Application of K-Nearest Neighbor Algorithm on Classification of Disk Hernia and Spondylolisthesis in Vertebral Column

Irma Handayani

Abstract


Vertebral column as a part of backbone has important role in human body. Trauma in vertebral column can affect spinal cord capability to send and receive messages from brain to the body system that controls sensory and motoric movement. Disk hernia and spondylolisthesis are examples of pathologies on the vertebral column. Research about pathology or damage bones and joints of skeletal system classification is rare whereas the classification system can be used by radiologists as a second opinion so that can improve productivity and diagnosis consistency of the radiologists. This research used dataset Vertebral Column that has three classes (Disk Hernia, Spondylolisthesis and Normal) and instances in UCI Machine Learning. This research applied the K-NN algorithm for classification of disk hernia and spondylolisthesis in vertebral column. The data were then classified into two different but related classification tasks: “normal” and “abnormal”. K-NN algorithm adopts the approach of data classification by optimizing sample data that can be used as a reference for training data to produce vertebral column data classification based on the learning process. The results showed that the accuracy of K-NN classifier was 83%. The average length of time needed to classify the K-NN classifier was 0.000212303 seconds.


Keywords


K-NN algorithm; disk hernia; spondylolisthesis; classification; vertebral column

Full Text:

PDF

References


E. C. Pearce, Anatomi dan Fisiologi untuk Paramedis. PT. Gramedia Pustaka Utama, Jakarta, 2012.

J. Maja, “Diagnosis Dan Penatalaksanaan Cedera Servikal Medula Spinalis,” J. Biomedik, vol. 5, no. 3, 2014.

J. Jordan and K. Konstantinou, “Herniated Lumbar Disc,” Clin. Evid. (Online)., vol. 9, no. June, pp. 34–44, 2016.

K. A. Irianto, F. W. Hatmoko, and L. P. K, “Degenerative Spondylolisthesis : The preferable surgical technique,” Bali Med. J., vol. 7, no. 1, p. 215, 2018.

M. A. Kristy, “Klasifikasi Penyakit pada Tulang Punggung Menggunakan Metode j48 dan Bagging,” Tesis, Dep. Ilmu Komput. FMIPA UGM, Yogyakarta, 2013.

B. G. Pratama, “Analisis Perbandingan Metode Pengukuran Jarak Pasangan Titik-Titik Ciri dan Metode Klasifikasi Terhadap Tiga Parameter Kantuk Pengemudi,” Tesis, Dep. Ilmu Komput. FMIPA UGM, Yogyakarta, 2018.

A. K. F. U. Harjoko, “KLASIFIKASI CITRA BATIK KAIN BESUREK DENGAN SPEED UP ROBUST FEATURES (SURF) DAN GRAY LEVEL CO-OCCURRENCE MATRIX (GLCM)No Title,” Tesis, Dep. Ilmu Komput. FMIPA UGM, Yogyakarta, pp. 0–1, 2017.

F. Kurniawan and Ivandari, “Komparasi Algoritma Data Mining Untuk Klasifikasi Penyakit Kanker Payudara,” J. Stmik, vol. XII, no. 1, pp. 1–8, 2017.

Indrayanti, D. Sugianti, and M. A. Al Karomi, “Optimasi Parameter K Pada Algoritma K-Nearest Neighbour Untuk Klasifikasi Penyakit Diabetes Mellitus,” Pros. SNATIF Ke-4 2017, pp. 823–829, 2017.

Mustakim and G. Oktaviani F, “Algoritma K-Nearest Neighbor Classification Sebagai Sistem Prediksi Predikat Prestasi Mahasiswa,” J. Sains, Teknol. dan Ind., vol. 13, no. 2, pp. 195–202, 2016.

F. Agus, H. Hatta, Rahmania, and Mahyudin, “Pengklasifikasian Dokumen Berbahasa Arab Menggunakan K-Nearest Neighbor,” JSM (Jurnal SIFO Mikroskil), vol. 18, no. 1, pp. 43–56, 2017.

C. C, Aggarwal, Data Mining: The Textbook, Switzerland, Springer, 2015.

M. J. a. Berry and G. S. Linoff, Data mining techniques, Second Edition, Indianapolis, Wiley Publishing, 2004.

B. Sulistyo, “Pengantar Ilmu Perpustakaan,” PT. Gramedia Pustaka Utama, Jakarta, 1991.

D. T. Larose, “Discovering An Introduction to Data Mining,” Discov. Knowl. Data, 2005.

T. M. Cover and P.E. Hart, “Nearest Neighbor Pattern Classification,” IEEE Trans. Inf. Theory, vol. 13, no. 1, pp. 118–119, 1997.

K. Polat and S. Güneş, “Breast cancer diagnosis using least square support vector machine,” Digit. Signal Process. A Rev. J., vol. 17, no. 4, pp. 694–701, 2007.

F. Gorunescu, Data Mining: Concept, Model and Techniques. Heidelberg, Berlin: Springer, 2011.

I. H. Witten, E. Frank, and M. A. Hall, Data Mining: Practical Machine Learning Tools and Techniques, Third Edition (The Morgan Kaufmann Series in Data Management Systems). Burlington: Elsevie, 2011.

T. Hastie, R. Tibshirani, and J. Friedman, “The Elements of Statistical Learning (2nd ed., web version),” Math. Intell., pp. 369–370, 2008.




DOI: https://doi.org/10.24002/ijis.v2i1.2352

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Indonesian Journal of Information Systems

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.