Metode Hibrida K-Means dan Generalized Regression Neural Network Untuk Prediksi Arus Lalu Lintas

Saprina Mamase, Joko Lianto Buliali


Abstract. Traffic flow forecasting is a popular research topic in the development of Intelligent Transportation System. There have been many forecasting methods used for traffic flow forecasting, such as Generalized Regression Neural Network (GRNN) which has a fairly good accuracy. One of the GRNN’s characteristics is that the number of neurons in pattern layer increases as the number of training samples raise and this can cause overfitting problem. In this research, a hybrid method to predict traffic flow is proposed, that is K-means and GRNN algorithm. K-means method aims to solve overfitting problem in GRNN model by choosing training samples based on their similar characteristics. Leave One Out Cross Validation (LOOCV) is used to select an appropriate smoothing factor parameter at each GRNN’s model. Mean Absolute Percentage Error (MAPE) is used as the evaluation criterion in the testing process. The results show that the proposed method could improve the accuracy of predictions by reducing the value of MAPE by 0.82-3.81%.

Keywords: Traffic flow forecasting, K-means, Generalized Regression Neural Network, Leave One Out Cross Validation

Abstrak. Prediksi arus lalu lintas telah menjadi tren topik penelitian untuk pengembangan sistem transportasi cerdas. Telah banyak metode yang digunakan terkait prediksi arus lalu lintas, diantaranya yaitu Generalized Regression Neural Network (GRNN) yang memiliki akurasi yang cukup baik. Salah satu karakteristik GRNN adalah jumlah neuron pada pattern layer akan bertambah seiring meningkatnya jumlah data latih yang akan mengakibatkan masalah overfitting. Dalam penelitian ini diusulkan metode hibrida K-means dan GRNN untuk prediksi arus lalu lintas. Metode K-means bertujuan untuk mengatasi masalah overfitting pada model GRNN dengan memilih data latih berdasarkan kemiripan karateristiknya. Algoritma Leave One Out Cross Validation (LOOCV) digunakan untuk memilih parameter smoothing factor terbaik pada setiap model GRNN. Mean Absolute Percentage Error (MAPE) digunakan sebagai kriteria evaluasi model prediksi. Hasil menunjukkan bahwa metode yang diusulkan dapat meningkatkan akurasi prediksi dengan penurunan nilai MAPE sebesar 0,82-3,81%.

Kata Kunci: Prediksi arus lalu lintas, K-means, Generalized Regression Neural Network, Leave One Out Cross Validation

Full Text:



Dia, H., 2001. An Object Oriented Neural Network Approach to Short Term Traffic Forecasting. European Journal of Operational Research, 131(2), pp.253–261.

Enrique, C., 2008. Predicting Traffic Flow Using Bayesian Networks. Transportation Research Part B, 42, pp.482–509.

Han, C., Song, S. & Wang, C.H., 2004. A Real Time Short Term Traffic Flow Adaptive Forecasting Method Based on ARIMA Model. Journal of System Simulation, 16(7), pp.1530–1535.

Wang, H.W. & Lin, J.L. 2010. Sales Prediction based on Improved GRNN. In Computer Engineering and Science. pp. 153–155.

Jeong, C., Min, J.H. & Kim, M.S., 2012. A Tuning Method For The Architecture of Neural Network Models Incorporating GAM and GA As Applied To Bankruptcy Prediction. Expert Systems with Applications, 39(3), pp.3650–3658.

Julianto, E.N., 2010. Hubungan Antara Kecepatan, Volume dan Kepadatan Lalu Lintas Ruas Jalan Siliwangi Semarang. Jurnal Tekik SIpil & Perencanaan, 12(2), pp.151–160.

Kuang, X., Wu, C., Huang, Y., & Xu, L., 2010. Traffic Flow Combination Forecasting Based on Grey Model and GRNN. In International Conference on Intelligant Computation Technology and Automation. pp. 1072–1075.

Leng, Z., Gao, J., Qin, Y., Liu, X., & Yin, J., 2013. Short-term Forecasting Model of Traffic Flow Based on GRNN. In Chinese Control and Decision Conference. pp. 3816–3820.

Makridakis, S., 1989. Why Combining works? International Journal of Forecasting, 5(4), pp.601–603.

Specht, D.F., 1991. A General Regression Neural Network. IEEE Transactions on Neural Network, 2(6), pp.568–576.

Sun, S., Zhang, C. & Yu, G., 2006. A Bayesian Network Approach to Traffic Flow Forecasting. IEEE Transactions on Intelligent Transportation Systems, 7(1), pp.124–131.

Tan, M.C., Feng, L.B. & Xu, J.M., 2007. Traffic Flow Prediction based on Hybrid ARIMA and ANN Model. In Power Electronics and Intelligent Transportation System. pp. 118–121.

Tan, M., Wong, S. C., Xu, J., Guan, Z., & Zhang, P., 2009. An Aggregation Approach to Short-Term Traffic Flow Prediction. IEE Transactions on Intelligent Transportation Systems, 10(1), pp.60–69.

Vlahogianni, I.E., Karlaftis, M.G. & Golias, J.C., 2006. Statistical Methods for Detecting Non Linearity and Non Stationer in Univariate Short Term Time Series of Traffic Volume. Transportation Research Part C: Emerging Technologies, 14, pp.351–367.

Williams, B.M., 2001. Multivariate Vehicular Traffic Flow Prediction: Evaluation of ARIMAX modeling. In Transportation Research Record. pp. 194–200.

Yin, J., Zhou, D. & Xie, Q., 2006. A Clustering Algorithm For Time Series Data. In Proceedings of the Seventh International Conference on Parallel and Distributed Computing, Application and Technologies. pp. 1–4.

Zhang, G.P., 2003. Time Series Forecasting Using A Hybrid ARIMA and Neural Network Model. Neurocomputing, 50, pp.159–175.

Zhanquan, S., Yinglong, W. & Jingshan, P., 2008. Short Term Traffic Flow Forecasting Based on Clustering and Feature Selection. In International Joint Conference on Neural Networks. pp. 577–583.



  • There are currently no refbacks.