Prediksi Kunjungan Wisatawan Taman Nasional Gunung Merbabu dengan Time Series Forecasting dan LSTM

Josua Manullang, Albertus Joko Santoso, Andi Wahju Rahardjo Emanuel

Abstract


Abstract. Prediction of tourist visits of Mount Merbabu National Park (TNGMb) needs to be done to control the number of visitors and to preserve the national park. The combination of time series forecasting (TSF) and deep learning methods has become a new alternative for prediction. This case study was conducted to implement several methods combination of TSF and Long-Short Term Memory (LSTM) to predict the visits. In this case study, there are 18 modelling scenarios as research objects to determine the best model by utilizing tourist visits data from 2013 to 2018. The results show that the model applying the lag time method can improve the model's ability to capture patterns on time series data. The error value is measured using the root mean square error (RMSE), with the smallest value of 3.7 in the LSTM architecture, using seven lags as a feature and one lag as a label.

Keywords: Tourist Visit, Taman Nasional Gunung Merbabu, Prediction, Recurrent Neural Network, Long-Short Term Memory

Abstrak. Prediksi kunjungan wisatawan Taman Nasional Gunung Merbabu (TNGMb) perlu dilakukan untul pengendalian jumlah pengunjung dan menjaga kelestarian taman nasional. Gabungan metode antara time series forecasting (TSF) dan deep learning telah menjadi alternatif baru untuk melakukan prediksi. Studi kasus ini dilakukan untuk mengimplementasi gabungan dari beberapa macam metode antara TSF dan Long-Short Term Memory (LSTM) untuk memprediksi kunjungan pada TNGMb. Pada studi kasus ini, terdapat 18 skenario pemodelan sebagai objek penelitian untuk menentukan model terbaik, dengan memanfaatkan data jumlah kunjungan wisatawan di TNGMb mulai dari tahun 2013 sampai dengan tahun 2018. Hasil prediksi menunjukkan pemodelan dengan menerapkan metode lag time dapat meningkatakan kemampuan model untuk menangkap pola pada data deret waktu. Besar nilai kesalahan diukur menggunakan root mean square error (RMSE), dengan nilai terkecil sebesar 3,7 pada arsitektur LSTM, menggunakan tujuh lag sebagai feature dan satu lag sebagai label. 

Kata Kunci: Kunjungan Wisatawan, Taman Nasional Gunung Merbabu, Prediksi, Recurrent Neural Network, Long-Short Term Memory


Full Text:

PDF

References


Direktorat Jendral KSDAE, "Laporan kinerja 2018 direktorat jenderal konservasi sumber daya alam dan ekosistem kementrian lingkungan hidup dan kehutanan," Kemen. Lingkungan Hidup dan Kehutanan, Jakarta, Indonesia, Dec. 2018.

Z. Pololikashvili, Walking Tourism Promoting Regional Development, Madrid, Spain: World Tourism Organization (WTO), 2019, doi: https://doi.org/10.18111/9789284420346

B. TNGMb, "Statistika Balai Taman Nasional Gunung Merbabu tahun 2013 - 2018," B. TNGMb, Magelang, Indonesia, Jul. 2019.

N. Laptev, J. Yosinski, L. E. Li and S. Smyl, "Time-series extreme event forecasting with Neural Networks at Uber," in ICML 2017 Time Series Workshop, Sydney, Australia, 2017.

C. Deb, F. Zhang, J. Yang, S. E. Lee and K. W. Shah, "A review on time series forecasting techniques for building energy consumption," Renewable and Sustainable Energy Reviews, vol. 74, pp. 902-924, Jul. 2017.

J. Cao, Z. Li and J. Li, "Financial time series forecasting model based on CEEMDAN and LSTM," Physica A: Statistical Mechanical and its Applications, vol. 519, pp. 127 - 139, Apr. 2019.

A. Sagheer and M. Kotb, "Time series forecasting of petroleum production using deep LSTM recurrent networks," Neurocomputing, vol. 323, pp. 203-213, Jan. 2019.

R. J. Hyndman and G. Athanasopoulos, Forecasting: Principles And Practice, Melbourne, Australia: Otexts, 2018.

A. A. Rizal and S. Soraya, "Multi Time Steps Prediction dengan Recurrent Neural Network long Short Term Memory," MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 18, no. 1, pp. 115 - 124, Nov. 2018.

I. Sutskever, Training Recurrent Neural Networks, Toronto, Kanada: University of Toronto, 2013.

S. Hochreiter and J. Schmidhuber, "Long Short-Term Memory," Neural Comput., vol. 9, no. 8, pp. 1735-1780, Dec. 1997.




DOI: https://doi.org/10.24002/jbi.v11i2.3825

Refbacks

  • There are currently no refbacks.