Penerapan Algoritma Gradient Boosting dalam Mendiagnosa Penyakit Kucing dan Anjing
Keywords:
diagnosis diseases, gradient boosting, pet, zoonotic, diagnosa penyakit, hewanAbstract
Royal Canin selaku lembaga riset hewan domestik mengungkapkan bahwa hewan peliharaan di Indonesia jarang sekali melakukan pemeriksaan rutin ke klinik hewan, jika dipersentasekan hanya berada di angka 29,5%. Dengan persentase tersebut, semakin khawatir hewan dapat menularkan penyakit ke manusia atau disebut sebagai zoonosis, jika hewan sama sekali tidak mendapatkan perawatan dan identifikasi dini penyakit yang dialami. Pada penelitian ini menggunakan metode gradient boosting sebagai fokus utama untuk memprediksi penyakit berdasarkan gejala-gejala yang dialami hewan peliharaan. Melalui proses hyperparameter tuning menggunakan gridsearch, diperoleh model terbaik dengan kombinasi parameter: learning_rate 0,05, max_depth 7, min_samples_leaf 1, min_samples_split 2, n_estimators 200, dan subsample 0,9. Dari hasil hyperparameter tuning, model tersebut menunjukkan performa terbaik dengan accuracy 88%, precision 97%, recall 96%, f1-score 96%, dan hamming loss 0,29%. Hasil tersebut menunjukkan bahwa model memiliki kemampuan memprediksi multilabel yang akurat.
References
A. H. Freedman and R. K. Wayne, “Deciphering the Origin of Dogs: From Fossils to Genomes,” Annual Review of Animal Biosciences, vol. 5, pp. 281–307, Feb. 2017.
C. R. Wulandari, A. Burhanuddin, P. L. Faradina, P. A. Wibawati, A. Abdramanov, “Understanding the level of animal welfare and associated factors among cat owners in Banyuwangi, Indonesia” Veterinary World, vol. 17, pp. 1210-1215, June 2024.
S. A. Azaliarahma, E. L. Martyan, A. Rahmadani, R. T. Dirgahayu, “Pengembangan Aplikasi Konsultasi Online Dan Janji Temu Dokter Hewan Berbasis Android”, Jurnal Sains, Nalar, dan Aplikasi Teknologi Informasi, vol. 2, no.1, pp. 33-41, July 2022
Tempo.co, “Hanya 29,5 Persen Hewan Peliharaan di Indonesia yang Pernah Kunjungi Dokter Hewan,” 2024. [Online]. Available: https://gaya.tempo.co/read/1708700/hanya-295-persen-hewan-peliharaan-di-indonesia-yang-pernah-kunjungi-dokter-hewan (accessed Sep. 17, 2024).
A. A. Ahmed, S. Sayed, A. Abdoulhalik, S. Moutari, L. Oyedele, “Applications of machine learning to water resources management: A review of present status and future opportunities” Journal of Cleaner Production, vol. 441, 2024
G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, Q. Liu, and T.-Y. Liu, “LightGBM: A highly efficient gradient boosting decision tree,” in Advances in Neural Information Processing Systems, vol. 30, 2017. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
H. Deng, Y. Zhou, L. Wang, and C. Zhang, “Ensemble learning for the early prediction of neonatal jaundice with genetic features,” BMC Medical Informatics and Decision Making, vol. 21, no. 1, Dec. 2021.
C. Bentéjac, A. Csörgő, and G. Martínez-Muñoz, “A comparative analysis of gradient boosting algorithms,” Artificial Intelligence Review, vol. 54, no. 3, pp. 1937–1967, Mar. 2021.
B. Tuychlev, “A Guide to The Gradient Boosting Algorithm,” 2023. [Online]. Available: https://www.datacamp.com/tutorial/guide-to-the-gradient-boosting-algorithm (accessed Sep. 27, 2024)
W. Xu, L. Ning, and Y. Luo, “Wind speed forecast based on post-processing of numerical weather predictions using a gradient boosting decision tree algorithm,” Atmosphere (Basel), vol. 11, no. 7, Jul. 2020.
A. Basavaraju, J. Du, F. Zhou, J. Ji, “Machine Learning Approach to Road Surface Anomaly Assessment Using Smartphone Sensors,” IEEE Sensors Journal, vol. 20, no. 5, pp. 2635–2647, 2020.
B. Clark, F. Lee, “What is gradient boosting?” 2025. [Online]. Available: https://www.ibm.com/think/topics/gradient-boosting (accessed Sep. 30, 2024)
S. Diantika, H. Nalatissifa, R. Supriyadi, N. Maulidah, and A. Fauzi, “Implementasi Multi-Class Gradient Boosting Untuk Mengklasifikasikan Jenis Hewan Pada Kebun Binatang,” Antivirus : Jurnal Ilmiah Teknik Informatika, vol. 17, no. 1, pp. 33–40, Jun. 2023.
N. V. Putranto, M. Akrom, G. A. Trinapradika, and A. History, “Implementasi Fungsi Polinomial pada Algoritma Gradient Boosting Regressor: Studi Regresi pada Dataset Obat-Obatan Kadaluarsa sebagai Material Antikorosi,” Jurnal Teknologi dan Manajemen Informatika, vol. 9, no. 2, pp. 172–182, 2023.
I. D. Mienye and Y. Sun, "A Survey of Ensemble Learning: Concepts, Algorithms, Applications, and Prospects," in IEEE Access, vol. 10, pp. 99129-99149, 2022.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright of this journal is assigned to Jurnal Buana Informatika as the journal publisher by the knowledge of author, whilst the moral right of the publication belongs to author. Every printed and electronic publications are open access for educational purposes, research, and library. The editorial board is not responsible for copyright violation to the other than them aims mentioned before. The reproduction of any part of this journal (printed or online) will be allowed only with a written permission from Jurnal Buana Informatika.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.






