Transformasi Genetik pada Kalus Embriogenik Tanaman Suku Rubiaceae

Authors

  • Mega Silvia Budaya Prodi Biologi, Fakultas Teknobiologi, Universitas Atma Jaya Yogyakarta
  • Exsyupransia Mursyanti Prodi Biologi, Fakultas Teknobiologi, Universitas Atma Jaya Yogyakarta
  • Pramana Yuda Prodi Biologi, Fakultas Teknobiologi, Universitas Atma Jaya Yogyakarta

DOI:

https://doi.org/10.24002/biota.v7i2.5550

Keywords:

Rubiaceae, kalus embriogenik, asetosiringon, Agrobacterium tumefaciens, efisiensi transformasi

Abstract

Tanaman dari suku Rubiaceae memiliki peran yang penting dalam masyarakat, terutama di bidang kesehatan. Propagasi konvensional dapat menghasilkan tanaman baru namun membutuhkan waktu yang lama, sehingga diperlukan metode perbanyakan yang efisien agar tidak terjadi overeksploitasi di alam. Induksi kalus embriogenik tanaman Rubiaceae dapat dilakukan dengan menggunakan kombinasi Thidiazuron (TDZ), Asam 2,4-Diklorofenoksiasetat (2,4-D) dan 1-Naphthylaceticacid (NAA), selanjutnya disubkultur ke medium yang mengandung 6-Benzilaminopurin (6-BA) dan NAA untuk diferensiasi membentuk tunas. Tahapan ini dapat dimanfaatkan untuk kepentingan beberapa aspek bioteknologi, termasuk diantaranya adalah mikropropagasi dan transformasi genetik. Keberhasilan transformasi genetik dipengaruhi oleh banyak faktor dimana dua faktor yang paling berpengaruh adalah konsentrasi asetosiringon dan strain Agrobacterium tumefaciens yang digunakan sebagai perantara transformasi genetik. Asetosiringon adalah senyawa pengaktivasi gen vir untuk transfer DNA ke sel tanaman. Konsentrasi asetosiringon yang paling optimal diketahui adalah 50 mg/L karena mampu menghasilkan persentase efisiensi transformasi tertinggi saat digunakan bersamaan dengan strain supervirulen seperti A. tumefaciens EHA101. Literature review ini membahas pengaruh asetosiringon pada berbagai konsentrasi dan jenis strain A. tumefaciens terhadap efisiensi transformasi gen ke kalus embiogenik tanaman suku Rubiaceae. 

References

Ahmad, N. & Faisal, M. (2018). Thidiazuron: From urea derivative to plant growth regulator. Springer Singapore. Singapore.

Atmaja, A. V., Nansy, E. & Purwanti, N. U. (2015). Uji aktivitas larvasida ekstrak etanol daun soka (Ixora javanica (blume) dc) terhadap larva Aedes aegypti. Jurnal Mahasiswa Farmasi Fakultas Kedokteran: 1–8.

Barreiro, E. J. (1990). Produtos naturais bioativos de origem vegetal e o desenvolvimento de fármacos. Quimica Nova 113: 29–39.

Bulgakov, V. P., Kiselev, K. V., Yakovlev, K. V., Zhuravlev, Y. N., Gontcharov, A. A., & Odintsova, N. A. (2006). Agrobacterium-mediated transformation of sea urchin embryos. Biotechnology Journal 41: 454–61.

Canche-Moo, R. L. R., Ku-Gonzalez, A., Burgeff, C., Loyola-Vargas, V. M., Rodríguez-Zapata, L. C., & Castaño, E. 2006. Genetic transformation of Coffea canephora by vacuum infiltration. Plant Cell, Tissue and Organ Culture 384: 373–7.

Chabaud, M., De Carvalho-Niebel, F. & Barker, D. G. (2003). Efficient transformation of Medicago truncatula cv. Jemalong using the hypervirulent Agrobacterium tumefaciens strain AGL1. Plant Cell Reports 122: 46–51.

De La Riva, GA et al. 1998. Agrobacterium tumefaciens: A natural tool for plant transformation.” Electronic Journal of Biotechnology no. 31: 25–48.

Deepthi, S. & Satheeshkumar, K. (2016). Enhanced camptothecin production induced by elicitors in the cell suspension cultures of Ophiorrhiza mungos Linn. Plant Cell, Tissue and Organ Culture 3124: 483–93.

Dwiyani, R., Yuswanti, H., Darmawati, I. A. P., & Mayadewi, N. N. (2016). Transformasi Genetik pada Tanaman melalui Agrobacterium tumefaciens. Swasta Nulus. Bali.

Escalant, J. V., Teisson, C. & Cote, F. (1994). Amplified somatic embryogenesis from male flowers of triploid banana and plantain cultivars (Musa spp.). In Vitro Cellular & Developmental Biology - Plant 430: 181–6.

Farias, F. M. (2006). Psychotria myriantha müll arg. (rubiaceae) : caracterização dos alcalóides e avaliação das atividades antiquimiotáxica e sobre o sistema nervoso central [Dissertation]. Federal University of Rio Grande do Sul. Brazil.

Frame, B. R., Shou, H., Chikwamba, R. K., Zhang, Z., Xiang, C., Fonger, T. M., Pegg, S. E. K., Li, B., Nettleton, D. S., Pei, D., & Wang, K. (2002). Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiology 1129: 13–22.

Gaber, M. K., & Barakat, A. A. (2019). Micropropagation and somatic embryogenesis induction of Gardenia jasminoides plants. Alexandria Science Exchange Journal 40: 190–202.

Gabr, A. H., Arafa, N. M., El-Ashry, A. A. E., & El-Bahr, M. K. (2017). Impact of zeatin and thidiazuron on phenols and flavonoids accumulation in callus cultures of Gardenia (Gardenia jasminoides). Pakistan Journal of Biological Sciences 720: 328–35.

George, E. F., Hall, M. A. & Klerk, G. J. D. (2008). Plant Propagation by Tissue Culture. Springer. Netherlands.

Giri, C. C., Shyamkumar, B. & Anjaneyulu, C. (2004). Progress in tissue culture, genetic transformation and applications of biotechnology to trees: An overview. Trees - Structure and Function 218: 115–35.

Gnasekaran, P., Antony, J. J. J., Uddain, J., & Subramaniam, S. (2014). Agrobacterium -mediated transformation of the recalcitrant Vanda Kasem’s delight orchid with higher efficiency. The Scientific World Journal 1: 14–6.

Hansen, G., Shillito, R. D. & Chilton, M. D. (1997). T-strand integration in maize protoplasts after codelivery of a T-DNA substrate and virulence genes. Proceedings of the National Academy of Sciences of the United States of America 2194: 11726–30.

Hatanaka, T., Choi, Y. E., Kusano, T., & Sano, H. (1999). Transgenic plants of coffee Coffea canephora from embryogenic callus via Agrobacterium tumefaciens-mediated transformation.” Plant Cell Reports 219: 106–10.

Heitzman, M. E., Neto, C. C., Winiarz, E., Vaisberg, A. J., & Hammond, G. B. (2005). Ethnobotany, phytochemistry and pharmacology of Uncaria (Rubiaceae). Phytochemistry 166: 5–29.

Hood, E. E., Helmer, G. L., Fraley, R. T., & Chilton, M. D. (1986). The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. Journal of Bacteriology 3168: 1291–301.

Horstman, A., Bemer, M. & Boutilier, K. (2017). A transcriptional view on somatic embryogenesis. Regeneration 44: 201–16.

Huang, H., Wei, Y., Zhai, Y., Ouyang, K., Chen, X., & Bai, L. (2020). High frequency regeneration of plants via callus-mediated organogenesis from cotyledon and hypocotyl cultures in a multipurpose tropical tree (Neolamarkia cadamba). Scientific Reports 110: 1–10.

Jia, Y., Yao, X., Zhao, M., Zhao, Q., Du, Y., Yu, C., & Xie, F. (2015). Comparison of soybean transformation efficiency and plant factors affecting transformation during the Agrobacterium infection process. International Journal of Molecular Sciences 816: 18522–43.

Jin, S. G., Komari, T., Gordon, M. P., & Nester, E. W. (1987). Genes responsible for the supervirulence phenotype of Agrobacterium tumefaciens A281. Journal of bacteriology 10169: 4417–25.

Kant, P., Kant, S., Jain, R. K., & Chaudhury, V. K. (2007). Agrobacterium-mediated high frequency transformation in dwarf recalcitrant rice cultivars. Biologia Plantarum 151: 61–8.

Karthik, S., Pavan, G., Sathish, S., Siva, R., Kumar, P. S., & Manickavasagam, M. (2018). Genotype-independent and enhanced in planta Agrobacterium tumefaciens-mediated genetic transformation of peanut [Arachis hypogaea (L.)]. 3 Biotech 48: 1–15.

Koetle, M. J., Finnie, J. F., Balázs, E., & Van Staden, J. (2015). A review on factors affecting the Agrobacterium-mediated genetic transformation in ornamental monocotyledonous geophytes. South African Journal of Botany 98: 37–44.

Košir, P., Škof, S. & Luthar, Z. (2004). Direct shoot regeneration from nodes of Phalaenopsis orchids. Acta agriculturae Slovenica 832: 233–42.

Krishnan, J. J., Gangaprasad, A. & Satheeshkumar, K. (2019). Biosynthesis of camptothecin from callus and cell suspension cultures of Ophiorrhiza mungos L. var. angustifolia (Thw.) Hook. f. Proceedings of the National Academy of Sciences India Section B - Biological Sciences 389: 893–902.

Lee, J. H., Lee, D. U. & Jeong, C. S. (2009). Gardenia jasminoides Ellis ethanol extract and its constituents reduce the risks of gastritis and reverse gastric lesions in rats. Food and Chemical Toxicology 647: 1127–31.

Li, D. D., Shi, W. & Deng, X. X. (2002). Agrobacterium-mediated transformation of embryogenic calluses of Ponkan mandarin and the regeneration of plants containing the chimeric ribonuclease gene. Plant Cell Reports 221: 153–6.

[a]Li, J. J., Zhang, D., Que, Q., Chen, X., & Ouyang, K. (2019). Plant regeneration and Agrobacterium-mediated transformation of the miracle tree Neolamarckia cadamba. Industrial Crops and Products 130: 443–9.

[b]Li, J. J., Zhang, D., Ouyang, K. X., & Chen, X. Y. (2019). High frequency plant regeneration from leaf culture of Neolamarckia cadamba. Plant Biotechnology 36(1): 13–9.

[c]Li, T. G., Cai, H., Wang, T. X., Fu, Y. G., Yang, W. H., Zhao, A. J., Cui, Z., & Wang, J. (2019). Plant regeneration in Ixora chinensis from young leaves. Plant Cell, Tissue and Organ Culture 139(3): 605–608.

Litz, R. E. & Gray, D. J. (1995). Somatic embryogenesis improvementt. World Journal of Microbiology & Biotechnology 11: 416–425.

Liu, Z. B., Chen, J. G., Yin, Z. P., Shangguan, X. C., Peng, D. Y., Lu, T., & Lin, P. (2018). Methyl jasmonate and salicylic acid elicitation increase content and yield of chlorogenic acid and its derivatives in Gardenia jasminoides cell suspension cultures. Plant Cell, Tissue and Organ Culture 134(1): 79–93.

Ma, R., Yu, Z., Cai, Q., Li, H., Dong, Y., Oksman-Caldentey, K. M. & Rischer, H. (2020). Agrobacterium-mediated genetic transformation of the medicinal plant Veratrum dahuricum. Plants 9(2): 1–12.

Mabberly, D. J. (1997). The Plant-Book. Cambridge University Press. Oxford.

Martins, D. & Nunez, C. V. (2015). Secondary metabolites from Rubiaceae species. Molecules 20(7): 13422–13495.

Marusin, S., Saefudin, S. & Chairul, C. (2013). Potensi sifat antioksidan pada 10 jenis ekstrak dari famili Rubiaceae. Jurnal Biologi Indonesia 9(1): 93–100.

Michielse, C. B., Ram, A. F. J., Hooykaas, P. J. J. & Van Den Hondel, C. A. M. J. J. Role of bacterial virulence proteins in Agrobacterium-mediated transformation of Aspergillus awamori. Fungal Genetics and Biology 541: 571–8.

Midhu, C. K., Hima, S., Binoy, J., & Satheeshkumar, K. (2019). Influence of incubation period on callus tissues for plant regeneration in Ophiorrhiza pectinata Arn. through somatic embryogenesis. Proceedings of the National Academy of Sciences India Section B - Biological Sciences 489: 1439–46.

Mok, P. K. & Ho, W. S. (2019). Rapid in vitro propagation and efficient acclimatisation protocols of Neolamarckia cadamba. Asian Journal of Plant Sciences 418: 153–63.

Mongrand, S., Badoc, A., Patouille, B., Lacomblez, C., Chavent, M., & Bessoule, J. J. (2005). Chemotaxonomy of the Rubiaceae family based on leaf fatty acid composition. Phytochemistry 566: 549–59.

Naseem, T. & Farrukh, M. A. (2015). Antibacterial activity of green synthesis of iron nanoparticles using Lawsonia inermis and Gardenia jasminoides leaves extract. Journal of Chemistry 1: 1–7.

Olhoft, P. M., Flagel, L. E., Donovan, C. M., & Somers, D. A. (2003). Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. Planta 5216: 723–35.

Onsa, R. A. H., Ellatif, I. A. E. A., Osman, M. G. E., & Abdullah, T. L. (2018). Effect of growth regulators in in vitro micropropagation of Ixora coccinea. International Journal of Scientific and Research Publications (IJSRP) 8(11): 144-145.

Pitman, V. (2004). Aromatherapy: A Practical Approach. Nelson Thornes Ltd. Cheltenham.

Prez-Pieiro, P., Gago, J., Landn, M. & Gallego, P. (2012). Transgenic Plants - Advances and Limitations. InTech. London.

Qianru, L.V., Chen, C., Xu, Y., Hu, S., Wang, L., Sun, K., Chen, X., & Li, X. (2017). Optimization of Agrobacterium tumefaciens-mediated transformation systems in tea plant (Camellia sinensis). Horticultural Plant Journal 33: 105–9.

Ribas, A. F., Dechamp, E., Champion, A., Bertrand, B., Combes, M. C., Verdeil, J. L., Lapeyre, F., Lashermes, P., & Etienne, H. (2011). Agrobacterium-mediated genetic transformation of Coffea arabica (L.) is greatly enhanced by using established embryogenic callus cultures. BMC Plant Biology 111: 92.

Robinson, JC; Fraser, C dan Eckstein, K. (1993). A field comparison of conventional suckers with tissue culture banana planting material over three crop cycles. Journal of Horticultural Science no. 668: 831–6.

Roy, A., Ghosh, S., Chaudhuri, M. & Saha, P. K. (2008). Effect of different plant hormones on callus induction in Gymnema sylvestris R.Br. (Asclepiadaceae). African Journal of Biotechnology 137: 2209–11.

Sadino, A. (2018). A review on medicinal plants with antidiabetic activity from Rubiaceae family. International Research Journal Of Pharmacy 79: 36–41.

Sah, S. J., Kaur, A., Kaur, G., & Cheema, G. S. (2014). Genetic transformation of rice: problems, progress and prospects. Rice Research: Open Access 3(1): 1-10.

Sari, Y. P., Kusumawati, E., Saleh, C., Kustiawan, W., & Sukartingsih. (2018). Effect of sucrose and plant growth regulators on callogenesis and preliminary secondary metabolic of different explant Myrmecodia tuberosa. Nusantara Bioscience 310: 183–92.

Shaw, C. H., Ashby, A. M. & Watson, M. D. (1986). Plant tumour induction. Nature 324: 415.

Sidha, M., Suprasanna, P., Bapat, V. A., Kulkarni, U. G., & Shinde, B. N. (2006). Developing somatic embryogenic culture system and plant regeration in banana. BARC Newsletter 1: 153-161.

Simoes, C. M. O., Schenkel, E. P., Gosmann, G., Mello, J. C. P., Mentz, L. A., & Petrovick, P. R. (2004). Farmacognosia: Da Planta ao Medicamento. UFSC University Press. Brazil.

Simpson., & Michael G. (2010). Diversity and Classification of Flowering Plants: Eudicots. Elsevier B.V. Amsterdam.

Sisharmini, A., Purwoko, B. S., Khumaida, N. & Trijatmiko, D. K. R. (2019). Optimasi konsentrasi asetosiringon dan higromisin dalam transformasi genetik padi Fatmawati dengan perantaraan Agrobacterium tumefaciens. Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy) 46(3): 223–30.

Siswanto., Oktavia, F., Budiani, A., Sudarsono., Priyono., & Mawardi, S. Transformasi kopi robusta (Coffea canephora) dengan gen kitinase melalui Agrobacterium tumefaciens LBA4404 transformation of robusta coffee (Coffea canephora) with chitinase gene mediated by Agrobacterium tumefaciens LBA4404. Menara Perkebunan 71(2): 56–69.

Skoog, F., & Miller, C. O. (1957). Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symposia of the Society for Experimental Biology 11: 118–30.

Stachel, S. E. & Nester, E. W. (1986). The genetic and transcriptional organization of the vir region of the A6 Ti plasmid of Agrobacterium tumefaciens. The EMBO Journal 75: 1445–54.

Taiz., Lincoln., & Zeiger, E. (2010). Plant Physiology. Sinauer Associates. Massachusetts.

Tzfira, T., Hohn, B., & Gelvin, S. B. (2017). Refrence Module in Life Sciences. Elsevier. Amsterdam.

Wang, J., Lu, J., Lv, C., Xu, T., & Jia, L. (2012). Three new triterpenoid saponins from root of Gardenia jasminoides Ellis. Fitoterapia 883: 1396–401.

Wang, S., Chen, H., Wang, Y., Pan, C., Tang, X., Zhang, H., Chen, W., & Chen, Y. Q. (2020). Effects of Agrobacterium tumefaciens strain types on the Agrobacterium-mediated transformation efficiency of filamentous fungus Mortierella alpina. Letters in Applied Microbiology 570: 388–93.

Xiao, W., Li, S., Wang, S. & Ho, C. T. (2017). Chemistry and bioactivity of Gardenia jasminoides. Journal of Food and Drug Analysis 125: 43–61.

Xu, R., Qin, G., Zhu, D., Fan, Z., Jiang, D., Jhan, B., Wang, J., & Wang, Y. L. (1987). Study on the chemical constituents of the antifertility plant Gardenia jasminoides Ellis: I. Structure of gardenoic acid B an early pregnancy terminating component. Acta Chimica Sinica 345: 301–4.

Yu, G. R., Liu, Y., Du, W. P., Song, J., Lin, M., Xu, L. Y., Xiao, F. M. & Liu, Y. S. (2013). Optimization of Agrobacterium tumefaciens-mediated immature embryo transformation system and transformation of glyphosate-resistant gene 2mG2-EPSPS in Maize (Zea mays L.). Journal of Integrative Agriculture 12: 2134–42.

Zhang, Y., Li, G., He, D., Yu, B., Yokoyama, K., & Wang, L. (2011). Efficient insertional mutagenesis system for the dimorphic pathogenic fungus Sporothrix schenckii using Agrobacterium tumefaciens. Journal of Microbiological Methods 84: 418–22.

Downloads

Published

30-06-2022

Issue

Section

Articles