Pengaruh Aplikasi Pupuk Nitrogen terhadap Ketahanan Tembakau (Nicotiana tabacum L. ‘Manilo’) pada Cekaman Kekeringan

Authors

  • Maharani Pratiwi Salsabila Ardadi Program Studi Biologi, Fakultas Biologi, Universitas Gadjah Mada
  • Siti Nurbaiti Program Studi Biologi, Fakultas Biologi, Universitas Gadjah Mada
  • Diah Rachmawati Program Studi Biologi, Fakultas Biologi, Universitas Gadjah Mada

DOI:

https://doi.org/10.24002/biota.v10i3.11663

Keywords:

Kekeringan, ketahanan, ‘Manilo’, pupuk nitrogen, tembakau

Abstract

Tembakau (Nicotiana tabacum L.) merupakan salah satu tanaman unggulan yang berkontribusi dalam perekonomian Indonesia. Namun, perubahan iklim dapat memicu berbagai cekaman abiotik, seperti kekeringan yang dapat menghambat pertumbuhan tanaman. Salah satu upaya yang dapat dilakukan untuk meningkatkan toleransi tanaman terhadap kekeringan adalah melalui pemberian pupuk nitrogen. Penelitian ini bertujuan untuk menganalisis pengaruh pemberian pupuk nitrogen terhadap ketahanan tembakau (Nicotiana tabacum L. ‘Manilo’) pada cekaman kekeringan. Penelitian dilakukan menggunakan metode Rancangan Blok Acak Lengkap dengan perlakuan kombinasi tiga tingkat ketersediaan air (100%, 75%, dan 50% kapasitas lapang) serta tiga dosis pupuk nitrogen (0,6; 1,2; dan 1,8 g/polybag). Parameter yang diamati meliputi respons tingkat kerusakan serta aktivitas antioksidan enzimatik. Analisis data dilakukan menggunakan ANOVA dan uji DMRT pada taraf kepercayaan 95%. Hasil menunjukkan aplikasi pupuk nitrogen mampu meningkatkan aktivitas enzim antioksidan, terutama APX. Peningkatan dosis pupuk nitrogen berkorelasi positif dengan ketahanan tanaman terhadap kekeringan yang ditunjukkan melalui penurunan kebocoran elektrolit dan MDA, serta peningkatan aktivitas APX. Penelitian ini diharapkan dapat memberikan informasi ketahanan tembakau dengan pemberian pupuk nitrogen terhadap kondisi kekeringan.

References

Afzal, F., Khurshid, R., Ashraf, M., & Gul Kazi, A. (2014). Oxidative Damage to Plants: Antioxidant Networks and Signaling: Reactive Oxygen Species and Antioxidants in Response to Pathogens and Wounding (pp. 397–424). Elsevier Inc. Dutch. https://doi.org/10.1016/B978-0-12-799963-0.00013-7.

Agami, R. A., Alamri, S. A. M., Abd El-Mageed, T. A., Abousekken, M. S. M., & Hashem, M. (2018). Role of exogenous nitrogen supply in alleviating the deficit irrigation stress in wheat plants. Agricultural Water Management 210: 261–270. https://doi.org/10.1016/j.agwat.2018.08.034.

Al-Taey, D. K. A., & Hussain, A. J. (2023). Drought’s impact on growth and strategies to mitigate its effects on potato cultivation: a review. IOP Conference Series: Earth and Environmental Science 1262(4). https://doi.org/10.1088/1755-1315/1262/4/042070.

Anjum, S. A., Saleem, M. F., Wang, L.-C., Faisal Bilal, M., & Saeed, A. (2012). Protective role of glycinebetaine in maize against drought-induced lipid peroxidation by enhancing capacity of antioxidative system. 576 AJCS 6(4).

Assaha, D. V. M., Liu, L., Ueda, A., Nagaoka, T., & Saneoka, H. (2016). Effects of drought stress on growth, solute accumulation and membrane stability of leafy vegetable, huckleberry (Solanum scabrum Mill.). Journal of Environmental Biology 37(1). www.jeb.co.in.

Astaneh, N., Bazrafshan, F., Zare, M., Amiri, B., & Bahrani, A. (2021). Nano-fertilizer prevents environmental pollution and improves physiological traits of wheat grown under drought stress conditions. Scientia Agropecuaria 12(1): 41–47. https://doi.org/10.17268/SCI.AGROPECU.2021.005.

Boy, R., Indradewa, D., Putra, E. T. S., & Kurniasih, B. (2020). Drought-induced production of reactive oxygen species and antioxidants activity of four local upland rice cultivars in Central Sulawesi, Indonesia. Biodiversitas 21(6): 2555–2565. https://doi.org/10.13057/biodiv/d210628.

Carvalho, M. H. C. (2008). Drought stress and reactive oxygen species. Plant Signaling & Behavior 3(3): 156–165.

Cechin, I., da Silva, L. P., Ferreira, E. T., Barrochelo, S. C., de Melo, F. P. de S. R., Dokkedal, A. L., & Saldanha, L. L. (2022). Physiological responses of Amaranthus cruentus L. to drought stress under sufficient- and deficient-nitrogen conditions. PLoS ONE 17(7): 1–20. https://doi.org/10.1371/journal.pone.0270849.

Celi, G. E. A., Gratão, P. L., Lanza, M. G. D. B., & Reis, A. R. dos. (2023). Physiological and biochemical roles of ascorbic acid on mitigation of abiotic stresses in plants. In Plant Physiology and Biochemistry (Vol. 202). Elsevier Masson s.r.l. French. https://doi.org/10.1016/j.plaphy.2023.107970.

Çelik, Ö., Ayan, A., & Atak, Ç. (2017). Enzymatic and non-enzymatic comparison of two different industrial tomato (Solanum lycopersicum) varieties against drought stress. Botanical Studies 58(1): 1–13. https://doi.org/10.1186/s40529-017-0186-6.

Close, D. C., & Beadle, C. L. (2003). The ecophysiology of foliar anthocyanin. The Botanical Review 69(2): 149–161.

Corpas, F. J., González-Gordo, S., & Palma, J. M. (2024). Ascorbate peroxidase in fruits and modulation of its activity by reactive species. Journal of Experimental Botany 75(9): 2716–2732. https://doi.org/10.1093/jxb/erae092.

Cunhua, S., Wei, D., Xiangling, C., Xinna, X., Yahong, Z., Dong, S., & Jianjie, S. (2010). The effects of drought stress on the activity of acid phosphatase and its protective enzymes in pigweed leaves. African Journal of Biotechnology 9(6): 825–833. http://www.academicjournals.org/AJB.

Demidchik, V., Straltsova, D., Medvedev, S. S., Pozhvanov, G. A., Sokolik, A., & Yurin, V. (2014). Stress-induced electrolyte leakage: The role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. Journal of Experimental Botany 65(5): 1259–1270. https://doi.org/10.1093/jxb/eru004.

Dianawati, M., & Hamdani, K. K. (2022). Produksi beberapa varietas tembakau lokal pada tanah regosol di Kabupaten Garut. Jurnal Bioindustri 4(2):1–9.

Elavarthi, S., & Martin, B. (2010). Spectrophotometric assays for antioxidant enzymes in plants. Methods in Molecular Biology (Clifton, N.J.) 639: 273–281. https://doi.org/10.1007/978-1-60761-702-0_16.

Emami Bistgani, Z., Barker, A. V., & Hashemi, M. (2024). Physiology of medicinal and aromatic plants under drought stress. Crop Journal 12(2): 330–339. https://doi.org/10.1016/j.cj.2023.12.003.

Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48(12): 909–930. https://doi.org/10.1016/j.plaphy.2010.08.016.

Gong, H., Zhu, X., Chen, K., Wang, S., & Zhang, C. (2005). Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Science 169(2): 313–321. https://doi.org/10.1016/j.plantsci.2005.02.023.

Hasanuzzaman, M., Hossain, M. A., Da Silva, J. A. T., & Fujita, M. (2012). Plant response and tolerance to abiotic oxidative stress: Antioxidant defense is a key factor. Crop Stress and its Management: Perspectives and Strategies 9789400722200: 261–315. https://doi.org/10.1007/978-94-007-2220-0_8.

Herawati, D. (2004). Pengaruh Cekaman Kekeringan dan Dosis Pemupukan Nitrogen Terhadap Pertumbuhan Tanaman Tembakau BesukiVO (Nicotiana tabacum L.) [Skripsi]. Universitas Jember.

Hodges, D. M., DeLong, J. M., Forney, C. F., & Prange, R. K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207: 604–611.

Illes, A., Bojtor, C., Szeles, A., Mousavi, S. M. N., Toth, B., & Nagy, J. (2021). Effect of nitrogen fertiliser on the rate of lipid peroxidation of different maize hybrids in a long-term multifactorial experiment. Acta Alimentaria 50(3): 162–169. https://doi.org/10.1556/066.2020.00177.

K. Berwal, M., & Ram, C. (2019). Abiotic and Biotic Stress in Plants: Superoxide Dismutase: A Stable Biochemical Marker for Abiotic Stress Tolerance in Higher Plants. IntechOpen. London. https://doi.org/10.5772/intechopen.82079.

Khan, R., Ma, X., Shah, S., Wu, X., Shaheen, A., Xiao, L., Wu, Y., & Wang, S. (2020). Drought-hardening improves drought tolerance in Nicotiana tabacum at physiological, biochemical, and molecular levels. BMC Plant Biology 20(1): 1–19. https://doi.org/10.1186/s12870-020-02688-7.

Kurniawan, A., Udayana, C., Meiana M, N. I., Salsabila, S., & Barunawati, N. (2024). Accurate nitrogen and water deficit trigger flavonoid and proline accumulation in celery (Apium graveolens L.). Jurnal Ecosolum 13(1): 1–13. https://doi.org/10.20956/ecosolum.v13i1.33280.

Kurniawan, B. A., Fajriani, S., & Ariffin. (2014). The effect of giving water levels to response of the growth and yield for tobacco (Nicotiana tabaccum L.). Jurnal Produksi Tanaman 2(1): 59–64.

Li, S., Zhou, L., Addo-Danso, S. D., Ding, G., Sun, M., Wu, S., & Lin, S. (2020). Nitrogen supply enhances the physiological resistance of Chinese fir plantlets under polyethylene glycol (PEG)-induced drought stress. Scientific Reports 10(1). https://doi.org/10.1038/s41598-020-64161-7.

Li, X. (2012). Improved pyrogallol autoxidation method: A reliable and cheap superoxide-scavenging assay suitable for all antioxidants. Journal of Agricultural and Food Chemistry 60(25): 6418–6424. https://doi.org/10.1021/jf204970r.

Liu, F., Zhou, Y., Zhang, S., & Liu, N. (2022). Inorganic nitrogen enhances the drought tolerance of evergreen broad-leaved tree species in the short-term, but may aggravate their water shortage in the mid-term. Frontiers in Plant Science 13. https://doi.org/10.3389/fpls.2022.875293.

Liu, M., Liu, X., Song, Y., Hu, Y., Yang, C., Li, J., Jin, S., Gu, K., Yang, Z., Huang, W., Su, J., & Wang, L. (2024). Tobacco production under global climate change: combined effects of heat and drought stress and coping strategies. Frontiers in Plant Science (15). Frontiers Media SA. https://doi.org/10.3389/fpls.2024.1489993.

Marklund, S., & Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry 47(3): 469–474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x.

Mccords, J. M., & Fridovich, I. (1969). Superoxide Dismutase an enzymic function for erythrocuprein (hemocuprein). The Journal of Biological Chemistry 244(22).

Morales, M., & Munné-Bosch, S. (2019). Malondialdehyde: facts and artifacts. Plant Physiology 180(3): 1246–1250. https://doi.org/10.1104/pp.19.00405.

Mudhor, M. A., Dewanti, P., Handoyo, T., & Ratnasari, T. (2022). Pengaruh cekaman kekeringan terhadap pertumbuhan dan produksi tanaman padi hitam varietas jeliteng. Jurnal Agrikultura 33(3): 247–256.

Muhammad, I., Yang, L., Ahmad, S., Farooq, S., Al-Ghamdi, A. A., Khan, A., Zeeshan, M., Elshikh, M. S., Abbasi, A. M., & Zhou, X. B. (2022). Nitrogen fertilizer modulates plant growth, chlorophyll pigments and enzymatic activities under different irrigation regimes. Agronomy 12(4). https://doi.org/10.3390/agronomy12040845.

Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant & Cell Physiol 22(5): 867–880. https://academic.oup.com/pcp/article-abstract/22/5/867/1835201.

Noor, H., Ding, P., Ren, A., Sun, M., & Gao, Z. (2023). Effects of nitrogen fertilizer on photosynthetic characteristics and yield. Agronomy 13(6): 1–20. https://doi.org/10.3390/agronomy13061550.

Novarini, T., Indrayati, A., & Purwaningsih, D. (2022). Uji aktivitas enzim superoksida dismutase (SOD) dalam ekstrak temu hitam (Curcuma aeruginosa Roxb.) dengan metode water soluble tetrazolium Salt-1 (WST-1). Jurnal Sains Dan Kesehatan 4(5): 464–472. https://doi.org/10.25026/jsk.v4i5.1285.

Nurhayati, ., Akbar, D. F., & Rahayu, M. S. (2020). Growth and Physiology of Deli Tobacco (Nicotiana tabaacum) Varieties of Deli-4 on Drought. International Conference on Multidisciplinary Research (ICMR 2018). Universitas Islam Sumatera Utara. Medan. https://doi.org/10.5220/0008887602120215.

Oraee, A., & Tehranifar, A. (2020). Evaluating the potential drought tolerance of pansy through its physiological and biochemical responses to drought and recovery periods. Scientia Horticulturae, 265. https://doi.org/10.1016/j.scienta.2020.109225.

Palma, J. M., Mateos, R. M., López-Jaramillo, J., Rodríguez-Ruiz, M., González-Gordo, S., Lechuga-Sancho, A. M., & Corpas, F. J. (2020). Plant catalases as NO and H2S targets. Redox Biology 34. https://doi.org/10.1016/j.redox.2020.101525.

Phung, T. H., Jung, H. il, Park, J. H., Kim, J. G., Back, K., & Jung, S. (2011). Porphyrin biosynthesis control under water stress: Sustained porphyrin status correlates with drought tolerance in transgenic rice. Plant Physiology 157(4): 1746–1764. https://doi.org/10.1104/pp.111.188276.

Pourghayoumi, M., Bakhshi, D., Rahemi, M., Kamgar-Haghighi, A. A., & Aalami, A. (2017). The physiological responses of various pomegranate cultivars to drought stress and recovery in order to screen for drought tolerance. Scientia Horticulturae 217: 164–172. https://doi.org/10.1016/j.scienta.2017.01.044.

Prasetiyo, A., Djajadi, & Sudarto. (2016). Kajian produktivitas dan mutu tembakau temanggung berdasarkan nilai indeks erodibilitas dan kepadatan tanah. Jurnal Tanah Dan Sumberdaya Lahan 3(2): 389–399. http://jtsl.ub.ac.id.

Qian, L., Zakriya, M., Pervez, M., Waqar, I., Song, Z., Younis, U., Ahmed, N., Azeem, M., Alarfaj, A. A., & Iftikhar Hussain, M. (2023). Assessing the synergistic effect of acidified carbon, inorganic fertilizer, and biofertilizer on fenugreek antioxidant levels, and quality traits. Journal of King Saud University – Science 35(7). https://doi.org/10.1016/j.jksus.2023.102848.

Rachmawati, D., Dan, M., & Setyaningsih, T. (2010). Pengaruh pupuk nitrogen dan ethephon terhadap pertumbuhan, pembungaan dan hasil padi lokal (Oryza sativa L. cv. Rojolele). Biota 15(3): 448–458.

Salsinha, Y. C. F., Nurbaiti, S., Sebastian, A., Indradewa, D., Purwestri, Y. A., & Rachmawati, D. (2022). Proline-related gene expression contribute to physiological changes of East Nusa Tenggara (Indonesia) local rice cultivars during drought stress. Biodiversitas 23(7): 3573–3583. https://doi.org/10.13057/biodiv/d230734.

Sharma, A. J., Puri, S., Bhattacharya, S., & Navdeep, D. R. (2018). Drought stress-mediated consequences on enzymatic antioxidants of Fagopyrum esculentum moench experiment findings. Asian J. Adv. Basic Sci 6(1): 22–27. www.ajabs.org.

Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany 1–26. https://doi.org/10.1155/2012/217037.

Silva, R. L. O., Neto, J. R. C. F., Pandolfi, V., Chabregas, S. M., Burnquist, W. L., Benko-Iseppon, A. M., & Kido, E. A. (2011). Plants and Environment: Transcriptomics of Sugarcane Osmoprotectants Under Drought. IntechOpen. London. https://doi.org/10.5772/23726.

Simbolon, E., Suedy, S. W. A., & Darmanti, S. (2020). Hydrogen peroxide and water availability effect on vegetative growth of soybean [Glycine max (L.) Merr.] Variety Deja 1. Agric 32(1): 39–50. https://doi.org/10.24246/agric.2020.v32.i1.p39-50.

Sofo, A., Scopa, A., Nuzzaci, M., & Vitti, A. (2015). Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. International Journal of Molecular Sciences 16(6): 13561–13578). MDPI AG. https://doi.org/10.3390/ijms160613561.

Stephenie, S., Chang, Y. P., Gnanasekaran, A., Esa, N. M., & Gnanaraj, C. (2020). An insight on superoxide dismutase (SOD) from plants for mammalian health enhancement. In Journal of Functional Foods 68. https://doi.org/10.1016/j.jff.2020.103917.

Su, X., Wei, F., Huo, Y., & Xia, Z. (2017). Comparative physiological and molecular analyses of two contrasting flue-cured tobacco genotypes under progressive drought stress. Frontiers in Plant Science 8(827): 1–13. https://doi.org/10.3389/fpls.2017.00827.

Susanti, R., Rugayah, R., Widagdo, S., & Pangaribuan, D. H. (2021). Pengaruh dosis pupuk urea terhadap pertumbuhan dan hasil tanaman kailan (Brassica oleracea var. Alboglabra). Jurnal Agrotek Tropika 9(1): 137–144. https://doi.org/10.23960/jat.v9i1.4776.

Turan, M., Ekinci, M., Argin, S., Brinza, M., & Yildirim, E. (2023). Drought stress amelioration in tomato (Solanum lycopersicum L.) seedlings by biostimulant as regenerative agent. Frontiers in Plant Science 14: 1–13. https://doi.org/10.3389/fpls.2023.1211210.

Ullah, A., Tian, Z., Xu, L., Abid, M., Lei, K., Khanzada, A., Zeeshan, M., Sun, C., Yu, J., & Dai, T. (2022). Improving the effects of drought priming against post-anthesis drought stress in wheat (Triticum aestivum L.) using nitrogen. Frontiers in Plant Science 13. https://doi.org/10.3389/fpls.2022.965996.

Utari, D., & Slamet. (2019). Keragaman Karakter Kuantitatif dan Produksi Tembakau Lokal Di Kabupaten Jombang. Temu Teknis Jabatan Fungsional Non Peneliti . Kementerian Pertanian. Malang.

van Rensburg, L., & Krüger, G. H. J. (1994). Evaluation of components of oxidative stress metabolism for use in selection of drought tolerant cultivars of Nicotiana tabacum L. Journal of Plant Physiology 143(6): 730–737. https://doi.org/10.1016/S0176-1617(11)81166-1.

Violita, & Hamim. (2010). Sistem pertahanan tanaman kedelai yang mendapat perlakuan cekaman kekeringan. EKSAKTA 2: 103–112.

Wang, S., Zhou, H., Feng, N., Xiang, H., Liu, Y., Wang, F., Li, W., Feng, S., Liu, M., & Zheng, D. (2022). Physiological response of soybean leaves to uniconazole under waterlogging stress at R1 stage. Journal of Plant Physiology 268. https://doi.org/10.1016/j.jplph.2021.153579.

Wang, W., Shen, C., Xu, Q., Zafar, S., Du, B., & Xing, D. (2022). Grain yield, nitrogen use efficiency and antioxidant enzymes of rice under different fertilizer n inputs and planting density. Agronomy 12(2). https://doi.org/10.3390/agronomy12020430.

Xiao-Tang, J. U., Feng-Chun, C., Li, C.-J., Rong-Feng, J., Christie, P., Fu-Suo, Z., Ju, C. :, Chao, X. T., Li, F. C., Jiang, C. J., Christie, R. F., & Zhang, P. (2008). Yield and nicotine content of flue-cured tobacco as affected by soil nitrogen mineralization. Pedosphere 18(2): 227–235.

Yadav, N. S., Shukla, P. S., Jha, A., Agarwal, P. K., & Jha, B. (2012). The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco. BMC Plant Biology 12(188): 1–18. https://doi.org/10.1186/1471-2229-12-188.

Yao, P., Li, Y., Ali, K., Zhang, C., Qin, T., Bi, Z., Liu, Y., Liu, Z., Kear, P., Sun, C., & Bai, J. (2023). Study on root hydraulic lift of drought-tolerant and drought-sensitive potato cultivars (Solanum tuberosum L.). Agronomy 13(2): 1–15. https://doi.org/10.3390/agronomy13020443.

Zhang, S. G., & Liu, G. L. (2001). Plant nutrition and drought resistance of crops. Chinese Bulletin of Botany 18(1): 64–69.

Zhang, Y., Luan, Q., Jiang, J., & Li, Y. (2021). Prediction and utilization of malondialdehyde in exotic pine under drought stress using near-infrared spectroscopy. Frontiers in Plant Science 12(735275): 1–9. https://doi.org/10.3389/fpls.2021.735275.

Zheng, M., Liu, Y., Zhang, G., Yang, Z., Xu, W., & Chen, Q. (2023). The applications and mechanisms of superoxide dismutase in medicine, food, and cosmetics. Antioxidants 12(9): 1–20). https://doi.org/10.3390/antiox12091675.

Downloads

Published

30-10-2025

How to Cite

Ardadi, M. P. S., Nurbaiti, S., & Rachmawati, D. (2025). Pengaruh Aplikasi Pupuk Nitrogen terhadap Ketahanan Tembakau (Nicotiana tabacum L. ‘Manilo’) pada Cekaman Kekeringan. Biota : Jurnal Ilmiah Ilmu-Ilmu Hayati, 10(3), 315–330. https://doi.org/10.24002/biota.v10i3.11663