Pengaruh Perlakuan PEG (Polyethylene Glycol) pada Media Kultur In Vitro terhadap Anatomi Akar, Kandungan Katalase dan Akumulasi Malondialdehid Kedelai Varietas Deja 2 (Glycine max cv. “deja 2”)

Authors

  • Mohammad Fadhil Arif Universitas Negeri Yogyakarta
  • Suyitno Aloysius Universitas Negeri Yogyakarta

DOI:

https://doi.org/10.24002/biota.v9i1.7346

Keywords:

deja 2, in vitro, katalase, malondialdehid, polyethylene glycol

Abstract

Penelitian ini bertujuan untuk mengetahui respon kedelai varietas Deja 2 pada kondisi cekaman kekeringan dengan parameter akumulasi malondialdehid (MDA), kandungan katalase (CAT) dan struktur anatomi akar. Penelitian ini dilakukan dengan eksperimen melalui kultur in vitro biji menggunakan media ½ MS (Murashige & Skoog) yang diberi PEG (Polyethylene Glycol) 6000. Variabel bebas pada penelitian ini adalah konsentrasi PEG meliputi 0%; 2,5%; 5%; dan 7,5%. Variabel terikatnya adalah kuantitas akumulasi MDA, kandungan CAT dan karakter anatomis akar kedelai Deja 2. Variabel terkendali meliputi jenis dan cara penggunaan PEG, kondisi lingkungan, dan karakteristik benih yang digunakan. Pengujian MDA menggunakan metode dari Gechev dengan pembacaan spektrofotometer 532 nm dan 600 nm. Pengujian kandungan katalase dilakukan dengan metode Aebi dan Lester dengan pembacaan spektrofotometer 240 nm. Hasil penelitian menunjukkan bahwa akumulasi MDA meningkat seiring meningkatnya konsentrasi PEG sampai konsentrasi 5%, dan menurun pada konsentrasi 7,5%. Kandungan CAT juga meningkat bahkan sampai pada PEG 7,5%. Perlakuan PEG tidak memberikan pengaruh signifikan pada luas akar, panjang stele dan tebal korteks melainkan pada tebal struktur epidermisnya.

References

Ahmad, P. (2014). Oxidative damage to plants antioxidant networks and signaling. Elsevier Science & Technology. Amsterdam.

Alché, J. , De Dios (2019). A concise appraisal of lipid oxidation and lipoxidation in higher plants. Redox biology 23: 101136

Aldoobie, N. F., & Beltagi, M. S. (2013). Physiological, biochemical and molecular responses of common bean (Phaseolus vulgaris L.) plants to heavy metals stress. African Journal of Biotechnology 12(29):4614-4622.

Ayala, A., Muñoz, M. F., & Argüelles, S. (2014). Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative medicine and cellular longevity 2014: 1-31.

Ben Rejeb, I., Pastor, V., & Mauch-Mani, B. (2014). Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. Plants 3(4): 458-475.

Budiarti, D. A. (2019). Respons Anatomi Akar Padi (Oryza sativa L.) terhadap Cekaman Kekeringan [Tesis]. Institut Pertanian Bogor. Bogor.

Colombi, Anke Marianne Herrmann, Pernilla Vallenback, Thomas Keller. Cortical Cell Diameter Is Key To Energy Costs of Root Growth in Wheat. (2019). Plant Physiology 180(4): 2049–2060.

Comas, L. H., Becker, S. R., Cruz, V. M. V., Byrne, P. F., & Dierig, D. A. (2013). Root traits contributing to plant productivity under drought. Frontiers in plant science 4(442): 1-16.

Dietz, K. J., Mittler, R., & Noctor, G. (2016). Recent Progress in Understanding the Role of Reactive Oxygen Species in Plant Cell Signaling. Plant physiology 171(3): 1535–1539.

Dimitrios Tsikas.(2017).Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Analytical Biochemistry 524(2017): 13-30.

Gechev, T., Mehterov, N., Denev, I., & Hille, J. (2013). A simple and powerful approach for isolation of Arabidopsis mutants with increased tolerance to H2O2-induced cell death. Methods in enzymology 527: 203–220.

Hidayati, Nur, Rina Laksmi Hendrati, Arie Triani, Sudjino Sudjino. (2017).Pengaruh Kekeringan Terhadap Pertumbuhan Dan Perkembangan Tanaman Nyamplung (Callophylum Inophyllum L.) Dan Johar (Cassia Florida Vahl.) Dari Provenan Yang Berbeda. Jurnal Pemuliaan Tanaman Hutan 11(2): 99-111.

Huang, Q., Zhan, L., Cao, H., Li, J., Lyu, Y., Guo, X., Zhang, J., Ji, L., Ren, T., An, J., Liu, B., Nie, Y., & Xing, J. (2016). Increased mitochondrial fission promotes autophagy and hepatocellular carcinoma cell survival through the ROS-modulated coordinated regulation of the NFKB and TP53 pathways. Autophagy 12(6): 999–1014.

Lynch JP (2013) Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann Bot. 112: 347–357.

Lynch JP Strock CF, Burridge J, Massas ASF, Beaver J, Beebe S, Camilo SA, Fourie D, Jochua C, Miguel M, Miklas PN, Mndolwa E, Nchimbi-Msolla S, Polania J, Porch TG, Rosas JC, Trapp JJ, .(2019). Seedling root architecture and its relationship with seed yield across diverse environments in Phaseolus vulgaris. Field Crop Res 237: 53– 64.

Mehmandar, Maryam Nekoee, Farzad Rasouli, Mousa Torabi, Giglou, Seyed Morteza Zahedi, Mohammad Bagher Hassanpouraghdam, Mohammad Ali Aazami, Rana Panahi Tajaragh, Pavel Ryant, and Jiri Mlcek. (2023)..Polyethylene Glycol and Sorbitol-Mediated In Vitro Screening for Drought Stress as an Efficient and Rapid Tool to Reach the Tolerant Cucumis melo L.Genotypes. Plants 12(4): 1-17.

Mendes, Y.D.R, Cuenca, J.C., & Romero, H.M. 2016. Physiological responses of oil 8 palm (Elaeis guineensis Jacq.) seedlings under different water soil conditions. Agronomía Colombiana 34(2): 163-171.

Mexal, J., Fisher, J. T., Osteryoung, J., & Reid, C. P. (1975). Oxygen availability in polyethylene glycol solutions and its implications in plant-water relations. Plant Physiology, 55(1): 20-24.

Mittler, R. (2017). ROS are good. Trends in plant science 22(1): 11-19.

Ning, W., Zhai, H., Yu, J. et al. (2017). Overexpression of Glycine soja WRKY20 enhances drought tolerance and improves plant yields under drought stress in transgenic soybean. Mol Breeding 37(19): 1-10.

Olmedilla, Adela & Sandalio, Luisa. (2019). Selective Autophagy of Peroxisomes in Plants: From Housekeeping to Development and Stress Responses. Frontiers in Plant Science 10(1021): 1-7.

Pandey, B. K., Huang, G., Bhosale, R., Hartman, S., Sturrock, C. J., Jose, L., Martin, O. C., Karady, M., Voesenek, L. A. C. J., Ljung, K., Lynch, J. P., Brown, K. M., Whalley, W. R., Mooney, S. J., Zhang, D., & Bennett, M. J. (2021). Plant roots sense soil compaction through restricted ethylene diffusion. Science (New York, N.Y.) 371(6526): 276–280.

Rewald, B., & Meinen, C. (2013). Plant roots and spectroscopic methods–analyzing species, biomass and vitality. Frontiers in Plant Science 4 :393.

Rewald, B., Shelef, O., Ephrath, J. E., & Rachmilevitch, S. (2013). Adaptive plasticity of salt-stressed root systems. Ecophysiology and responses of plants under salt stress 4: 169-201.

Rosawanti, P. (2015). Respon pertumbuhan kedelai (Glycine max (L.) Merr.) terhadap cekaman kekeringan. J. Ilmiah Pertanian dan Kehutanan 2(1): 35-44.

Rosawanti, P. (2015). Toleransi Beberapa Genotipe Kedelai Terhadap Cekaman Kekeringan [Doctoral Dissertation]. Bogor Agricultural University (IPB). Bogor.

Rosawanti, P., Ghulamahdi, M., & Khumaida, N. (2015). Respon anatomi dan fisiologi akar kedelai terhadap cekaman kekeringan. Jurnal Agronomi Indonesia. Indonesian Journal of Agronomy 43(3): 186-192.

Sarkar, K., Mannan, M., Haque, M., & Ahmed, J. (2016). Physiological basis of water stress tolerance in soybean. Bangladesh Agronomy Journal 18(2): 71–78.

Schneider, HM, Strock, CF, Hanlon, MT, Vanhees, DJ, Perkins, AC, Ajmera, IB, Sidhu, HS, Mooney, SJ, Brown, KM, Lynch, JP. (2021). Multiseriate cortical sclerenchyma enhance root penetration in compacted soils. Proceedings of the National Academy of Sciences 118(6): 1-11.

Schneider, J. R., Müller, M., Klein, V. A., Rossato-Grando, L. G., Barcelos, R. P., Dalmago, G. A., & Chavarria, G. (2020). Soybean Plant Metabolism under Water Deficit and

Xenobiotic and Antioxidant Agent Application. Biology 9(266): 1-23.

Shahid, M., Dumat, C., Pourrut, B., Silvestre, J., Laplanche, C., & Pinelli, E. (2014). Influence of EDTA and citric acid on lead-induced oxidative stress to Vicia faba roots. Journal of soils and sediments 14: 835-843.

Shahid, M., Pourrut, B., Dumat, C., Nadeem, M., Aslam, M., & Pinelli, E. (2014). Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. Reviews of environmental contamination and toxicology 232: 1–44.

Siregar, A. O., Hanum, C., & Hanafiah, D. S. (2021). Morphological characterization of soybean (Glycine max L. Merril) in drought stress condition and P fertilizer application. In IOP Conference Series: Earth and Environmental Science 713(1): 012019

Strock CF, Lynch JP (2020) Root secondary growth: an unexplored component of soil resource acquisition. Ann Bot 126: 205–218.

Suharti, Mukarlina, & Gusmalawati, D. (2017). Struktur Anatomi Akar, Batang Dan Daun Gaharu (Aquilaria Malaccensis Lamk.) Yang Mengalami Cekaman Kekeringan 6(2): 38-44.

Suhartina dan Heru Kuswantoro. (2011). Pemuliaan Tanaman Kedelai Toleran Terhadap Cekaman Kekeringan. Bul. Palawija 21: 26–38.

Sutikno. (2018). Buku Panduan Mikroteknik Tumbuhan (BIO 30603). Laboratorium Struktur dan Perkembangan Tumbuhan. Universitas Gadjah Mada. Yogyakarta.

Ulinuha, A., & Rohman, F. (2020). Pemanfaatan padi varietas Inpago Unsoed 1 sebagai solusi pemberdayaan petani Kabupaten Sragen pada masa kekeringan. Prosiding University Research Colloquium. Yogyakarta.

Warid, Khumaida, Nurul, Purwito, Agus, Syukur, Muhamad. (2014). Pengembangan Kedelai (Glycine max (L.) Merr.) Toleran terhadap Cekaman Kekeringan Menggunakan Iradiasi Sinar Gamma [Tesis]. Institut Pertanian Bogor. Bogor.

Yadav, S. and Sharma, K.D. (2016). Molecular and morphophysiological analysis of drought stress in plants. In Tech. Rijeka.

Downloads

Published

05-02-2024

How to Cite

Arif, M. F. ., & Aloysius, S. . (2024). Pengaruh Perlakuan PEG (Polyethylene Glycol) pada Media Kultur In Vitro terhadap Anatomi Akar, Kandungan Katalase dan Akumulasi Malondialdehid Kedelai Varietas Deja 2 (Glycine max cv. “deja 2”). Biota : Jurnal Ilmiah Ilmu-Ilmu Hayati, 9(1), 57–65. https://doi.org/10.24002/biota.v9i1.7346