Modification of Starch with Amylosucrase: Methods, Physicochemical Properties and Health Implications

Authors

  • Angela Myrra Puspita Dewi Faculty of Agricultural Technology, Papua University
  • Eduard Fransisco Tethool Faculty of Agricultural Technology, Papua University

DOI:

https://doi.org/10.24002/biota.v9i2.9095

Keywords:

Amylosucrase, resistant starch, SDS, starch

Abstract

Amylosucrase is a transglucosylase enzyme that utilizes sucrose as a substrate to produce α-1,4 glucan (amylose-like polymer). Modification of starch with Amylosucrase can increase the degree of polymerization, degree of crystallinity, heat stability, and increase the proportion of slow digestible starch (SDS) and resistant starch (RS). Thus, Amylosucrase (ASase) modified starch has enormous potential to be developed in the food industry because the consumption of ASase modified starch can improve insulin sensitivity and reduce blood glucose response, making it suitable for consumption by people with Diabetes Mellitus. In addition, consumption of ASase-modified starch also has the potential to prevent obesity and improve blood lipid profile.

References

Clerici, Maria T., P, S., & Schmiele, M. (2019). Starches for Food Application : Chemical, Technological and Health Properties. CRC Press. New York.

Kim, B. K., Kim, H. I., Moon, T. W., & Choi, S. J. (2014). Branch chain elongation by amylosucrase : Production of waxy corn starch with a slow digestion property. Food Chemistry 152: 113–120.

Kim, B., Kim, H., Hong, J., Huber, K. C., Shim, J., & Yoo, S. (2013). Effects of amylosucrase treatment on molecular structure and digestion resistance of pre-gelatinized rice and barley starches. Food Chemis 138: 966–975.

Kim, B. S., Kim, H. S., & Yoo, S. H. (2015). Characterization of enzymatically modified rice and barley starches with amylosucrase at scale-up production. Carbohydrate Polymers 125: 61–68.

Kim, E. J., Kim, H. R., Choi, S. J., Park, C. S., & Moon, T. W. (2016). Low digestion property of amylosucrase-modified waxy adlay starch. Food Science and Biotechnology 25(2): 457–460.

Kim, J. H., Kim, H. R., Choi, S. J., Park, C., & Moon, T. W. (2016). Production of an in Vitro Low-Digestible Starch via Hydrothermal Treatment of Amylosucrase-Modi fi ed Normal and Waxy Rice Starches and Its Structural Properties. Journal of Agricultral and Food Science 64: 5045–5052.

Lee, E., Lee, B., Uk, D., Lim, M., Chung, W., Park, C., Baik, M., Nam, Y., & Seo, D. (2018). Amelioration of obesity in high-fat diet-fed mice by chestnut starch modi fi ed by amylosucrase from Deinococcus geothermalis. Food Hydrocolloids 75: 22–32.

Li, H., Li, J., Xiao, Y., Cui, B., Fang, Y., & Guo, L. (2019). In vitro digestibility of rice starch granules modified by β-amylase, transglucosidase and pullulanase. International Journal of Biological Macromolecules 136: 1228–1236.

Li, L., Ma, L., & Fu, P. (2017). Gut microbiota-derived short-chain fatty acids and kidney diseases. Drug Design, Development and Therapy 11: 3531–3542.

Li, Y., Xu, S., Mihaylova, M. M., Zheng, B., Hou, X., Jiang, B., Park, O., Luo, Z., Lefai, E., Shyy, J. Y. J., Gao, B., Wierzbicki, M., Verbeuren, T. J., Shaw, R. J., Cohen, R. A., & Zang, M. (2011). AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metabolism 13(4): 376–388.

Lim, J. H., Kim, H. R., Choi, S. J., Park, C.-S., & Moon, T. W. (2019). Complexation of Amylosucrase‐Modified Waxy Corn Starch with Fatty Acids: Determination of Their Physicochemical Properties and Digestibilities. Food Chemistry 0(0): 1–9.

Park, M., Chandrasekaran, M., & Yoo, S. (2019). Production and characterization of low-calorie turanose and digestion- resistant starch by an amylosucrase from Neisseria subflava. Food Chemistry 300: 125–225.

Roberfroid, M. B. (2008). Prebiotics: Concept, definition, criteria, methodologies, and products. In Handbook of Prebiotics. CRC Press. New York.

Ryu, J., Lee, B., Seo, D., Baik, M., Park, C., Wang, R., & Yoo, S. (2010). Production and characterization of digestion-resistant starch by the reaction of Neisseria polysaccharea amylosucrase. Starch/Starke 62: 221–228.

Seo, D., Jung, J., & Park, C. (2017). Fluorescence detection of the transglycosylation activity of amylosucrase. Analytical Biochemistry 532: 19–25.

Shin, H. J., Choi, S. J., Park, C. S., & Moon, T. W. (2010). Preparation of starches with low glycaemic response using amylosucrase and their physicochemical properties. Carbohydrate Polymers 82: 489–497.

Yoo, H. J., Kim, H. R., Choi, S. J., Park, C. S., & Moon, T. W. (2018). Characterization of low-digestible starch fractions isolated from amylosucrase-modified waxy corn starch. International Journal of Food Science and Technology 53(3): 557–563.

Zhang, H., Chen, Z., Zhou, X., He, J., & Wang, T. (2018). Anti-digestion properties of amylosucrase modified waxy corn starch. International Journal of Biological Macromolecules 109: 383–388.

Zhang, H., Wang, R., Chen, Z., & Zhong, Q. (2017). Enzymatically modified starch with low digestibility produced from amylopectin by sequential amylosucrase and pullulanase treatments. Food Hydrocolloid 95: 195–202.

Zhang, H., Wang, R., Chen, Z., & Zhong, Q. (2019). Enzymatically modified starch with low digestibility produced from amylopectin by sequential amylosucrase and pullulanase treatments. Food Chemistry 95: 195–202.

Zhang, H., Zhou, X., He, J., Wang, T., Luo, X., Wang, L., Wang, R., & Chen, Z. (2017). Impact of amylosucrase modification on the structural and physicochemical properties of native and acid-thinned waxy corn starch. Food Chemistry 220: 413–419.

Zhang, H., Zhou, X., Wang, T., Luo, X., Wang, L., & Li, Y. (2016). New insights into the action mode of amylosucrase on amylopectin. International Journal of Biological Macromolecules 88: 380–384.

Zhou, J., Martin, R. J., Raggio, A. M., Shen, L., McCutcheon, K., & Keenan, M. J. (2015). The importance of GLP-1 and PYY in resistant starch’s effect on body fat in mice. Molecular Nutrition and Food Research 59(5): 1000–1003.

Zhou, Z. K., Wang, F., Ren, X. C., Wang, Y., & Blanchard, C. (2015). Resistant starch manipulated hyperglycemia/hyperlipidemia and related genes expression in diabetic rats. International Journal of Biological Macromolecules 75: 316–321.

Downloads

Published

14-06-2024

How to Cite

Dewi, A. M. P. ., & Tethool, E. F. (2024). Modification of Starch with Amylosucrase: Methods, Physicochemical Properties and Health Implications. Biota : Jurnal Ilmiah Ilmu-Ilmu Hayati, 9(2), 210–218. https://doi.org/10.24002/biota.v9i2.9095

Issue

Section

Articles