Evaluation of Shrimp Head-Based Liquid Organic Fertilizer as a Sustainable Alternative Nutrient Source for Nannochloropsis sp. Culture

Authors

  • Kartina Departemen of Aquaculture, Faculty of Fisheries and Marine Science, Universitas Borneo Tarakan https://orcid.org/0000-0003-0571-1939
  • Nurdahlia Departemen of Aquaculture, Faculty of Fisheries and Marine Science, Universitas Borneo Tarakan

DOI:

https://doi.org/10.24002/biota.v10i3.11822

Keywords:

Aquaculture, LOF, nannochloropsis, nutrient, microalgae

Abstract

Laboratory-scale Nannochloropsis sp. cultures typically rely on expensive commercial nutrients for aquaculture feed production. Shrimp head waste contains important nutrients that can be used to produce liquid organic fertilizers. This study aimed to evaluate the effect of using commercial fertilizer combined with liquid organic shrimp head fertilizer (LOF) on the growth of Nannochloropsis sp. on a controlled scale. The experimental design included four treatments (P0:100% commercial fertilizer), P1 (50% commercial + 50% LOF), P2 (75% commercial + 25% LOF), and P3 (100% LOF). Cell growth data were subjected to ANOVA and Duncan's tests. The use of LOF significantly influenced the growth of Nannochloropsis sp. on day 7. Peak growth occurred on day 7. P0 treatment (100% commercial fertilizer) showed the highest growth (15.7 × 104 cells/ml), although it was not statistically different from P1 (50% commercial + 50% LOF) and P2 (75% commercial + 25% LOF). The highest Specific Growth Rate was observed in the P0 treatment (0.22). This suggests that while shrimp head LOF alone may not be sufficient, its combination with commercial fertilizers holds promise for the sustainable cultivation of Nannochloropsis sp.

References

Adiwena, M., Kartina, K., Santoso, H., Nurhafida, A., Muhajrah, M., & Jaya, A. (2025). Optimalisasi sumber daya perikanan dalam mendukung keselarasan blue dan green economy di Tarakan. PengabdianMu: Jurnal Ilmiah Pengabdian Kepada Masyarakat 10: 259–268. https://doi.org/10.33084/pengabdianmu.v10isuppl-1.8451.

Anwar, R., Rahman, A., Rusmini, R., Daryono, D., & Suparno, S. (2024). Physical and Chemical characteristics of liquid organic fertilizer from shrimp shell waste and old coconut water. International Journal of Life Science and Agriculture Research 3(03): 118–123. https://doi.org/10.55677/ijlsar/v03i3y2024-01.

Arfah, Y., Cokrowati, N., & Mukhlis, A. (2019). Pengaruh konsentrasi pupuk urea terhadap pertumbuhan populasi sel Nannochloropsis sp. Jurnal Kelautan: Indonesian Journal of Marine Science and Technology 12(1): 45. https://doi.org/10.21107/jk.v12i1.4925.

Ariany, N., Mustahal, & Syamsunarno, M. B. (2021). Pemberian pupuk organik cair duckweed terhadap populasi sel dalam kultur Nannochloropsis oculata. Torani Journal of Fisheries and Marine Science 4(2): 58–71. https://journal.unhas.ac.id/index.php/torani/article/view/13707.

Arizuna, M., Suprapto, D., & Muskanonfola, M. R. (2014). Kandungan nitrat dan fosfat dalam air pori sedimen di sungai dan muara sungai Wedung Demak. Management of Aquatic Resources Journal (MAQUARES) 3(1): 7–16. https://doi.org/10.14710/marj.v3i1.4281

Bagotia, N., Ahalavat, S., & Kamboj, P. (2024). Research Trends in Animal Science, Aquaculture Industry-Their Present and Future Prospects. Bhumi Publishing: India.

Barten, R., Chin-On, R., de Vree, J., van Beersum, E., Wijffels, R. H., Barbosa, M. J., & Janssen, M. (2022). Growth parameter estimation and model simulation for three industrially relevant microalgae: Picochlorum, Nannochloropsis, and Neochloris. Biotechnology and Bioengineering 119(6): 1416–1425. https://doi.org/10.1002/bit.28052

Bergman, I., Lundberg, P. B., & Nilsson, M. (1999). Microbial carbon mineralisation in an acid surface peat: effects of environmental factors in laboratory incubations. Soil Biology and Biochemistry 31(13). https://doi.org/https://doi.org/10.1016/S0038-0717(99)00117-0.

Brito-Lopez, C., Van Der Wielen, N., Barbosa, M., & Karlova, R. (2025). Plant growth-promoting microbes and microalgae-based biostimulants: Sustainable strategy for agriculture and abiotic stress resilience. Philosophical Transactions of the Royal Society B: Biological Sciences 380(1927). https://doi.org/10.1098/rstb.2024.0251.

Dangeubun, J. L., Letsoin, P. P., & Syahailatua, D. Y. (2020). Growth of nannochloropsis sp. In culture media enriched with shrub-like annual clerodendrum minahassae leaf extract. AACL Bioflux 13(5): 2807–2815.

Farias, L., Beszteri, B., Castellonas, A. M. B., & Doliwa, A. (2024). Influence of salinity on the thermal tolerance of aquatic organisms. Science of The Total Environment 953: 176120. https://doi.org/https://doi.org/10.1016/j.scitotenv.2024.176120.

Fery, R. andes, Nasution, S., & Siregar, S. H. (2020). The Effect of Ammonium Sulphate (ZA) fertilizer concentration on the growth of microalga population (Nannochloropsis oculata). Asian Journal of Aquatic Sciences 3(2): 94–102. https://doi.org/10.31258/ajoas.3.2.94-102.

Fried, S., Mackie, B., & Nothwehr, E. (2003). Nitrate and phosphate levels positively affect the growth of algae species found in Perry Pond. Tillers 4: 21–24. http://digital.grinnell.edu/ojs/index.php/tillers/article/view/33.

Gonzalez, J. M., & Aranda, B. (2023). Microbial growth under limiting conditions-future perspectives. Microorganisms 11(7): 1–21. https://doi.org/10.3390/microorganisms11071641.

Guillard, R., & Sieracki, M. S. (2005). Counting Cells in Cultures with the Light Microscope. Biology. https://doi.org/DOI:10.1016/B978-012088426-1/50017-2.

Hemaiswarya, S., Raja, R., Kumar, R. R., Ganesan, V., & Anbazhagan, C. (2011). Microalgae: A sustainable feed source for aquaculture. World Journal of Microbiology and Biotechnology 27(8): 1737–1746. https://doi.org/10.1007/s11274-010-0632-z.

Hulatt, C. J., Wijffels, R. H., Bolla, S., & Kiron, V. (2017). Production of fatty acids and protein by nannochloropsis in flat-plate photobioreactors. PLoS ONE 12(1): 1–17. https://doi.org/10.1371/journal.pone.0170440.

Jin, M., Monroig, O., Lu, Y., Yuan, Y., Li, Y., Ding, L., Tocher, D. R., & Zhou, Q. (2017). Dietary DHA/EPA ratio affected tissue fatty acid profiles, antioxidant capacity, hematological characteristics and expression of lipid-related genes but not growth in juvenile black seabream (Acanthopagrus schlegelii). PLoS ONE 12(4): 1–20. https://doi.org/10.1371/journal.pone.0176216.

Kartina, Cahyani, R. T., Sumarlin, Adiwena, M., Firdaus, M. R., Agustiani, M., & Lestari, A. T. (2025). A preliminary survey on the indigenous microalgae in a brackish water Kakaban Lake, East Kalimantan, Indonesia for potential biomass production. Egyptian Journal of Aquatic Biology and Fisheries 29(2): 853–870.

Kumaran, J., Poulose, S., Joseph, V., & Bright Singh, I. S. (2021). Enhanced biomass production and proximate composition of marine microalga Nannochloropsis oceanica by optimization of medium composition and culture conditions using response surface methodology. Animal Feed Science and Technology 271: 114761. https://doi.org/10.1016/j.anifeedsci.2020.114761

Leksono, A. W., Mutiara, D., & Yusanti, A. (2017). Penggunaan Pupuk Organik Cair Hasil Fermentasi Dari Azolla pinnata Terhadap Pertumbuhan Spirulina sp. Jurnal Ilmu-Ilmu Perikanan Dan Budidaya Perairan 12(1): 56–65.

Lin, W., Li, P., Liao, Z., & Luo, J. (2017). Detoxification of ammonium to Nannochloropsis oculata and enhancement of lipid production by mixotrophic growth with acetate. Bioresource Technology 227: 404–407. https://doi.org/https://doi.org/10.1016/j.biortech.2016.12.093.

Manhaeghe, D., Michels, S., Rousseau, D. P. L., & Van Hulle, S. W. H. (2019). A semi-mechanistic model describing the influence of light and temperature on the respiration and photosynthetic growth of Chlorella vulgaris. Bioresource Technology 274: 361–370. https://doi.org/10.1016/j.biortech.2018.11.097.

Matthews, J. A. (2014). Nutrient. In Encyclopedia of Environmental Change (Issue May). https://doi.org/10.4135/9781446247501.n2679

Nisa, K., Mubarak, A., & Sulmartiwi, L. (2021). Growth of Nannochloropsis oculata in shrimp cultivation waste at difference N:P ratios. Proceeding of The 3rd International Conference on Fisheries and Marine Sciences. Jawa Timur, Indonesia. https://doi.org/https://doi.org/10.1088/1755-1315/718/1/012014.

Nuraini, R. A. T. (2006). Percobaan berbagai macam metode budidaya latoh (Caulerpa racemosa) sebagai upaya menunjung kontinuitas produksi. Ilmu Kelautan: Indonesia Journal of Marine Sciences 11(2): 101–105.

Padli, F., Tanjung, A., & Nasution, S. (2024). The effect of azolla microphylla liquid fertilizer on the growth of Nannochloropsis oculata populations on a laboratory scale. Journal of Coastal and Ocean Sciences 5(1): 27–33. https://doi.org/10.31258/jocos.5.1.27-33.

Perkasa, B. G., & Sudjarwo, E. (2019). Utilization of shrimp head waste meal in diet of quail bird on performance, feed conversion and first age of spawn eggs. Jurnal Nutrisi Ternak Tropis 2(2): 51–58.

Raden, I., Fathillah, S. S., Fadli, M., & Suyadi, S. (2017). Nutrient content of Liquid Organic Fertilizer (LOF) by various bioactivator and soaking time. Nusantara Bioscience 9(2): 209–213. https://doi.org/10.13057/nusbiosci/n090217.

Rahmadiarto M. F., Ridwan, M. T. (2021). Pembuatan POC dari limbah kepala udang vanamei dengan bioaktifator EM4 perikanan. Saintis 2(2): 42–46.

Sahira, Muskita, W. H., & Astuti, O. (2017). Pengaruh dosis pupuk nitrophoska terhadap pertumbuhan Nannochloropsis sp . Media Akuatika 2(4): 494–501.

Suantika, G., & Hendrawandi. (2009). Efektivitas teknik kultur menggunakan sistem kultur statis, semi-kontinyu, dan kontinyu terhadap produktivitas dan kualitas kultur Spirulina sp. Matematika Dan Sains 14(2): 41–50.

Subarijanti, H. . (2006). Ekologi Perairan. Fakultas Perikanan. Universitas Brawijaya: Malang.

Suparmaniam, U., Man Kee, L., Jun Wei, L., Suzana, Y., In Shi, T., Si Yoan, L., Kodgire, P., & Kachwalana, S. L. (2022). Influence of environmental stress on microalgae growth and lipid profile: a systematic review. Phytochemistry Review 22: 879–901. https://doi.org/10.1007/s11101-022-09810-7.

Widihastuti, A., Tjahjaningsih, W., Satria, B., & Ratna, Y. (2022). Growth rate of microalgae Nannochloropsis oculata at different culture scales. Journal of Aquaculture Science 7(2): 140–148. https://doi.org/10.31093/joas.v7i2.258.

Yatin, R. (2015). Pertumbuhan Tetraselmis dan Nannochloropsis pada skala laboratorium. Prosiding Seminar Nasional Masyarakat Biodiversitas Indonesia. 1(2): 269 - 299. https://doi.org/10.13057/psnmbi/m010221.

Zahran, E., Elbahnaswy, S., Ahmed, F., Ibrahim, I., Khaled, A. A., & Eldessouki, E. A. (2023). Nutritional and immunological evaluation of Nannochloropsis oculata as a potential Nile tilapia-aquafeed supplement. BMC Veterinary Research 19(1): 1–18. https://doi.org/10.1186/s12917-023-03618-z.

Zanella, L., & Vianello, F. (2020). Microalgae of the genus Nannochloropsis: Chemical composition and functional implications for human nutrition. Journal of Functional Foods 68: 103919. https://doi.org/10.1016/j.jff.2020.103919.

Downloads

Published

30-10-2025

How to Cite

Kartina, & Nurdahlia. (2025). Evaluation of Shrimp Head-Based Liquid Organic Fertilizer as a Sustainable Alternative Nutrient Source for Nannochloropsis sp. Culture. Biota : Jurnal Ilmiah Ilmu-Ilmu Hayati, 10(3), 295–306. https://doi.org/10.24002/biota.v10i3.11822