 

manufaktur. 

3 SupplierQuality Numerik Skor atau indikator kualitas bahan baku yang 

disuplai oleh pemasok. 

4 DeliveryDelay Numerik Keterlambatan pengiriman bahan baku atau 

komponen dalam proses produksi. 

5 DefectRate Numerik Persentase atau tingkat produk cacat yang 

teridentifikasi dalam proses produksi. 

6 QualityScore Numerik Skor kualitas produk berdasarkan evaluasi atau 

standar kualitas internal. 

7 MaintenanceHours Numerik Total jam perawatan mesin yang dilakukan dalam 

periode tertentu. 

8 DowntimePercentage Numerik Persentase waktu berhentinya mesin atau sistem 

produksi dari total waktu operasional. 

9 InventoryTurnover Numerik Rasio perputaran persediaan yang menunjukkan 

seberapa cepat inventori digunakan atau digantikan. 
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10 StockoutRate Numerik Tingkat terjadinya kekurangan stok bahan baku atau 

produk selama proses produksi. 

11 WorkerProductivity Numerik Tingkat produktivitas tenaga kerja dalam proses 

manufaktur. 

12 SafetyIncidents Numerik Jumlah kejadian keselamatan kerja yang tercatat 

dalam lingkungan produksi. 

13 EnergyConsumption Numerik Total konsumsi energi yang digunakan dalam proses 

produksi. 

14 EnergyEfficiency Numerik Indikator efisiensi penggunaan energi dalam proses 

manufaktur. 

15 AdditiveProcessTime Numerik Waktu yang dibutuhkan untuk proses manufaktur 

aditif dalam produksi. 

16 AdditiveMaterialCost Numerik Biaya material yang digunakan dalam proses 

manufaktur aditif. 

17 DefectStatus Target 

(Biner) 

Status cacat produk sebagai variabel target 

(low/high). 

 

2.2 Kerangka Model Machine Learning 

Dalam studi ini, dua pendekatan machine learning digunakan untuk membangun model prediksi tingkat 

cacat produk, yaitu RF dan MLP. Kedua model dipilih karena memiliki karakteristik yang berbeda 

dalam menangkap pola data, sehingga memungkinkan analisis komparatif terhadap performa dan 

kecenderungan overfitting. 

Variabel independen dalam penelitian ini adalah seluruh fitur proses produksi yang terdapat dalam 

dataset. Fitur-fitur tersebut mencerminkan kondisi operasional manufaktur dan diasumsikan memiliki 

kontribusi terhadap kemungkinan terjadinya cacat produk. Variabel dependen adalah tingkat cacat 

produk yang diklasifikasikan ke dalam dua kategori, yaitu low defect dan high defect. Hubungan antara 

variabel independen dan dependen dimodelkan menggunakan pendekatan supervised learning. 

Model RF dibangun sebagai metode ensemble learning yang mengombinasikan sejumlah pohon 

keputusan (decision trees) untuk meningkatkan stabilitas dan akurasi prediksi [10].[10]. Pada tahap 

awal, model dilatih menggunakan parameter default untuk mengevaluasi performa dasar dan 

mengidentifikasi potensi overfitting, yang ditunjukkan oleh perbedaan antara akurasi data training dan 

data test. Selanjutnya, dilakukan proses hyperparameter tuning untuk menyesuaikan parameter utama 

seperti jumlah pohon (n_estimators), kedalaman maksimum pohon (max_depth), serta jumlah minimum 

sampel pada node pemisah dan daun (min_samples_split dan min_samples_leaf), dengan tujuan 

meningkatkan kemampuan generalisasi model. 

MLP pada eksperimen digunakan sebagai representasi pendekatan artificial neural network (ANN) 

[11]. Arsitektur MLP terdiri dari lapisan input yang menerima seluruh fitur independen, satu atau lebih 

hidden layers dengan fungsi aktivasi nonlinier, serta lapisan output yang menghasilkan probabilitas 

kelas tingkat cacat. Model ini dilatih menggunakan algoritma backpropagation dengan optimisasi 

berbasis gradien. Seperti pada RF, evaluasi awal dilakukan menggunakan parameter standar, kemudian 

dilanjutkan dengan penyesuaian hiperparameter, seperti jumlah neuron pada hidden layer, learning rate, 

dan jumlah iterasi pelatihan (epochs), untuk mengurangi overfitting dan meningkatkan stabilitas 

performa. Kinerja kedua model dievaluasi menggunakan akurasi pada data training dan data testing, 

serta selisih di antara keduanya sebagai indikator overfitting. Pendekatan ini memungkinkan analisis 

yang lebih komprehensif tidak hanya terhadap tingkat ketepatan prediksi, tetapi juga terhadap 

kemampuan model dalam melakukan generalisasi pada data yang belum pernah diuji sebelumnya. 

2.2.1 Overall Architecture 

Guna memperoleh gambaran awal mengenai kinerja model dalam memprediksi tingkat cacat produk, 

penelitian ini terlebih dahulu membangun model RF dan MLP menggunakan parameter default. 

Pendekatan ini bertujuan untuk menghasilkan baseline performance yang merepresentasikan 

kemampuan dasar masing-masing algoritma sebelum dilakukan proses optimisasi parameter. Model 
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Architecture dan konfigurasi parameter default untuk kedua model disajikan pada Tabel 2 dan Tabel 3. 

Penggunaan parameter default juga memungkinkan analisis awal terhadap kecenderungan overfitting 

dan perbedaan karakteristik pembelajaran antara model berbasis ensemble dan ANN, yang selanjutnya 

menjadi dasar dalam tahap hyperparameter tuning dan evaluasi lanjutan. 

Tabel 2. Model Architecture untuk RF dengan default setting 

No. Parameter Nilai Deskripsi 

1 Number of Trees 

(n_estimators) 
100 

Jumlah pohon keputusan yang digunakan dalam 

ensemble RF. 

2 Criterion Gini Fungsi evaluasi untuk mengukur kualitas 

pemisahan pada setiap node pohon. 

3 Maximum Depth 

(max_depth) 

None Kedalaman maksimum pohon keputusan; tidak 

dibatasi sehingga pohon dapat tumbuh penuh. 

4 Minimum Samples Split 

(min_samples_split) 
2 

Jumlah minimum sampel yang diperlukan untuk 

memisahkan sebuah node internal. 

5 Minimum Samples Leaf 

(min_samples_leaf) 
1 

Jumlah minimum sampel yang harus berada pada 

sebuah node daun. 

6 Maximum Features 

(max_features) 

sqrt Jumlah maksimum fitur yang dipertimbangkan saat 

mencari pemisahan terbaik. 

7 Bootstrap Sampling TRUE Menentukan apakah pengambilan sampel dilakukan 

dengan pengembalian (bootstrap). 

8 Random State None Nilai seed untuk pengacakan; tidak ditetapkan pada 

konfigurasi default. 

 

Tabel 3. Model Architecture untuk MLP dengan default setting 

No. Parameter Nilai Deskripsi 

1 Hidden Layer Size 

(hidden_layer_sizes) 

<100 Jumlah neuron pada lapisan tersembunyi; satu 

hidden layer dengan <100 neuron. 

2 Activation Function ReLU Fungsi aktivasi yang digunakan pada hidden layer. 

3 Solver Adam Algoritma optimisasi berbasis gradien untuk 

pelatihan jaringan saraf. 

4 Learning Rate Constant Skema pembaruan laju pembelajaran selama proses 

pelatihan. 

5 Initial Learning Rate 

(learning_rate_init) 

0.001 Nilai awal laju pembelajaran. 

6 Maximum Iterations 

(max_iter) 

200 Jumlah maksimum iterasi pelatihan jaringan. 

7 Batch Size Auto Ukuran batch yang digunakan selama pelatihan 

(ditentukan otomatis oleh sistem). 

8 Alpha (Regularization) 0.0001 Parameter regularisasi L2 untuk mencegah 

overfitting. 

9 Shuffle TRUE Menentukan apakah data diacak pada setiap iterasi 

pelatihan. 

10 Random State None Nilai seed untuk pengacakan; tidak ditentukan pada 

konfigurasi default. 

 

2.2.2 Kerangka Feature Engineering 

Pada tahap awal pemodelan, seluruh fitur yang tersedia dalam dataset digunakan untuk membangun 

model prediksi tingkat cacat produk. Pendekatan ini bertujuan untuk mengevaluasi kemampuan model 

dalam memanfaatkan informasi secara menyeluruh tanpa adanya reduksi fitur. Penggunaan seluruh fitur 
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juga berfungsi sebagai baseline, sehingga dampak dari proses seleksi fitur terhadap kinerja model dapat 

dianalisis secara objektif. 

Selanjutnya, dilakukan proses feature engineering berbasis seleksi fitur untuk mengidentifikasi fitur-

fitur yang paling berpengaruh terhadap prediksi tingkat cacat. Untuk model RF, seleksi fitur dilakukan 

menggunakan metode feature importance bawaan model [12], [13], yang dihitung berdasarkan 

kontribusi masing-masing fitur dalam mengurangi impurity pada proses pembentukan decision trees. 

Nilai feature importance ini digunakan untuk melakukan pemeringkatan fitur dari yang paling 

berpengaruh hingga yang paling rendah kontribusinya terhadap model. 

Berdasarkan hasil pemeringkatan tersebut, lima fitur dengan nilai feature importance tertinggi dipilih 

untuk membangun kembali model RF. Pendekatan ini bertujuan untuk menguji apakah reduksi jumlah 

fitur dapat meningkatkan kemampuan generalisasi model, mengurangi kompleksitas, serta menekan 

risiko overfitting tanpa mengorbankan akurasi prediksi secara signifikan. Selain itu, penggunaan subset 

fitur yang lebih ringkas juga mendukung interpretabilitas model dalam konteks QC manufaktur. 

Untuk model MLP, metode seleksi fitur yang berbeda diterapkan karena MLP tidak secara langsung 

menyediakan ukuran feature importance yang bersifat intrinsik. Oleh karena itu, penelitian ini 

menggunakan metode Permutation Feature Importance [14], [15], yaitu pendekatan berbasis evaluasi 

kinerja model dengan cara mengacak nilai suatu fitur secara acak dan mengamati penurunan performa 

model yang dihasilkan. Semakin besar penurunan kinerja yang terjadi, semakin tinggi kontribusi fitur 

tersebut terhadap model. 

Hasil pemeringkatan fitur menggunakan metode permutation kemudian digunakan untuk memilih 

lima fitur dengan kontribusi tertinggi pada model MLP. Model MLP selanjutnya dilatih ulang 

menggunakan subset lima fitur tersebut untuk dibandingkan dengan model MLP yang menggunakan 

seluruh fitur. Dengan demikian, analisis ini memungkinkan perbandingan yang adil mengenai pengaruh 

seleksi fitur terhadap performa dan stabilitas model pada dua pendekatan machine learning yang 

memiliki karakteristik pembelajaran yang berbeda. 

2.2.3 Kerangka Hyperparameter Tuning 

Pada tahap lanjutan pemodelan, dilakukan hyperparameter tuning untuk meningkatkan kemampuan 

generalisasi model dan mengurangi kecenderungan overfitting yang teridentifikasi pada tahap awal [16], 

[17]. Penyesuaian hyperparameter difokuskan pada parameter kunci yang secara langsung 

memengaruhi kompleksitas model, baik pada RF maupun MLP. Pada tahap ini, seluruh fitur independen 

dalam dataset tetap digunakan sebagai masukan model, tanpa melakukan reduksi fitur, sehingga dampak 

penyesuaian hyperparameter dapat dianalisis secara terpisah dari efek seleksi fitur. 

Pada model RF, penyesuaian dilakukan dengan membatasi kedalaman maksimum pohon keputusan 

(max_depth) menjadi 5. Pada konfigurasi awal dengan parameter default, pohon keputusan dapat 

tumbuh tanpa batas kedalaman, sehingga model cenderung mempelajari pola yang sangat spesifik pada 

data latih. Dengan membatasi kedalaman pohon, kompleksitas model berhasil ditekan, sehingga setiap 

pohon hanya menangkap pola-pola utama yang bersifat lebih umum. Strategi ini bertujuan untuk 

mengurangi varian model dan meningkatkan stabilitas performa pada data uji, tanpa mengorbankan 

akurasi secara signifikan 

Sementara itu, pada model MLP, penyesuaian dilakukan pada arsitektur jaringan, khususnya pada 

jumlah neuron pada hidden layer. Jika pada konfigurasi awal jumlah neuron yang digunakan lebih kecil 

dari 100, maka pada tahap tuning jumlah neuron dinaikkan menjadi 100 neuron pada satu hidden layer. 

Penyesuaian ini dimaksudkan untuk meningkatkan kapasitas representasi model dalam menangkap 

hubungan nonlinier antar fitur. Dengan jumlah neuron yang lebih besar, MLP diharapkan mampu 

mempelajari pola yang lebih kompleks dari data, namun tetap dikombinasikan dengan mekanisme 

regularisasi bawaan untuk menjaga stabilitas pembelajaran. 

Dengan mempertahankan penggunaan seluruh fitur pada tahap hyperparameter tuning, hasil evaluasi 

yang diperoleh mencerminkan murni pengaruh perubahan arsitektur dan kompleksitas model terhadap 

kinerja prediksi. Pendekatan ini memungkinkan perbandingan yang lebih adil antara hasil sebelum dan 

sesudah tuning, serta memberikan dasar yang kuat untuk menilai efektivitas penyesuaian 

hyperparameter dalam meningkatkan performa dan mengurangi kesenjangan antara akurasi data latih 

dan data uji. 
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3. Hasil dan Pembahasan 

3.1 Hasil Feature Engineering 

 Hasil feature importance yang dihasilkan oleh model RF berdasarkan penurunan impurity pada 

proses pembentukan pohon keputusan tertampil pada Gambar 1 (a). Terlihat bahwa kontribusi fitur 

terhadap prediksi tingkat cacat produk tidak terdistribusi secara merata. Beberapa fitur memiliki 

pengaruh yang jauh lebih dominan dibandingkan fitur lainnya, menunjukkan bahwa model RF sangat 

bergantung pada variabel tertentu dalam membedakan kondisi produk cacat dan tidak cacat. Pola ini 

juga mengindikasikan bahwa informasi yang relevan untuk prediksi cacat terkonsentrasi pada sejumlah 

kecil faktor produksi utama. 

Berdasarkan hasil pemeringkatan, lima fitur dengan nilai feature importance tertinggi pada model 

RF adalah MaintenanceHours, DefectRate, QualityScore, ProductionVolume, dan EnergyEfficiency. 

Tingginya kontribusi MaintenanceHours menunjukkan bahwa kondisi dan frekuensi perawatan mesin 

memiliki peran penting dalam memengaruhi kualitas produk. Hal ini sejalan dengan praktik manufaktur, 

di mana mesin yang kurang terawat cenderung menghasilkan variasi proses yang lebih besar dan 

meningkatkan risiko cacat [18], [19]. Fitur DefectRate dan QualityScore juga muncul sebagai faktor 

dominan karena keduanya secara langsung merepresentasikan performa kualitas proses produksi. 

Sementara itu, ProductionVolume dan EnergyEfficiency mencerminkan beban operasi dan efisiensi 

penggunaan sumber daya, yang dapat memengaruhi stabilitas proses dan konsistensi kualitas produk, 

terutama pada sistem produksi massal. 

Adapun hasil Permutation Feature Importance pada model MLP tertampil pada Gambar 1 (b). 

Berbeda dengan RF, metode ini mengukur kontribusi fitur berdasarkan penurunan kinerja model ketika 

nilai suatu fitur diacak, sehingga lebih merefleksikan sensitivitas prediksi model terhadap perubahan 

informasi pada fitur tertentu. Hasil yang diperoleh menunjukkan bahwa MLP memiliki pola 

ketergantungan fitur yang berbeda, dengan beberapa fitur memberikan dampak positif yang kuat 

terhadap performa model, sementara fitur lain menunjukkan kontribusi yang sangat kecil atau bahkan 

negatif. 

Lima fitur dengan kontribusi tertinggi pada model MLP berdasarkan metode Permutation Features 

Improtance adalah AdditiveProcessTime, AdditiveMaterialCost, DefectRate, SupplierQuality, dan 

InventoryTurnover. Dominasi AdditiveProcessTime dan AdditiveMaterialCost menunjukkan bahwa 

model MLP lebih sensitif terhadap variabel yang berkaitan dengan waktu dan biaya proses manufaktur 

aditif, sebab memiliki hubungan nonlinier dengan tingkat cacat produk. Fitur DefectRate kembali 

muncul sebagai variabel penting karena merepresentasikan kondisi kualitas historis proses. Sementara 

itu, SupplierQuality dan InventoryTurnover mencerminkan aspek rantai pasok dan manajemen material, 

yang secara tidak langsung memengaruhi stabilitas produksi dan konsistensi kualitas. Menariknya, 

beberapa fitur seperti WorkerProductivity dan DowntimePercentage menunjukkan kontribusi negatif, 

yang mengindikasikan bahwa pengacakan fitur tersebut justru sedikit meningkatkan performa model, 

sehingga fitur tersebut berpotensi menambah noise dalam pembelajaran MLP. Perbandingan hasil 

pemeringkatan untuk kedua metode, tertampil pada Gambar 1. 
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(a) 

 
(b) 

Gambar 1. Hasil Features Engineering: (a) Features Importance pada Model RF; (b) Features 

Importance pada Model MLP 

3.2 Performansi Klasifikasi 

3.2.1 Hasil Prediksi dengan Default Parameter 

Hasil eksperimen yang tertampil pada Tabel 4, menunjukkan perbandingan kinerja dua metode machine 

learning, yaitu RF dan MLP, baik dengan menggunakan seluruh fitur maupun lima fitur teratas hasil 

seleksi fitur. Evaluasi dilakukan berdasarkan train accuracy, test accuracy, serta selisih keduanya (gap) 

sebagai indikator kecenderungan overfitting. Pendekatan ini memungkinkan analisis yang lebih 

menyeluruh terhadap kemampuan prediksi dan generalisasi masing-masing model. 

Pada model RF, penggunaan seluruh fitur menghasilkan train accuracy sebesar 1.000 dan test 

accuracy sebesar 0.927, dengan gap sebesar 0.073. Nilai train accuracy yang sempurna 

mengindikasikan bahwa model mampu mempelajari pola pada data pelatihan dengan sangat baik, tetapi  

perbedaan yang cukup besar dengan akurasi data uji menunjukkan adanya kecenderungan overfitting. 

Ketika jumlah fitur dikurangi menjadi lima fitur teratas, test accuracy justru meningkat menjadi 0.934, 

sementara gap menurun menjadi 0.066. Hasil ini menunjukkan bahwa seleksi fitur pada RF dapat 
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membantu mengurangi kompleksitas model dan meningkatkan kemampuan generalisasi tanpa 

menurunkan akurasi. 

Berbeda dengan RF, model MLP menunjukkan karakteristik pembelajaran yang lebih konservatif. 

Menggunakan seluruh fitur, MLP menghasilkan train accuracy sebesar 0.769 dan test accuracy sebesar 

0.745, dengan gap relatif kecil yaitu 0.024. Hal ini mengindikasikan bahwa MLP tidak mengalami 

overfitting yang signifikan, tetapi kemampuan prediksinya secara keseluruhan masih berada di bawah 

RF. Ketika jumlah fitur dikurangi menjadi lima fitur teratas, train dan test accuracy MLP menurun 

menjadi 0.668 dan 0.662, dengan gap yang semakin kecil yaitu 0.006. Penurunan akurasi ini 

menunjukkan bahwa MLP lebih sensitif terhadap pengurangan fitur dan membutuhkan informasi yang 

lebih lengkap untuk mempelajari pola secara optimal. 

Jika dibandingkan antar metode, RF secara konsisten menghasilkan akurasi yang lebih tinggi 

dibandingkan MLP, baik pada penggunaan seluruh fitur maupun subset lima fitur. Namun, RF juga 

menunjukkan kecenderungan overfitting yang lebih besar, terutama ketika menggunakan seluruh fitur. 

Sebaliknya, MLP memiliki gap yang lebih kecil, mencerminkan stabilitas generalisasi yang lebih baik, 

meskipun dengan akurasi yang lebih rendah. Perbedaan ini mencerminkan karakteristik dasar kedua 

model, di mana RF unggul dalam menangkap pola kompleks berbasis aturan dan interaksi fitur, 

sementara MLP memerlukan struktur dan jumlah fitur yang memadai untuk memaksimalkan 

performanya. 

Secara keseluruhan, temuan ini menunjukkan bahwa seleksi fitur memberikan dampak positif yang 

lebih signifikan pada RF dibandingkan MLP. Penggunaan lima fitur teratas pada RF mampu 

meningkatkan test accuracy sekaligus menurunkan overfitting, menjadikannya konfigurasi yang lebih 

seimbang antara akurasi dan generalisasi. Sebaliknya, pada MLP, pengurangan fitur memang 

menurunkan risiko overfitting, tetapi diiringi dengan penurunan akurasi yang cukup besar. Temuan ini 

menegaskan pentingnya penyesuaian strategi feature engineering sesuai dengan karakteristik model 

yang digunakan dalam prediksi cacat produk manufaktur. Adapun perbandingan gap ini secara visual 

tersaji pada Gambar 2. 

 

Tabel 4. Hasil Prediksi Produk Cacat untuk Model RF dan MLP dengan Default Parameter 

Metode Semua Fitur Top-5 
 

Train Accuracy Test Accuracy Gap Train Accuracy Test Accuracy Gap 

RF 1.000 0.927 0.073 1.000 0.934 0.066 

MLP 0.769 0.745 0.024 0.668 0.662 0.006 

 

  

(a) (b) 
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(c) (d) 

Gambar 2. Perbandingan Gap antara Train dan Test Accuracy; (a) RF-all Features; (b) MLP-all 

Features; (c) RF Top 5 Features; (d)MLP Top 5 Features 

 

3.2.2 Hasil Prediksi dengan Hyperparameter-Tuning 

Tabel 5 menyajikan perbandingan kinerja model RF dan MLP dalam memprediksi tingkat cacat produk 

menggunakan konfigurasi parameter default dan setelah dilakukan hyperparameter tuning. Evaluasi 

dilakukan dengan membandingkan akurasi pada train accuracy, serta gap sebagai indikator 

kecenderungan overfitting. Hasil ini memberikan gambaran mengenai pengaruh pengaturan parameter 

terhadap kemampuan prediksi dan generalisasi kedua model. 

Pada model RF, penggunaan parameter default menghasilkan train accuracy yang sangat tinggi 

(1.000) dengan test accuracy sebesar 0.927, serta gap sebesar 0.073. Pola ini menunjukkan bahwa model 

memiliki kemampuan belajar yang sangat kuat terhadap data train, tetapi cenderung mempelajari pola 

yang terlalu spesifik sehingga terjadi overfitting. Setelah dilakukan hyperparameter tuning dengan 

membatasi kompleksitas model, khususnya melalui pengaturan max_depth = 5, terjadi penurunan train 

accuracy menjadi 0.849, tetapi diikuti oleh test accuracy yang relatif seimbang yaitu 0.847. Penurunan 

gap yang signifikan menjadi 0.002 mengindikasikan bahwa tuning berhasil meningkatkan kemampuan 

generalisasi model dengan mengurangi varian tanpa mengorbankan performa secara drastis. 

Sementara itu, model MLP menunjukkan perilaku yang berbeda. Dengan parameter default, MLP 

menghasilkan akurasi data latih sebesar 0.769 dan akurasi data uji sebesar 0.745, dengan gap yang relatif 

kecil (0.024). Hal ini mengindikasikan bahwa MLP secara alami memiliki kecenderungan overfitting 

yang lebih rendah dibandingkan RF, tetapi dengan tingkat akurasi yang juga lebih rendah. Setelah 

dilakukan hyperparameter tuning dengan penyesuaian jumlah neuron pada hidden layer menjadi 100, 

train accuracy dan test accuracy menjadi sama, yaitu 0.713, dengan gap sebesar 0.000. Hasil ini 

menunjukkan bahwa model MLP menjadi sangat stabil, meskipun dengan konsekuensi penurunan 

akurasi secara keseluruhan. 

Secara komparatif, hasil ini menegaskan bahwa hyperparameter tuning memberikan dampak yang 

lebih signifikan terhadap RF dibandingkan MLP. Pada RF, tuning berhasil menyeimbangkan akurasi 

dan generalisasi, sehingga model menjadi lebih robust untuk digunakan pada data yang belum pernah 

dilihat sebelumnya. Sebaliknya, pada MLP, tuning justru menurunkan kapasitas model dalam 

menangkap pola kompleks pada data, yang kemungkinan disebabkan oleh keterbatasan ukuran dataset 

atau karakteristik data yang lebih sesuai untuk pendekatan berbasis pohon keputusan. MLP cenderung 

memerlukan data dalam jumlah besar dan pola nonlinier yang kuat agar dapat menunjukkan 

keunggulannya secara optimal. Perubahan akurasi setelah perlakuan tuning dapat dideskripsikan 

menggunakan Gambar 3. 

Secara keseluruhan, hasil ini menunjukkan bahwa RF dengan hyperparameter tuning merupakan 

konfigurasi yang paling seimbang untuk prediksi cacat produk pada dataset ini, karena mampu menjaga 

akurasi yang kompetitif sekaligus meminimalkan risiko overfitting. Temuan ini juga mengindikasikan 

bahwa pemilihan model dan strategi tuning harus disesuaikan dengan karakteristik data dan tujuan 

233



aplikasi, khususnya dalam konteks QC manufaktur yang menuntut keseimbangan antara ketepatan 

prediksi dan keandalan generalisasi. 

  
(a) (b) 

Gambar 3. Perubahan Akurasi untuk Kedua Metode Analisis pada Fase Tuning 

 

Tabel 5. Perbandingan Prediksi Produk Cacat untuk Model RF dan MLP dengan Default Parameter 

dan Hyperparameter-Tuning 

Metode Default Parameter Hyperparameter-Tuning 
 

Train Accuracy Test Accuracy Gap Train Accuracy Test Accuracy Gap 

RF 1.000 0.927 0.073 0.849 0.847 0.002 

MLP 0.769 0.745 0.024 0.713 0.713 0.000 

 

4. Kesimpulan 
Berdasarkan hasil eksperimen, RF dan MLP memiliki potensi untik digunakan sebagai metode prediksi 

tingkat cacat produk, tetapi menunjukkan karakteristik kinerja yang berbeda. RF memberikan akurasi 

prediksi yang lebih tinggi, khususnya setelah dilakukan hyperparameter tuning, serta menunjukkan 

kemampuan generalisasi yang lebih baik dengan penurunan overfitting yang signifikan. Sementara itu, 

MLP menghasilkan model yang lebih stabil dengan gap akurasi yang lebih kecil, tetapi dengan tingkat 

akurasi yang lebih rendah. Temuan ini menunjukkan bahwa model prediksi cacat berbasis data produksi 

dapat berperan sebagai alat bantu awal bagi fungsi QC dalam mendeteksi potensi cacat secara dini, 

sekaligus menegaskan pentingnya pemilihan model dan penyesuaian parameter yang sesuai dengan 

karakteristik data manufaktur yang digunakan. Penggunaan dataset sekunder pada penelitian ini menjadi 

potensi untuk melakukan telaah lanjut dengan data primer, pada penelitian selanjutnya. Lebih lagi, 

evaluasi model masih terbatas pada metrik akurasi, sehingga belum sepenuhnya menangkap implikasi 

kesalahan prediksi, khususnya pada kasus false negative yang krusial dalam konteks QC. Penelitian 

selanjutnya disarankan untuk menggunakan dataset yang lebih beragam dan berskala lebih besar, 

mengeksplorasi metrik evaluasi tambahan seperti precision, recall, dan F1-score. 
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