Segmentasi Variasi Pencahayaan Citra Tomat Menggunakan Marker Controlled Watershed dan Arimoto Entropy untuk Perbaikan Citra

Suastika Yulia Riska, R. V. Hari Ginardi, Nanik Suciati

Abstract


Abstract. Tomatoes image acquisition in outdoors condition results in an image that cannot be processed because of lighting variation on the glossy surface. Lighting variation is one of the problems in image processing because the resulting color values on tomatoes is lost from the affected area due to lighting variation. This research is meant to improve the image of tomatoes with lighting variations in the preprocessing stage. Segmentation methods proposed to detect and eliminate lighting variation is marker-controlled watershed with Arimoto entropy. After eliminating the detected area with lighting, tomatoes image are improved in three ways, namely by applying RGB average, searching the value of pixels with pixels index, and using a moving window with various kernel sizes. The error segmentation of the proposed method is by 36.67%, which better than the previous method. The best results tomato image enhancement is by using a moving window with a kernel size 15x15.

Keywords: arimoto entropy, image enhancement, marker controlled watershed, preprocessing, segmentation.

 

Abstrak. Pengambilan citra tomat di luar ruangan mengakibatkan citra tidak dapat langsung diproses karena memiliki variasi pencahayaan pada permukaannya yang glossy. Variasi pencahayaan merupakan salah satu masalah dalam pemrosesan citra tomat karena mengakibatkan hilangnya nilai warna yang dimiliki area yang terkena variasi pencahayaan. Tujuan penelitian ini adalah untuk memperbaiki citra tomat yang terdeteksi memiliki variasi pencahayaan pada tahap preprocessing. Metode segmetasi yang diusulkan pada penelitian ini untuk mendeteksi dan menghilangkan area variasi pencahayaan adalah marker controlled watershed dengan arimoto entropy. Setelah menghilangkan area yang terdeteksi memiliki pencahayaan, citra tomat diperbaiki dengan tiga cara, yaitu dengan rata-rata RGB tomat, pencarian nilai piksel dengan indeks piksel, dan menggunakan moving window dengan berbagai ukuran kernel. Eror segmentasi dari metode yang diusulkan sebesar 36,67%, yaitu lebih baik dari pada metode sebelumnya. Hasil perbaikan citra secara visual menunjukkan hasil yang paling baik dengan menerapkan perbaikan citra menggunakan moving window dengan ukuran kernel 15x15.

Kata Kunci: arimoto entropy, marker controlled watershed, perbaikan citra, preprosesing, segmentasi.


Full Text:

PDF


DOI: https://doi.org/10.24002/jbi.v6i3.434

Refbacks

  • There are currently no refbacks.