Mango and Banana Ripeness Detection based on Lightweight YOLOv8

Authors

  • Raymond Erz Saragih Program Studi Teknik Informatika, Fakultas Komputer, Universitas Universal
  • Akhmad Rezki Purnajaya Program Studi Teknik Informatika, Fakultas Komputer, Universitas Universal
  • Ilwan Syafrinal Program Studi Teknik Informatika, Fakultas Komputer, Universitas Universal
  • Yonky Pernando Program Studi Teknik Informatika, Fakultas Komputer, Universitas Universal
  • Yodi Program Studi Teknik Informatika, Fakultas Komputer, Universitas Universal

Keywords:

bananas, mangoes, computer vision, YOLOv8, mangga, pisang, visi komputer

Abstract

Fruits like bananas and mangoes are harvested after reaching a specific ripeness stage. Traditionally, farmers rely on manual inspection to determine ripeness, a process that can be tedious, time-consuming, expensive, and subjective. This work proposes an automatic bananas and mangoes ripeness detector utilizing computer vision technology. The detected bananas and mangoes fall into two classes: ripe and unripe. The state-of-the-art YOLOv8 architecture serves as the core of the detector. Three YOLOv8 variants, YOLOv8n, YOLOv8s, and YOLOv8m, were investigated for their performance. Results show that YOLOv8s achieved the highest overall performance, 0.9991 recall, and a mean Average Precision (mAP) of 0.8897. While YOLOv8m achieved the highest precision of 0.9995, YOLOv8n is the most miniature model, making it suitable for deployment on devices with limited resources.

References

Y. J. Davur, W. Kämper, K. Khoshelham, S. J. Trueman, and S. H. Bai, “Estimating the Ripeness of Hass Avocado Fruit Using Deep Learning with Hyperspectral Imaging,” Horticulturae, vol. 9, no. 5, p. 599, May 2023, doi: https://doi.org/10.3390/horticulturae9050599.

P. Sajitha, A. D. Andrushia, N. Mostafa, A. Y. Shdefat, S. S. Suni, and N. Anand, “Smart farming application using knowledge embedded-graph convolutional neural network (KEGCNN) for banana quality detection,” Journal of Agriculture and Food Research, vol. 14, p. 100767, Dec. 2023, doi: 10.1016/j.jafr.2023.100767.

R. Thakur, G. Suryawanshi, H. Patel, and J. Sangoi, “An Innovative Approach For Fruit Ripeness Classification,” in 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), IEEE, May 2020, doi: 10.1109/iciccs48265.2020.9121045.

D. Xu, H. Zhao, O. M. Lawal, X. Lu, R. Ren, and S. Zhang, “An Automatic Jujube Fruit Detection and Ripeness Inspection Method in the Natural Environment,” Agronomy, vol. 13, no. 2, Feb. 2023, doi: 10.3390/agronomy13020451.

M. Zhao, Z. You, H. Chen, X. Wang, Y. Ying, and Y. Wang, “Integrated Fruit Ripeness Assessment System Based on an Artificial Olfactory Sensor and Deep Learning,” Foods, vol. 13, no. 5, Mar. 2024, doi: 10.3390/foods13050793.

P. Baglat, A. Hayat, F. Mendonça, A. Gupta, S. S. Mostafa, and F. Morgado-Dias, “Non-Destructive Banana Ripeness Detection Using Shallow and Deep Learning: A Systematic Review,” Sensors, vol. 23, no. 2, p. 738, Jan. 2023, doi: 10.3390/S23020738/S1.

B. Xiao, M. Nguyen, and W. Q. Yan, “Fruit ripeness identification using transformers,” Applied Intelligence, vol. 1, p. 3, Jun. 2023, doi: 10.1007/s10489-023-04799-8.

J. Wang, T. Zhang, Y. Cheng, and N. Al-Nabhan, “Deep Learning for Object Detection: A Survey,” Computer Systems Science and Engineering, vol. 38, no. 2, pp. 165–182, 2021, doi: 10.32604/csse.2021.017016.

A. B. Amjoud and M. Amrouch, “Object Detection Using Deep Learning, CNNs and Vision Transformers: A Review,” IEEE Access, vol. 11, pp. 35479–35516, 2023, doi: 10.1109/ACCESS.2023.3266093.

M. Hussain, “YOLOv1 to v8: Unveiling Each Variant–A Comprehensive Review of YOLO,” IEEE Access, vol. 12, pp. 42816–42833, 2024, doi: 10.1109/ACCESS.2024.3378568.

R. Phoophuangpairoj, T. Ngoenrungrueang, and S. Audomsin, “Ripeness Classification of a Bunch of Bananas Using a CNN,” in Proceeding - 2023 International Electrical Engineering Congress (iEECON), IEEE, 2023, pp. 180–183, doi: 10.1109/IEECON56657.2023.10126585.

D. Worasawate, P. Sakunasinha, and S. Chiangga, “Automatic Classification of the Ripeness Stage of Mango Fruit Using a Machine Learning Approach,” AgriEngineering, vol. 4, no. 1, pp. 32–47, Jan. 2022, doi: 10.3390/agriengineering4010003.

D. F. Al Riza et al., “Mango (Mangifera indica cv. Sein Ta Lone) ripeness level prediction using color and textural features of combined reflectance-fluorescence images,” Journal of Agriculture and Food Research, vol. 11, p. 100477, Mar. 2023, doi: 10.1016/J.JAFR.2022.100477.

R. E. Saragih and A. W. R. Emanuel, “Banana Ripeness Classification Based on Deep Learning using Convolutional Neural Network,” in 3rd 2021 East Indonesia Conference on Computer and Information Technology (EIConCIT), IEEE, Apr. 2021, pp. 85–89, doi: 10.1109/EIConCIT50028.2021.9431928.

B. Xiao, M. Nguyen, and W. Q. Yan, “Apple ripeness identification from digital images using transformers,” Multimedia Tools and Applications, vol. 83, no. 3, pp. 7811–7825, Jan. 2024, doi: 10.1007/S11042-023-15938-1/TABLES/8.

N. A. Prasetyo, Pranowo, and A. J. Santoso, “Automatic Detection and Calculation of Palm Oil Fresh Fruit Bunches using Faster R-CNN,” International Journal of Applied Science and Engineering, vol. 17, no. 2, pp. 121–134, May 2020, doi: 10.6703/IJASE.202005_17(2).121.

M. Tools, B. Xiao, M. Nguyen, and W. Q. Yan, “Fruit ripeness identification using YOLOv8 model,” Multimedia Tools and Applications, vol. 83, no. 9, pp. 28039–28056, 2024, doi: 10.1007/s11042-023-16570-9.

A. Sutar, A. Naikare, P. Jadhav, and R. Kute, “Mango and Banana Dataset (Ripe Unripe): Indian RGB Image Datasets for YOLO Object Detection,” Mendeley Data. Accessed: Jan. 08, 2024. [Online]. Available: https://data.mendeley.com/datasets/y3649cmgg6/3

T. Zheng, X. Yang, J. Lv, M. Li, S. Wang, and W. Li, “An efficient mobile model for insect image classification in the field pest management,” Engineering Science and Technology, an International Journal, vol. 39, p. 101335, Mar. 2023, doi: 10.1016/j.jestch.2023.101335.

M. Rafiei, J. Raitoharju, and A. Iosifidis, “Computer Vision on X-Ray Data in Industrial Production and Security Applications: A Comprehensive Survey,” IEEE Access, vol. 11, pp. 2445–2477, 2023, doi: 10.1109/ACCESS.2023.3234187.

X. Zhai, Z. Huang, T. Li, H. Liu, and S. Wang, “YOLO-Drone: An Optimized YOLOv8 Network for Tiny UAV Object Detection,” Electronics, vol. 12, no. 17, p. 3664, Aug. 2023, doi: 10.3390/electronics12173664.

H. Habaragamuwa, Y. Ogawa, T. Suzuki, T. Shiigi, M. Ono, and N. Kondo, “Detecting Greenhouse Strawberries (Mature and Immature), Using Deep Convolutional Neural Network,” Engineering in Agriculture, Environment and Food, vol. 11, no. 3, pp. 127–138, 2018, doi: 10.1016/j.eaef.2018.03.001.

G. Jocher, A. Chaurasia, and J. Qiu, “Ultralytics YOLO,” Jan. 2023. Accessed: Dec. 10, 2023. [Online]. Available: https://github.com/ultralytics/ultralytics

Sandhya and A. Kashyap, “A Novel Method for Real-Time Object-Based Copy-Move Tampering Localization in Videos Using Fine-Tuned YOLO V8,” Forensic Science International: Digital Investigation, vol. 48, p. 301663, Mar. 2024, doi: 10.1016/j.fsidi.2023.301663.

H. Lou et al., “DC-YOLOv8: Small-Size Object Detection Algorithm Based on Camera Sensor,” Electronics, vol. 12, no. 10, p. 2323, May 2023, doi: 10.3390/electronics12102323.

A. Kumar, “A pile of green fruit sitting on top of grass,” Unsplash. Accessed: Mar. 10, 2024. [Online]. Available: https://unsplash.com/photos/a-pile-of-green-fruit-sitting-on-top-of-grass-enUG-sjDP14

R. Rajput, “Yellow round fruits on black round bowl,” Unsplash. Accessed: Mar. 10, 2024. [Online]. Available: https://unsplash.com/photos/yellow-round-fruits-on-black-round-bowl-6J3LPpawLa8

J. Olsen, “Green banana fruit on brown wooden table,” Unsplash. Accessed: Mar. 10, 2024. [Online]. Available: https://unsplash.com/photos/green-banana-fruit-on-brown-wooden-table-G6elMNRLFew

Downloads

Published

2024-10-01