PREDIKSI KEKUATAN GESER BETON PADA BALOK BETON BERTULANG TANPA TULANGAN GESER

Authors

  • Luciana Buarlele Universitas Kristen Indonesia Paulus Jl. Perintis Kemerdekaan KM-13, Daya - Makassar
  • Benny Kusuma Universitas Kristen Indonesia Paulus Jl. Perintis Kemerdekaan KM-13, Daya - Makassar
  • Jonie Tanijaya Universitas Kristen Indonesia Paulus Jl. Perintis Kemerdekaan KM-13, Daya - Makassar

DOI:

https://doi.org/10.24002/jts.v16i1.4212

Abstract

Keruntuhan geser pada balok beton bertulang tanpa tulangan geser merupakan keruntuhan yang sangat getas. Sejumlah besar penelitian eksperimental mengenai keruntuhan geser balok beton bertulang menunjukkan fakta bahwa kegagalan geser balok merupakan proses yang kompleks dan adalah efek dari berbagai parameter yang memberikan pengaruh signifikan, diantaranya kuat tekan beton (f′c), rasio bentang geser-tinggi efektif (a/d), rasio tulangan longitudinal (), dan tinggi efektif penampang (d). Oleh karena itu, upaya untuk memperoleh model prediksi yang mampu memberikan hasil yang paling mendekati mekanisme geser menjadi daya tarik kuat bagi para peneliti. Penelitian ini bertujuan untuk mengevaluasi dan membandingkan enam perumusan geser berdasarkan ACI 318, EC2, CSA A23.3, BS 8110, NZS 3101, dan CEB-FIP dengan data eksperimen kuat geser beton yang diperoleh dari literatur; mengusulkan suatu persamaan desain untuk memprediksi kekuatan geser beton (Vc) balok beton bertulang tanpa tulangan geser; serta merekomendasikan model usulan sebagai salah satu alternatif perhitungan geser bagi praktisi desain selain perumusan geser berdasarkan standar. Persamaan yang diusulkan berasal dari hasil analisis regresi dengan menggunakan 276 data hasil uji geser balok yang dikumpulkan dari 20 sumber dengan berbagai variabel yang mempengaruhi kekuatan geser. Kekuatan geser beton hasil eksperimen sebelumnya dibandingkan dengan model usulan dan ke-enam perumusan geser beton tersebut diatas. Hasil evaluasi ke-enam standar menunjukkan bahwa standar beton menurut CEB-FIP dan BS 8110 menunjukkan hasil prediksi yang lebih baik dan konservatif terhadap hasil tes daripada standar ACI 318-14, NZS 3101, CSA A23.3, dan EC2. Perumusan geser berdasarkan ACI 318-14, CEB-FIP dan BS 8110 menghasilkan prediksi kekuatan geser beton cenderung aman dibandingkan ke-tiga standar beton lainnya (NZS 3101, CSA A23.3, dan EC2). Dari hasil analisis, diusulkan dua persamaan kekuatan geser beton balok bentang pendek dan panjang tanpa tulangan geser yang dibatasi dengan rasio kelangsingan balok, a/d ≥ 2,5 dan 1,5 ≤ a/d < 2,5. Model usulan cukup akurat (applicable) memprediksi gaya geser beton Vc balok beton bertulang bentang pendek maupun panjang tanpa tulangan geser pada rentang variabel yang dipertimbangkan dalam penelitian ini.

References

ACI Committee 318. (2014). Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318M-14). American Concrete Institute, Farmington Hills, MI, USA, 519 pp.

Ahmad, S. H. and Lue, D. M. (1987). “Flexure-Shear Interaction of Reinforced High-Strength Concrete Beams”. ACI Structural Journal, 84(4), 330-341.

Angelakos, D., Bentz, E. C., and Collins, M. P. (2001). “Effect of Concrete Strength and Minimum Stirrups on Shear Strength of Large Members”. ACI Structural Journal, 98(3), 290-300.

Arslan, G. (2012). “Diagonal Tension Failure of RC Beams Without Stirrups”. Journal of Civil Engineering and Management, 18(2), 217-226.

Batchelor, B. D. and Kwun, M. (1981). “Shear in RC Beams Without Web Reinforcement”. ASCE Journal Proceedings, 107(5), 907-921.

Bresler, B. and Scordelis, A. C. (1963). “Shear Strength of Reinforced Concrete Beam”. ACI Journal Proceedings, 60(1), 51-74.

BS8110-1:1997. (1997). Structural Use of Concrete – Part 1 : Code of Practice for Design and Construction. British Standards Institution, London, UK, 120 pp.

Buarlele, L. (2019). Analisis Perilaku Kekuatan Geser Beton pada Balok Beton Bertulang Tanpa Tulangan Geser. Tesis, UKI Paulus,

Makassar.

CEB-FIP Model Code 1990. (1993). Comite Euro- International du Beton (CEB). London: Thomas Telford Services.

CSA Committee A23.3. (2004). Design of Concrete Structures. Canadian Standards Association, Mississauga, Ontario, Canada, 214 pp.

Daluga, D., McCain, K., Murray, M., and Pujol, S. (2018). “Effect of Geometric Scalling on Shear Strength of Reinforced Concrete Beams Without Stirrups”. ACI Structural Journal, 115(1), 5-14.

Deng, Q., Jian Yi, W., and Jian Tang, F. (2017). “Effect of Coarse Aggregate Size on Shear Behavior of Beams Without Shear Reinforcement”. ACI Structural Journal, 114(5), 1131-1142.

Elsanadedy, H. M., Abbas, H., Al-Salloum, Y. A., and Almusallam, T. H. (2016). “Shear Strength Prediction of HSC Slender Beams Without Web Reinforcement”. Materials and Structures, 49(9), 3749-3772.

El-Sayed, A. K. and Shuraim, A. B. (2016). “Experimental Verification of Resistance-Demand Approach for Shear of HSC Beams”. International Journal of Concrete Structures and Materials, 10(4), 513-525.

EN 1992-1-1. (2004). Eurocode 2 – Design of Concrete Structures – Part 1: General Rules and Rules for Buildings. European Committee for Standardization, Brussels, Belgium, 225 pp.

Fenwick, R. C. and Paulay, T. (1968). “Mechanisms of Shear Resistance of Concrete Beams”. Journal of the Structural Division, ASCE, 94(10), 2328-2336.

Fujita, M., Sato, R., Matsumoto, K., and Takaki, Y. (2002). “Size Effect on Shear Strength of RC Beams Using HSC Without Shear Reinforcement”. Translation from Proceedings of JSCE, 711/V 56, August 2002, 113-128.

Hassan, T. K., Seliem, H. M., Dwairi, H., Rizkalla, S. H., and Zia, P. (2008). “Shear Behavior of Large Concrete Beams Reinforced with High-Strength Steel”. ACI Structural Journal, 105(2), 173-179.

Hassoun, M. N. and Al-Manaseer, A. (2015). Structural Concrete: Theory and Desain. 6th ed., John Wiley and Sons.

Joint ACI-ASCE Committee 445. (1999). Recent Approaches to Shear Design of Structural Concrete : ACI Manual of Concrete Practice (ACI 445R-99) (Reapproved 2009). ACI, Farmington Hills, MI, USA, 55 pp.

Kani, M. W., Huggins, M. W., and Wittkopp, R. R. (1979). Kani on Shear in Reinforced Concrete. University of Toronto Press, Toronto, Canada.

Kusuma, B. (2001). Pengaruh Rasio Tulangan Geser Terhadap Penambahan Kekuatan Geser Beton pada Balok Beton Bertulang dengan Beton Mutu Tinggi. Tesis, ITS, Surabaya.

Mphonde, A. G. and Frantz, G. C. (1984). “Shear Tests of High- and Low-Strength Concrete Beams Without Stirrups”. ACI Journal Proceedings, 81(4), 350-357.

Munikrishna, A., Hosny, A., Rizkalla, S., and Zia, P. (2011). “Behavior of Concrete Beams Reinforced with ASTM A1035 Grade 100 Stirrups under Shear”. ACI Structural Journal, 108(4), 34-41.

NZS 3101-1995. (2005). New Zealand Standard Code of Practice for the Design of Concrete Structures. Standard Association of New Zealand (NZS), Wellington, New Zealand, 33 pp.

Pendyala, R. S. and Mendis, P. (2000). “Experimental Study on Shear Strength of High-Strength Concrete Beams”. ACI Structural Journal, 97(4), 564-571.

Perera, S. V. T. J. and Mutsuyoshi, H. (2013). “Shear Behavior of Reinforced High-Strength Concrete Beams”. ACI Journal, 110(5), 43-52.

Rahal, K. N. and El-Hawary, M. (2002). “Shear Tests of Epoxy Modified Reinforced Concrete Beams”. ACI Structural Journal, 99(6), 811-818.

Reineck, K. H., Bentz, E., Fitik, B., Kuchma, D. A., and Bayrak, O. (2014). “ACI-DAfStb Databases for Shear Tests on Slender Reinforced Concrete Beams with Stirrups”. ACI Structural Journal, 111(5), 867-875.

Reineck, K. H., Kuchma, D. A., Kim, K. S., and Sina, M. (2003). “Shear Database for Reinforced Concrete Members Without Shear Reinforcement”. ACI Structural Journal, 100(2), 240-249.

Safan, M. A. (2012). “Shear Strength of Concrete Beams Cast with Self Compacting Concrete Containing Different Fillers and Coarse Aggregates”. Canadian Journal of Civil Engineering, 39, 760-770.

Shah, A. and Ahmad, S. (2012). “Experimental Verification of Current Shear Design Equations for HSRC Beams”. Mehran University Research Journal of Engineering and Technology, 31(3), 409-420.

Sudheer, R. L., Ramana, R. N. V., and Gunneswara Rao, T. D. (2010). “Shear Resistance of High Strength Concrete Beams Without Shear Reinforcement”. International Journal of Civil & Struct. Engineering, 1(1), 101-113.

Tang, C. W., Yen, T., and Chen, H. J. (2009). “Shear Behavior of Reinforced Concrete Beams Made with Sedimentary Lightweight Aggregate Without Shear Reinforcement”. Journal of Materials in Civil Engineering, ASCE, 21(12), 730-739.

Tavio (2009). “Experimental Investigation on Size Effect in Shear of High-Strength Concrete Beams”. The Journal for Technology and Science, IPTEK, 20(1), 11-23.

Wight, J. K. (2016). Reinforced Concrete : Mechanics and Design. 7th ed., Global Edition, Pearson Education Limited.

Xie, Y., Ahmad, S. H., Yu, T., Hino, S., and Chung, W. (1994). “Shear Ductility of Reinforced Concrete Beams of Normal and High-Strength Concrete”. ACI Structural Journal, 91(2), 140-149.

Yoon, Y. S., Cook, W. D., and Mitchell, D. (1996). “Minimum Shear Reinforcement in Normal, Medium, and High-Strength Concrete Beams”. ACI Structural Journal, 93(5), 576-584.

Zsutty, T. C. (1968). “Beam Shear Strength Prediction by Analysis of Existing Data”. ACI Journal, 65(11, 943-951.

Downloads

Published

2021-02-07

Issue

Section

Vol. 16, No. 1 Oktober 2020