The Retention Pond Role in Shaping Thermal Comfort and the Effect of Ventilation at Universitas Katolik Musi Charitas, Palembang, Indonesia

Authors

  • Dhita Wahyu Anggraeni Universitas Katolik Musi Charitas
  • Abdul Rachmad Zahrial Amin
  • Melinda Amalia Tanjung
  • Intan Mustika Pasya

DOI:

https://doi.org/10.24002/jarina.v5i1.11249

Keywords:

Natural Ventilation, Retention Pond, Computational Fluid Dynamics (CFD)

Abstract

A retention pond is a body of water that collects water, particularly rainwater. In Palembang, there are 46 retention ponds scattered in various locations. One of them is located between Ida Bayumi University (IBA) and Musi Charitas Catholic University, situated approximately 10 meters away from the Aloysius Building. This is a factor affecting comfort because of the water content in the air carried by the wind into the Aloysius building through the window facing the pond. This research aims to determine the extent of the influence of the IBA retention pond on natural ventilation and humidity in the Aloysius Building, through the window as the entry and exit of air. The method employed is a descriptive quantitative approach, utilizing Computational Fluid Dynamics (CFD) simulation and the Hobometer tool to measure wind speed and humidity within the building.  The results of the analysis obtained wind speeds of 0-2.5 meters per second and turbulence effects in several rooms. The comfort standard based on Ashrea-55 shows that it is warm with an average RH of 67.6% and a temperature of 28.9°C. To achieve optimal comfort, the corridor space requires large ventilation so that the maximum wind flow can reach the spaces on the left and right of the building, especially on the second and third floors.

 

References

[1] E. I. Santoso, “Kenyamanan Termal Indoor Pada Bangunan Di Daerah Beriklim Tropis Lembab,” Indones. Green Technol. J., vol. 1, no. 1, pp. 13–19, 2012.

[2] B. K. Palembnag, “Analisa suhu dan kelembaban kota palembang 2024,” Palembang, 2024. [Online]. Available: https://staklim-sumsel.bmkg.go.id/analisis-suhu-udara-dan-kelembapan-relatif-bulan-februari-2024/

[3] S. Desain and P. Alami, “Strategi desain penghawaan alami,” pp. 1–9, 2024.

[4] T. S. Boutet, Controlling Air Movement: A Manual for Architects and Builders. America: McGraw-Hill Book Company, 1987.

[5] J. A. P. Seputra, “Evaluasi Performa Ventilasi Alami Pada Desain Bukaan Ruang Kelas Universitas Atma Jaya Yogyakarta,” J. Arsit. KOMPOSISI, vol. 10, no. 3, p. 149, 2017, doi: 10.24002/jars.v10i3.1111.

[6] Satelit, “Kawasan Kolam Retensi IBA,” 2025.

[7] Satwiko and Prasasto, Fisika Bangunan 1, Edisi 1.

[8] J. J. Afgani, P. S. Arsitektur, F. Teknik, and U. M. Jakarta, “KAJIAN PENGHAWAAN ALAMI PADA BUKAAN RUMAH TINGGAL DIPERMUKIMAN,” pp. 73–80, 2023.

[9] I. I. N. Sudiarta, “Penghawaan alami,” pp. 1–24.

[10] S. Karya, F. H. Syafira, E. Mufida, M. Hady, J. Arsitektur, and U. I. Indonesia, “KASUS BANGUNAN GOR BAMBU RUNCING DI TEMANGGUNG,” pp. 418–429, 2022.

[11] A. Rachmad and Z. Amin, “PENGHAWAAN ALAMI PADA BANGUNAN SEKOLAH DASAR DI PINGGIRAN SUNGAI MUSI PALEMBANG Abdul Rachmad Zahrial Amin,” vol. 1, no. 2, pp. 86–99, 2017.

[12] Sangkertadi, Kenyamanan Termis di Ruang Luar Beriklim Tropis Lembab, 1st ed. alfabeta cv, 2013.

[13] Mediastika Christina E., Menuju Rumah Ideal.

[14] N. Fathan, R. F. Akbar, S. M. Jaya, and I. Defiana, “Persepsi penghuni terhadap tingkat kenyamanan termal hunian dengan konteks desain bioklimatik,” vol. 25, no. 1, pp. 115–128, 2024.

[15] D. A. Pratama and I. Z. Budiono, “Perancangan Jendela dan Partisi Pembatas Dengan Pertimbangan Kenyamanan Termal,” J. Desain Inter., vol. 6, no. 2, p. 55, 2021, doi: 10.12962/j12345678.v6i2.10747.

[16] M. A. Hamdy1 et al., “Lingkungan dan Kenyamanan Termal Dalam Bangunan di Iklim Tropis Panas dan Lembab: Studi Literatur Sistematik,” JaS), vol. 3, no. 2, pp. 25–44, 2021, [Online]. Available: https://ejournalfakultasteknikunibos.id/index.php/jas/

[17] A. A. B., “Pengaruh Perubahan Konfigurasi Ruang Dan Bukaan Terhadap Penghawaan Alami Rumah Betang Djaga Bahen,” 2018, [Online]. Available: https://123dok.com/document/ydel676q-pengaruh-perubahan-konfigurasi-ruang-bukaan-terhadap-penghawaan-betang.html

[18] A. Rachmad Zahrial Amin, “Model simulation CFD,” Palembang, 2025.

[19] D. W. Anggraeni, “Jurnal arsitektur komposisi,” vol. 13, no. April, 2020, doi: https://doi.org/10.24002/jars.v13i2.3403.

[20] S. B. Amri, L. Ode, A. Syukur, and S. Amsyar, “IDENTIFIKASI POLA ALIRAN ANGIN DAN GAYA HAMBAT PADA ATAP MIRING,” no. November, pp. 1–2, 2017.

[21] S. Maulana, “Pemanfaatan Computational Fluid Dynamics (Cfd) Dalama Strategi Penelitian Simulasi Model Pada Teknologi Penghawaan Ruang,” Educ. Build., vol. 2, no. 2, pp. 10–13, 2016, doi: 10.24114/eb.v2i2.4393.

[22] C. D. Widiawaty, A. I. Siswantara, and G. G. R. Gunadi, “Kajian Analisis Engineering Dengan Metode Computational Fluid Dynamics,” J. Poli-Teknologi, vol. 14, no. 3, 2016, doi: 10.32722/pt.v14i3.763.

[23] Suhendri and M. D. Koerniawan, “Investigasi Ventilasi Gaya-Angin Rumah Tradisional Indonesia dengan Simulasi CFD,” J. Lingkung. Binaan Indones., vol. 5, no. 4, pp. 215–220, 2016, doi: 10.32315/jlbi.v5i4.228.

[24] Abdul Rachmad Zahrial Amin, “Ground Floor Plan,” Palembang, 2015.

[25] A. Rachmad Zahrial Amin, “Model Simulation 1st-3rd Aloysius Building.” Palembang, 2025.

[26] Abdul Rachmad Zahrial Amin, “Result of research object mesh generation,” Palembang, 2025.

[27] Abdul Rachmad Zahrial Amin, “Inlet and Outlet simulation CFD.” Palembang, 2025.

Downloads

Published

2026-02-03

How to Cite

[1]
D. W. Anggraeni, Abdul Rachmad Zahrial Amin, Melinda Amalia Tanjung, and Intan Mustika Pasya, “The Retention Pond Role in Shaping Thermal Comfort and the Effect of Ventilation at Universitas Katolik Musi Charitas, Palembang, Indonesia”, JARINA, vol. 5, no. 1, pp. 56–73, Feb. 2026.