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Abstrak. Dalam sistem manufaktur modern, produk cacat merupakan salah satu bentuk
pemborosan yang berdampak langsung pada efisiensi produksi, biaya, dan kualitas produk. Pada
sistem produksi massal, keterlambatan dalam mendeteksi cacat berpotensi menghasilkan produk
tidak sesuai spesifikasi dalam jumlah besar. Namun, pemanfaatan model prediksi berbasis data
produksi untuk mendeteksi potensi cacat secara dini masih relatif terbatas dan belum banyak
dikaji secara komparatif. Penelitian ini bertujuan untuk mengembangkan model awal prediksi
tingkat cacat produk manufaktur menggunakan pendekatan machine learning. Metode yang
digunakan adalah Random Forest (RF) dan Multi-Layer Perceptron (MLP) dengan
memanfaatkan dataset manufaktur terbuka, serta dilakukan analisis feature engineering dan
hyperparameter tuning. Kinerja model dievaluasi menggunakan frain accuracy dan test
accuracy serta selisihnya sebagai indikator overfitting. Hasil menunjukkan bahwa RF
menghasilkan akurasi prediksi yang lebih tinggi, terutama setelah hyperparameter tuning,
dengan penurunan overfitting yang signifikan. Sementara itu, MLP menunjukkan stabilitas yang
lebih baik tetapi dengan akurasi yang lebih rendah. Penelitian ini menunjukkan bahwa model
prediksi berbasis data produksi berpotensi menjadi alat bantu awal bagi Quality Control dalam
mendeteksi risiko cacat secara dini di lingkungan manufaktur.

Kata Kunci: prediksi produk cacat;” quality control; machine learning; Random Forest;
Multilayer Perceptron

Abstract. In modern manufacturing systems, defective products are a form of waste that directly
impacts production efficiency, costs, and product quality. In mass production systems, delays in
defect detection have the potential to result in large quantities of non-conforming products.
However, the use of production data-based predictive models for the early detection of potential
defects is still relatively limited and has not been widely studied in a comparative context. This
study aims to develop an initial model for predicting the defect rate of manufactured products
using a machine learning approach. The methods employed are Random Forest (RF) and Multi-
Layer Perceptron (MLP), utilizing an open manufacturing dataset. Feature engineering and
hyperparameter tuning analyses were conducted. Model performance was evaluated using train
and test accuracy, with the difference between the two as an indicator of overfitting. The results
show that RF produces higher prediction accuracy, especially after hyperparameter tuning, with
a significant reduction in overfitting. Meanwhile, MLP exhibits better stability but with lower
accuracy. This study demonstrates that production data-based predictive models have the
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potential to be an initial tool for Quality Control in the early detection of defect risks in
manufacturing environments.

Keywords: defective product prediction; quality control; machine learning; Random Forest;
Multilayer Perceptron

1. Pendahuluan

Dalam sistem manufaktur modern, khususnya pada lingkungan mass production, keberadaan
produk cacat merupakan salah satu tantangan yang secara langsung memengaruhi efisiensi operasional,
biaya produksi, dan kepuasan pelanggan. Dalam kerangka Toyota Production System (TPS), cacat
(defect) dikategorikan sebagai salah satu bentuk Muda atau pemborosan yang harus dieliminasi secara
sistematis, dengan tujuan akhir mencapai kondisi zero-defect. Produk cacat tidak hanya menyebabkan
pemborosan material dan energi, tetapi juga memicu kebutuhan rework, peningkatan waktu siklus, serta
potensi klaim dan penarikan produk dari pasar [1]. Pada skala industri yang besar, akumulasi kerugian
akibat cacat dapat menjadi signifikan dan mengganggu daya saing perusahaan secara berkelanjutan.

Permasalahan cacat menjadi semakin kritis pada sistem produksi berbasis volume tinggi dan batch
besar. Keterlambatan dalam mendeteksi cacat dapat menyebabkan satu batch produksi menghasilkan
produk tidak sesuai spesifikasi dalam jumlah besar sebelum tindakan korektif diterapkan. Hal ini tidak
hanya berdampak pada pemborosan biaya, tetapi juga menurunkan stabilitas proses dan kepercayaan
pelanggan [2]. Oleh karena itu, konsep deteksi dini (early detection) terhadap potensi cacat menjadi
signifikan, terutama untuk mencegah penyebaran cacat secara berantai di sepanjang lini produksi.
Deteksi dini memungkinkan perusahaan untuk menghentikan atau menyesuaikan proses produksi
lebihcepat, sehingga risiko kerugian dapat ditekan seminimal mungkin.

Berbagai pendekatan telah diterapkan di dunia industri untuk mengendalikan dan menurunkan
tingkat cacat, seperti Statistical Process Control (SPC), inspeksi visual oleh petugas Quality Control
(QC), pengujian produk secara sampling, serta penerapan metodologi peningkatan berkelanjutan seperti
Kaizen dan Six Sigma. SPC terbukti efektif untuk memonitor stabilitas proses dan mendeteksi variasi
yang tidak wajar [3]. Namun, pendekatan ini umumnya bersifat kuratif dan bergantung pada batas
kendali statistik yang telah ditentukan sebelumnya. Selain itu, inspeksi manual masih menjadi praktik
umum di banyak perusahaan, tetapi metode ini memiliki keterbatasan signifikan, antara lain
ketergantungan pada pengalaman operator, kelelahan kerja, subjektivitas penilaian, serta keterbatasan
kemampuan manusia dalam mengenali pola kompleks dari banyak variabel proses secara simultan.

Seiring meningkatnya ketersediaan data produksi, berbagai penelitian mulai mengadopsi pendekatan
berbasis machine learning untuk mendukung pengendalian kualitas. Beberapa studi sebelumnya
menunjukkan bahwa algoritma seperti Decision Tree, Support Vector Machine, Artificial Neural
Network, dan Ensemble Learning dapat digunakan untuk mengklasifikasikan atau memprediksi cacat
produk berdasarkan data proses manufaktur [4]. Model-model tersebut mampu menangkap hubungan
nonlinier antar variabel yang sulit diidentifikasi melalui pendekatan statistik konvensional [5]. Namun,
sebagian besar penelitian masih berfokus pada domain atau proses tertentu, menggunakan dataset yang
terbatas, atau tidak secara eksplisit membandingkan risiko overfitting antara model kompleks dan model
yang lebih sederhana. Selain itu, pemanfaatan dataset terbuka yang merepresentasikan faktor-faktor
produksi nyata masih relatif jarang dibahas secara komprehensif.

Dalam praktik manufaktur, produk cacat dapat disebabkan oleh berbagai faktor yang saling
berkaitan, seperti kondisi dan keandalan mesin, kualitas bahan baku, kapasitas dan beban produksi,
variasi proses, serta keterampilan dan konsistensi operator [5],[6]. Faktor-faktor tersebut sering kali
terekam dalam sistem informasi produksi, tetapi belum dimanfaatkan secara optimal sebagai dasar
prediksi risiko cacat. Padahal, integrasi faktor-faktor tersebut ke dalam model prediktif berpotensi
menghasilkan early warning system yang mampu mendukung pengambilan keputusan QC secara lebih
objektif dan berbasis data. Kebutuhan akan sistem prediksi ini semakin mendesak mengingat
keterbatasan inspeksi manual dan tuntutan industri terhadap kualitas yang semakin tinggi.

Berdasarkan kondisi tersebut, terdapat celah penelitian berupa masih terbatasnya pengembangan dan
evaluasi model prediksi produk cacat yang memanfaatkan berbagai faktor produksi secara simultan,
khususnya dengan pendekatan komparatif antar model machine learning dan analisis overfitting. Oleh
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karena itu, penelitian ini bertujuan untuk mengembangkan model awal (initial model) dalam
memprediksi tingkat cacat produk manufaktur menggunakan dataset produksi yang tersedia secara
publik. Penelitian ini membandingkan kinerja Random Forest (RF) dan Multi-Layer Perceptron (MLP)
dalam mengklasifikasikan tingkat cacat menjadi low defect dan high defect, dengan mempertimbangkan
akurasi training dan testing, kesenjangan performa, pemilihan fitur [7], serta pengaruh hyperparameter
tuning. Hasil penelitian ini diharapkan dapat memberikan kontribusi awal bagi pengembangan sistem
prediksi cacat berbasis data sebagai alat bantu QC dalam konteks manufaktur modern.

2. Metode

2.1 Dataset
Penelitian ini menggunakan dataset opensource yang diperoleh dari Kaggle dengan Digital Object
Identifier (DOI): https://doi.org/10.34740/kaggle/dsv/8715500 [8]. Dataset ini merepresentasikan data
produksi pada lingkungan manufaktur dan dirancang untuk mendukung analisis serta pemodelan
prediksi tingkat cacat produk. Penggunaan dataset opensource memungkinkan penelitian ini untuk
direplikasi dan dibandingkan dengan studi selanjutnya.

Dataset memuat sejumlah fitur yang mencerminkan berbagai aspek proses produksi, termasuk
karakteristik mesin, kondisi operasional, kualitas material, serta parameter proses lainnya yang
berpotensi memengaruhi terjadinya cacat produk. Seluruh fitur dalam dataset bersifat numerik dan dapat
langsung digunakan dalam pemodelan machine learning setelah melalui tahap prapemrosesan yang
diperlukan. Data yang tersedia merepresentasikan kondisi produksi aktual, sehingga relevan untuk
pengembangan model prediksi dalam konteks QC manufaktur.

Target atau variabel tujuan dalam penelitian ini adalah tingkat cacat produk, yang dikategorikan ke
dalam dua kelas, yaitu low defect dan high defect. Pendekatan klasifikasi biner ini dipilih untuk
merepresentasikan kondisi kualitas produk secara praktis dan operasional, di mana hasil prediksi dapat
digunakan sebagai indikator awal risiko cacat pada suatu kondisi produksi [9]. Dengan demikian,
permasalahan yang dikaji dalam penelitian ini diformulasikan sebagai masalah klasifikasi supervised
learning. Selain menggunakan seluruh fitur yang tersedia dalam dataset, penelitian ini juga
mengevaluasi pengaruh pemilihan fitur dengan mengidentifikasi lima fitur teratas berdasarkan tingkat
kepentingannya (feature importance) pada model RF. Pendekatan ini bertujuan untuk menganalisis
sejauh mana pengurangan jumlah fitur dapat memengaruhi performa model serta potensi generalisasi
terhadap data uji. Atribut feature yang disediakan dalam dataset ini tertampil pada Tabel 1.

Tabel 1. Deskripsi Fitur dalam Dataset

No. Nama Fitur Jenis Data Deskripsi

1 ProductionVolume Numerik  Jumlah produk yang dihasilkan dalam suatu periode
produksi.

2 ProductionCost Numerik  Total biaya produksi yang dikeluarkan untuk proses
manufaktur.

3 SupplierQuality Numerik  Skor atau indikator kualitas bahan baku yang
disuplai oleh pemasok.

4 DeliveryDelay Numerik  Keterlambatan pengiriman bahan baku atau
komponen dalam proses produksi.

5 DefectRate Numerik  Persentase atau tingkat produk cacat yang
teridentifikasi dalam proses produksi.

6 QualityScore Numerik  Skor kualitas produk berdasarkan evaluasi atau
standar kualitas internal.

7 MaintenanceHours Numerik  Total jam perawatan mesin yang dilakukan dalam
periode tertentu.

8 DowntimePercentage Numerik  Persentase waktu berhentinya mesin atau sistem
produksi dari total waktu operasional.

9 InventoryTurnover Numerik  Rasio perputaran persediaan yang menunjukkan

seberapa cepat inventori digunakan atau digantikan.
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10 StockoutRate Numerik  Tingkat terjadinya kekurangan stok bahan baku atau
produk selama proses produksi.

11 WorkerProductivity Numerik  Tingkat produktivitas tenaga kerja dalam proses
manufaktur.

12 SafetyIncidents Numerik  Jumlah kejadian keselamatan kerja yang tercatat
dalam lingkungan produksi.

13 EnergyConsumption Numerik  Total konsumsi energi yang digunakan dalam proses
produksi.

14 EnergyEfficiency Numerik  Indikator efisiensi penggunaan energi dalam proses
manufaktur.

15 AdditiveProcessTime Numerik ~ Waktu yang dibutuhkan untuk proses manufaktur
aditif dalam produksi.

16 AdditiveMaterial Cost Numerik  Biaya material yang digunakan dalam proses
manufaktur aditif.

17 DefectStatus Target Status cacat produk sebagai variabel target

(Biner) (low/high).

2.2 Kerangka Model Machine Learning
Dalam studi ini, dua pendekatan machine learning digunakan untuk membangun model prediksi tingkat
cacat produk, yaitu RF dan MLP. Kedua model dipilih karena memiliki karakteristik yang berbeda
dalam menangkap pola data, sehingga memungkinkan analisis komparatif terhadap performa dan
kecenderungan overfitting.

Variabel independen dalam penelitian ini adalah seluruh fitur proses produksi yang terdapat dalam
dataset. Fitur-fitur tersebut mencerminkan kondisi operasional manufaktur dan diasumsikan memiliki
kontribusi terhadap kemungkinan terjadinya cacat produk. Variabel dependen adalah tingkat cacat
produk yang diklasifikasikan ke dalam dua kategori, yaitu low defect dan high defect. Hubungan antara
variabel independen dan dependen dimodelkan menggunakan pendekatan supervised learning.

Model RF dibangun sebagai metode ensemble learning yang mengombinasikan sejumlah pohon
keputusan (decision trees) untuk meningkatkan stabilitas dan akurasi prediksi [10].[10]. Pada tahap
awal, model dilatih menggunakan parameter default untuk mengevaluasi performa dasar dan
mengidentifikasi potensi overfitting, yang ditunjukkan oleh perbedaan antara akurasi data training dan
data test. Selanjutnya, dilakukan proses hyperparameter tuning untuk menyesuaikan parameter utama
seperti jumlah pohon (n_estimators), kedalaman maksimum pohon (max_depth), serta jumlah minimum
sampel pada node pemisah dan daun (min samples split dan min_samples leaf), dengan tujuan
meningkatkan kemampuan generalisasi model.

MLP pada eksperimen digunakan sebagai representasi pendekatan artificial neural network (ANN)
[11]. Arsitektur MLP terdiri dari lapisan input yang menerima seluruh fitur independen, satu atau lebih
hidden layers dengan fungsi aktivasi nonlinier, serta lapisan output yang menghasilkan probabilitas
kelas tingkat cacat. Model ini dilatih menggunakan algoritma backpropagation dengan optimisasi
berbasis gradien. Seperti pada RF, evaluasi awal dilakukan menggunakan parameter standar, kemudian
dilanjutkan dengan penyesuaian hiperparameter, seperti jumlah neuron pada hidden layer, learning rate,
dan jumlah iterasi pelatihan (epochs), untuk mengurangi overfitting dan meningkatkan stabilitas
performa. Kinerja kedua model dievaluasi menggunakan akurasi pada data training dan data festing,
serta selisih di antara keduanya sebagai indikator overfifting. Pendekatan ini memungkinkan analisis
yang lebih komprehensif tidak hanya terhadap tingkat ketepatan prediksi, tetapi juga terhadap
kemampuan model dalam melakukan generalisasi pada data yang belum pernah diuji sebelumnya.

2.2.1 Overall Architecture
Guna memperoleh gambaran awal mengenai kinerja model dalam memprediksi tingkat cacat produk,
penelitian ini terlebih dahulu membangun model RF dan MLP menggunakan parameter default.
Pendekatan ini bertujuan untuk menghasilkan baseline performance yang merepresentasikan
kemampuan dasar masing-masing algoritma sebelum dilakukan proses optimisasi parameter. Model
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Architecture dan konfigurasi parameter default untuk kedua model disajikan pada Tabel 2 dan Tabel 3.
Penggunaan parameter defau!t juga memungkinkan analisis awal terhadap kecenderungan overfitting
dan perbedaan karakteristik pembelajaran antara model berbasis ensemble dan ANN, yang selanjutnya
menjadi dasar dalam tahap hyperparameter tuning dan evaluasi lanjutan.

Tabel 2. Model Architecture untuk RF dengan default setting

No. Parameter Nilai Deskripsi
1 Number of Trees Jumlah pohon keputusan yang digunakan dalam
. 100
(n_estimators) ensemble RF.
2 Criterion Gini Fungsi evaluasi untuk mengukur kualitas
pemisahan pada setiap node pohon.
3 Maximum Depth None Kedalaman maksimum pohon keputusan; tidak
(max_depth) dibatasi sehingga pohon dapat tumbuh penuh.
4 Minimum Samples Split Jumlah minimum sampel yang diperlukan untuk
. . 2 . .
(min_samples_split) memisahkan sebuah node internal.
5 Minimum Samples Leaf 1 Jumlah minimum sampel yang harus berada pada
(min_samples_leaf) sebuah node daun.
6  Maximum Features sqrt Jumlah maksimum fitur yang dipertimbangkan saat
(max_features) mencari pemisahan terbaik.
7  Bootstrap Sampling TRUE Menentukan apakah pengambilan sampel dilakukan
dengan pengembalian (bootstrap).
8  Random State None Nilai seed untuk pengacakan; tidak ditetapkan pada
konfigurasi default.
Tabel 3. Model Architecture untuk MLP dengan default setting
No. Parameter Nilai Deskripsi
1 Hidden Layer Size <100 Jumlah neuron pada lapisan tersembunyi; satu
(hidden_layer_sizes) hidden layer dengan <100 neuron.
2 Activation Function ReLU Fungsi aktivasi yang digunakan pada hidden layer.
3 Solver Adam Algoritma optimisasi berbasis gradien untuk
pelatihan jaringan saraf.
4  Learning Rate Constant ~ Skema pembaruan laju pembelajaran selama proses
pelatihan.
5  Initial Learning Rate 0.001 Nilai awal laju pembelajaran.
(learning_rate_init)
6  Maximum Iterations 200 Jumlah maksimum iterasi pelatihan jaringan.
(max_iter)
7  Batch Size Auto Ukuran batch yang digunakan selama pelatihan
(ditentukan otomatis oleh sistem).
8  Alpha (Regularization) 0.0001 Parameter regularisasi L2 untuk mencegah
overfitting.
9  Shuffle TRUE Menentukan apakah data diacak pada setiap iterasi
pelatihan.
10 Random State None Nilai seed untuk pengacakan; tidak ditentukan pada

konfigurasi default.

2.2.2 Kerangka Feature Engineering

Pada tahap awal pemodelan, seluruh fitur yang tersedia dalam dataset digunakan untuk membangun
model prediksi tingkat cacat produk. Pendekatan ini bertujuan untuk mengevaluasi kemampuan model
dalam memanfaatkan informasi secara menyeluruh tanpa adanya reduksi fitur. Penggunaan seluruh fitur
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juga berfungsi sebagai baseline, sehingga dampak dari proses seleksi fitur terhadap kinerja model dapat
dianalisis secara objektif.

Selanjutnya, dilakukan proses feature engineering berbasis seleksi fitur untuk mengidentifikasi fitur-
fitur yang paling berpengaruh terhadap prediksi tingkat cacat. Untuk model RF, seleksi fitur dilakukan
menggunakan metode feature importance bawaan model [12], [13], yang dihitung berdasarkan
kontribusi masing-masing fitur dalam mengurangi impurity pada proses pembentukan decision trees.
Nilai feature importance ini digunakan untuk melakukan pemeringkatan fitur dari yang paling
berpengaruh hingga yang paling rendah kontribusinya terhadap model.

Berdasarkan hasil pemeringkatan tersebut, lima fitur dengan nilai feature importance tertinggi dipilih
untuk membangun kembali model RF. Pendekatan ini bertujuan untuk menguji apakah reduksi jumlah
fitur dapat meningkatkan kemampuan generalisasi model, mengurangi kompleksitas, serta menekan
risiko overfitting tanpa mengorbankan akurasi prediksi secara signifikan. Selain itu, penggunaan subset
fitur yang lebih ringkas juga mendukung interpretabilitas model dalam konteks QC manufaktur.

Untuk model MLP, metode seleksi fitur yang berbeda diterapkan karena MLP tidak secara langsung
menyediakan ukuran feature importance yang bersifat intrinsik. Oleh karena itu, penelitian ini
menggunakan metode Permutation Feature Importance [14], [15], yaitu pendekatan berbasis evaluasi
kinerja model dengan cara mengacak nilai suatu fitur secara acak dan mengamati penurunan performa
model yang dihasilkan. Semakin besar penurunan kinerja yang terjadi, semakin tinggi kontribusi fitur
tersebut terhadap model.

Hasil pemeringkatan fitur menggunakan metode permutation kemudian digunakan untuk memilih
lima fitur dengan kontribusi tertinggi pada model MLP. Model MLP selanjutnya dilatih ulang
menggunakan subset lima fitur tersebut untuk dibandingkan dengan model MLP yang menggunakan
seluruh fitur. Dengan demikian, analisis ini memungkinkan perbandingan yang adil mengenai pengaruh
seleksi fitur terhadap performa dan stabilitas model pada dua pendekatan machine learning yang
memiliki karakteristik pembelajaran yang berbeda.

2.2.3 Kerangka Hyperparameter Tuning
Pada tahap lanjutan pemodelan, dilakukan hyperparameter tuning untuk meningkatkan kemampuan
generalisasi model dan mengurangi kecenderungan overfitting yang teridentifikasi pada tahap awal [16],
[17]. Penyesuaian hyperparameter difokuskan pada parameter kunci yang secara langsung
memengaruhi kompleksitas model, baik pada RF maupun MLP. Pada tahap ini, seluruh fitur independen
dalam dataset tetap digunakan sebagai masukan model, tanpa melakukan reduksi fitur, sehingga dampak
penyesuaian hyperparameter dapat dianalisis secara terpisah dari efek seleksi fitur.

Pada model RF, penyesuaian dilakukan dengan membatasi kedalaman maksimum pohon keputusan
(max_depth) menjadi 5. Pada konfigurasi awal dengan parameter default, pohon keputusan dapat
tumbuh tanpa batas kedalaman, sehingga model cenderung mempelajari pola yang sangat spesifik pada
data latih. Dengan membatasi kedalaman pohon, kompleksitas model berhasil ditekan, sehingga setiap
pohon hanya menangkap pola-pola utama yang bersifat lebih umum. Strategi ini bertujuan untuk
mengurangi varian model dan meningkatkan stabilitas performa pada data uji, tanpa mengorbankan
akurasi secara signifikan

Sementara itu, pada model MLP, penyesuaian dilakukan pada arsitektur jaringan, khususnya pada
jumlah neuron pada hidden layer. Jika pada konfigurasi awal jumlah neuron yang digunakan lebih kecil
dari 100, maka pada tahap funing jumlah neuron dinaikkan menjadi 100 neuron pada satu hidden layer.
Penyesuaian ini dimaksudkan untuk meningkatkan kapasitas representasi model dalam menangkap
hubungan nonlinier antar fitur. Dengan jumlah neuron yang lebih besar, MLP diharapkan mampu
mempelajari pola yang lebih kompleks dari data, namun tetap dikombinasikan dengan mekanisme
regularisasi bawaan untuk menjaga stabilitas pembelajaran.

Dengan mempertahankan penggunaan seluruh fitur pada tahap hyperparameter tuning, hasil evaluasi
yang diperoleh mencerminkan murni pengaruh perubahan arsitektur dan kompleksitas model terhadap
kinerja prediksi. Pendekatan ini memungkinkan perbandingan yang lebih adil antara hasil sebelum dan
sesudah rfuning, serta memberikan dasar yang kuat untuk menilai efektivitas penyesuaian
hyperparameter dalam meningkatkan performa dan mengurangi kesenjangan antara akurasi data latih
dan data uji.

229



Prosiding KONSTELAST
Fol. 3 No.1, Januari 2026

3. Hasil dan Pembahasan

3.1 Hasil Feature Engineering

Hasil feature importance yang dihasilkan oleh model RF berdasarkan penurunan impurity pada
proses pembentukan pohon keputusan tertampil pada Gambar 1 (a). Terlihat bahwa kontribusi fitur
terhadap prediksi tingkat cacat produk tidak terdistribusi secara merata. Beberapa fitur memiliki
pengaruh yang jauh lebih dominan dibandingkan fitur lainnya, menunjukkan bahwa model RF sangat
bergantung pada variabel tertentu dalam membedakan kondisi produk cacat dan tidak cacat. Pola ini
juga mengindikasikan bahwa informasi yang relevan untuk prediksi cacat terkonsentrasi pada sejumlah
kecil faktor produksi utama.

Berdasarkan hasil pemeringkatan, lima fitur dengan nilai feature importance tertinggi pada model
RF adalah MaintenanceHours, DefectRate, QualityScore, ProductionVolume, dan EnergyEfficiency.
Tingginya kontribusi MaintenanceHours menunjukkan bahwa kondisi dan frekuensi perawatan mesin
memiliki peran penting dalam memengaruhi kualitas produk. Hal ini sejalan dengan praktik manufaktur,
di mana mesin yang kurang terawat cenderung menghasilkan variasi proses yang lebih besar dan
meningkatkan risiko cacat [18], [19]. Fitur DefectRate dan QualityScore juga muncul sebagai faktor
dominan karena keduanya secara langsung merepresentasikan performa kualitas proses produksi.
Sementara itu, ProductionVolume dan EnergyEfficiency mencerminkan beban operasi dan efisiensi
penggunaan sumber daya, yang dapat memengaruhi stabilitas proses dan konsistensi kualitas produk,
terutama pada sistem produksi massal.

Adapun hasil Permutation Feature Importance pada model MLP tertampil pada Gambar 1 (b).
Berbeda dengan RF, metode ini mengukur kontribusi fitur berdasarkan penurunan kinerja model ketika
nilai suatu fitur diacak, sehingga lebih merefleksikan sensitivitas prediksi model terhadap perubahan
informasi pada fitur tertentu. Hasil yang diperoleh menunjukkan bahwa MLP memiliki pola
ketergantungan fitur yang berbeda, dengan beberapa fitur memberikan dampak positif yang kuat
terhadap performa model, sementara fitur lain menunjukkan kontribusi yang sangat kecil atau bahkan
negatif.

Lima fitur dengan kontribusi tertinggi pada model MLP berdasarkan metode Permutation Features
Improtance adalah AdditiveProcessTime, AdditiveMaterialCost, DefectRate, SupplierQuality, dan
InventoryTurnover. Dominasi AdditiveProcessTime dan AdditiveMaterialCost menunjukkan bahwa
model MLP lebih sensitif terhadap variabel yang berkaitan dengan waktu dan biaya proses manufaktur
aditif, sebab memiliki hubungan nonlinier dengan tingkat cacat produk. Fitur DefectRate kembali
muncul sebagai variabel penting karena merepresentasikan kondisi kualitas historis proses. Sementara
itu, SupplierQuality dan InventoryTurnover mencerminkan aspek rantai pasok dan manajemen material,
yang secara tidak langsung memengaruhi stabilitas produksi dan konsistensi kualitas. Menariknya,
beberapa fitur seperti WorkerProductivity dan DowntimePercentage menunjukkan kontribusi negatif,
yang mengindikasikan bahwa pengacakan fitur tersebut justru sedikit meningkatkan performa model,
sehingga fitur tersebut berpotensi menambah noise dalam pembelajaran MLP. Perbandingan hasil
pemeringkatan untuk kedua metode, tertampil pada Gambar 1.
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Gambar 1. Hasil Features Engineering: (a) Features Importance pada Model RF; (b) Features
Importance pada Model MLP

3.2 Performansi Klasifikasi

3.2.1 Hasil Prediksi dengan Default Parameter
Hasil eksperimen yang tertampil pada Tabel 4, menunjukkan perbandingan kinerja dua metode machine
learning, yaitu RF dan MLP, baik dengan menggunakan seluruh fitur maupun lima fitur teratas hasil
seleksi fitur. Evaluasi dilakukan berdasarkan train accuracy, test accuracy, serta selisih keduanya (gap)
sebagai indikator kecenderungan overfitting. Pendekatan ini memungkinkan analisis yang lebih
menyeluruh terhadap kemampuan prediksi dan generalisasi masing-masing model.

Pada model RF, penggunaan seluruh fitur menghasilkan train accuracy sebesar 1.000 dan test
accuracy sebesar 0.927, dengan gap sebesar 0.073. Nilai #rain accuracy yang sempurna
mengindikasikan bahwa model mampu mempelajari pola pada data pelatihan dengan sangat baik, tetapi
perbedaan yang cukup besar dengan akurasi data uji menunjukkan adanya kecenderungan overfitting.
Ketika jumlah fitur dikurangi menjadi lima fitur teratas, fest accuracy justru meningkat menjadi 0.934,
sementara gap menurun menjadi 0.066. Hasil ini menunjukkan bahwa seleksi fitur pada RF dapat
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membantu mengurangi kompleksitas model dan meningkatkan kemampuan generalisasi tanpa
menurunkan akurasi.

Berbeda dengan RF, model MLP menunjukkan karakteristik pembelajaran yang lebih konservatif.
Menggunakan seluruh fitur, MLP menghasilkan train accuracy sebesar 0.769 dan test accuracy sebesar
0.745, dengan gap relatif kecil yaitu 0.024. Hal ini mengindikasikan bahwa MLP tidak mengalami
overfitting yang signifikan, tetapi kemampuan prediksinya secara keseluruhan masih berada di bawah
RF. Ketika jumlah fitur dikurangi menjadi lima fitur teratas, frain dan test accuracy MLP menurun
menjadi 0.668 dan 0.662, dengan gap yang semakin kecil yaitu 0.006. Penurunan akurasi ini
menunjukkan bahwa MLP lebih sensitif terhadap pengurangan fitur dan membutuhkan informasi yang
lebih lengkap untuk mempelajari pola secara optimal.

Jika dibandingkan antar metode, RF secara konsisten menghasilkan akurasi yang lebih tinggi
dibandingkan MLP, baik pada penggunaan seluruh fitur maupun subset lima fitur. Namun, RF juga
menunjukkan kecenderungan overfitting yang lebih besar, terutama ketika menggunakan seluruh fitur.
Sebaliknya, MLP memiliki gap yang lebih kecil, mencerminkan stabilitas generalisasi yang lebih baik,
meskipun dengan akurasi yang lebih rendah. Perbedaan ini mencerminkan karakteristik dasar kedua
model, di mana RF unggul dalam menangkap pola kompleks berbasis aturan dan interaksi fitur,
sementara MLP memerlukan struktur dan jumlah fitur yang memadai untuk memaksimalkan
performanya.

Secara keseluruhan, temuan ini menunjukkan bahwa seleksi fitur memberikan dampak positif yang
lebih signifikan pada RF dibandingkan MLP. Penggunaan lima fitur teratas pada RF mampu
meningkatkan test accuracy sekaligus menurunkan overfitting, menjadikannya konfigurasi yang lebih
seimbang antara akurasi dan generalisasi. Sebaliknya, pada MLP, pengurangan fitur memang
menurunkan risiko overfitting, tetapi diiringi dengan penurunan akurasi yang cukup besar. Temuan ini
menegaskan pentingnya penyesuaian strategi feature engineering sesuai dengan karakteristik model
yang digunakan dalam prediksi cacat produk manufaktur. Adapun perbandingan gap ini secara visual
tersaji pada Gambar 2.

Tabel 4. Hasil Prediksi Produk Cacat untuk Model RF dan MLP dengan Default Parameter

Metode Semua Fitur Top-5
Train Accuracy  Test Accuracy  Gap Train Accuracy  Test Accuracy  Gap
RF 1.000 0.927 0.073 1.000 0.934 0.066
MLP 0.769 0.745 0.024 0.668 0.662 0.006
(a) (b)
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Gambar 2. Perbandingan Gap antara Train dan Test Accuracy; (a) RF-all Features; (b) MLP-all
Features; (c) RF Top 5 Features; (d)MLP Top 5 Features

3.2.2  Hasil Prediksi dengan Hyperparameter-Tuning
Tabel 5 menyajikan perbandingan kinerja model RF dan MLP dalam memprediksi tingkat cacat produk
menggunakan konfigurasi parameter default dan setelah dilakukan hyperparameter tuning. Evaluasi
dilakukan dengan membandingkan akurasi pada train accuracy, serta gap sebagai indikator
kecenderungan overfitting. Hasil ini memberikan gambaran mengenai pengaruh pengaturan parameter
terhadap kemampuan prediksi dan generalisasi kedua model.

Pada model RF, penggunaan parameter default menghasilkan train accuracy yang sangat tinggi
(1.000) dengan test accuracy sebesar 0.927, serta gap sebesar 0.073. Pola ini menunjukkan bahwa model
memiliki kemampuan belajar yang sangat kuat terhadap data train, tetapi cenderung mempelajari pola
yang terlalu spesifik sehingga terjadi overfitting. Setelah dilakukan hyperparameter tuning dengan
membatasi kompleksitas model, khususnya melalui pengaturan max_depth = 5, terjadi penurunan train
accuracy menjadi 0.849, tetapi diikuti oleh test accuracy yang relatif seimbang yaitu 0.847. Penurunan
gap yang signifikan menjadi 0.002 mengindikasikan bahwa funing berhasil meningkatkan kemampuan
generalisasi model dengan mengurangi varian tanpa mengorbankan performa secara drastis.

Sementara itu, model MLP menunjukkan perilaku yang berbeda. Dengan parameter default, MLP
menghasilkan akurasi data latih sebesar 0.769 dan akurasi data uji sebesar 0.745, dengan gap yang relatif
kecil (0.024). Hal ini mengindikasikan bahwa MLP secara alami memiliki kecenderungan overfitting
yang lebih rendah dibandingkan RF, tetapi dengan tingkat akurasi yang juga lebih rendah. Setelah
dilakukan hyperparameter tuning dengan penyesuaian jumlah neuron pada hidden layer menjadi 100,
train accuracy dan test accuracy menjadi sama, yaitu 0.713, dengan gap sebesar 0.000. Hasil ini
menunjukkan bahwa model MLP menjadi sangat stabil, meskipun dengan konsekuensi penurunan
akurasi secara keseluruhan.

Secara komparatif, hasil ini menegaskan bahwa hyperparameter tuning memberikan dampak yang
lebih signifikan terhadap RF dibandingkan MLP. Pada RF, runing berhasil menyeimbangkan akurasi
dan generalisasi, sehingga model menjadi lebih robust untuk digunakan pada data yang belum pernah
dilihat sebelumnya. Sebaliknya, pada MLP, funing justru menurunkan kapasitas model dalam
menangkap pola kompleks pada data, yang kemungkinan disebabkan oleh keterbatasan ukuran dataset
atau karakteristik data yang lebih sesuai untuk pendekatan berbasis pohon keputusan. MLP cenderung
memerlukan data dalam jumlah besar dan pola nonlinier yang kuat agar dapat menunjukkan
keunggulannya secara optimal. Perubahan akurasi setelah perlakuan tuning dapat dideskripsikan
menggunakan Gambar 3.

Secara keseluruhan, hasil ini menunjukkan bahwa RF dengan hyperparameter tuning merupakan
konfigurasi yang paling seimbang untuk prediksi cacat produk pada dataset ini, karena mampu menjaga
akurasi yang kompetitif sekaligus meminimalkan risiko overfitting. Temuan ini juga mengindikasikan
bahwa pemilihan model dan strategi tuning harus disesuaikan dengan karakteristik data dan tujuan
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Gambar 3. Perubahan Akurasi untuk Kedua Metode Analisis pada Fase Tuning

Tabel 5. Perbandingan Prediksi Produk Cacat untuk Model RF dan MLP dengan Default Parameter
dan Hyperparameter-Tuning

Metode Default Parameter Hyperparameter-Tuning

Train Accuracy  Test Accuracy  Gap  Train Accuracy  Test Accuracy  Gap
RF 1.000 0.927 0.073 0.849 0.847 0.002
MLP 0.769 0.745 0.024 0.713 0.713  0.000

4. Kesimpulan

Berdasarkan hasil eksperimen, RF dan MLP memiliki potensi untik digunakan sebagai metode prediksi
tingkat cacat produk, tetapi menunjukkan karakteristik kinerja yang berbeda. RF memberikan akurasi
prediksi yang lebih tinggi, khususnya setelah dilakukan hyperparameter tuning, serta menunjukkan
kemampuan generalisasi yang lebih baik dengan penurunan overfitting yang signifikan. Sementara itu,
MLP menghasilkan model yang lebih stabil dengan gap akurasi yang lebih kecil, tetapi dengan tingkat
akurasi yang lebih rendah. Temuan ini menunjukkan bahwa model prediksi cacat berbasis data produksi
dapat berperan sebagai alat bantu awal bagi fungsi QC dalam mendeteksi potensi cacat secara dini,
sekaligus menegaskan pentingnya pemilihan model dan penyesuaian parameter yang sesuai dengan
karakteristik data manufaktur yang digunakan. Penggunaan dataset sekunder pada penelitian ini menjadi
potensi untuk melakukan telaah lanjut dengan data primer, pada penelitian selanjutnya. Lebih lagi,
evaluasi model masih terbatas pada metrik akurasi, sehingga belum sepenuhnya menangkap implikasi
kesalahan prediksi, khususnya pada kasus false negative yang krusial dalam konteks QC. Penelitian
selanjutnya disarankan untuk menggunakan dataset yang lebih beragam dan berskala lebih besar,
mengeksplorasi metrik evaluasi tambahan seperti precision, recall, dan Fl-score.
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