Prediksi Penyakit Batu Ginjal dengan Menerapkan Convolutional Neural Network

Authors

  • Bagus Satrio Waluyo Poetro Program Studi Teknik Informatika, Fakultas Teknologi Industri, Universitas Islam Sultan Agung
  • Sri Mulyono Program Studi Teknik Informatika, Fakultas Teknologi Industri, Universitas Islam Sultan Agung
  • Vani Aulia Pramesti Program Studi Teknik Informatika, Fakultas Teknologi Industri, Universitas Islam Sultan Agung

Keywords:

classification, CNN, DenseNet-121, deep learning, kidney stone, klasifikasi, batu ginjal

Abstract

Kidney stones are a health problem that requires intensive treatment. If the disease is not treated quickly, it can lead to impaired kidney function and complications to other organs. Computerized Tomography Scan (CT Scan) with high resolution is used to scan the human body for disease diagnosis. The doctor will explain the diagnosis within a few days or one week. This research aims to create a prediction model for the classification of kidney stone disease through CT Scan images by applying the Convolutional Neural Network (CNN) method of DenseNet-121 architecture and deployment using Streamlit. The results of the model in this study with the application of CNN DenseNet-121 architecture are accuracy 98.18%, precision 96.36%, recall 100%, and F1-score 98.14%.

References

E. Hadibrata dan Suharmanto, “Faktor-Faktor Yang Berhubungan Dengan Terjadinya Batu Ginjal,” Jurnal Penelitian Perawat Profesional, vol. 4, no. 3, pp. 1041–1046, 2022. [Online]. Available: http://jurnal.globalhealthsciencegroup.com/index.php/JPPP.

P. M. Ferraro, M. Bargagli, A. Trinchieri, G. Gambaro, dan D. G. Assimos, “Re: Risk of Kidney Stones: Influence of Dietary Factors, Dietary Patterns, and Vegetarian-Vegan Diets,” Journal of Urology, vol. 204, no. 3, p. 612, 2020, doi: 10.1097/JU.0000000000001173.01.

M. Aljawad, F. A. Alaithan, B. S. Bukhamsin, dan A. A. Alawami, “Assessing the Diagnostic Performance of CT in Suspected Urinary Stones: A Retrospective Analysis,” Cureus, vol. 15, no. 4, 2023, doi: 10.7759/cureus.37699.

A. Hasby Bik, F. Tri Anggraeny, dan E. Yulia Puspaningrum, “Klasifikasi penyakit ginjal menggunakan algoritma hibrida CNN-ELM,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 3, pp. 3836–3844, 2024, doi: 10.36040/jati.v8i3.9807.

D. Gunawan dan H. Setiawan, “Convolutional Neural Network dalam Analisis Citra Medis,” Konstelasi Konvergensi Teknologi dan Sistem Informasi, vol. 2, no. 2, pp. 376–390, 2022, doi: 10.24002/konstelasi.v2i2.5367.

L. Chipindu, W. Mupangwa, J. Mtsilizah, I. Nyagumbo, dan M. Zaman-Allah, “Maize Kernel Abortion Recognition and Classification Using Binary Classification Machine Learning Algorithms and Deep Convolutional Neural Networks,” AI, vol. 1, no. 3, pp. 361–375, 2020, doi: 10.3390/ai1030024.

Y. Omori, “Image Augmentation for Eye Contact Detection Based on Combination of Pre-trained Alex-Net CNN and SVM,” Journal of Computers, vol. 15, no. 3, pp. 85–97, 2020, doi: 10.17706/jcp.15.3.85-97.

A. S. Vellaichamy, A. Swaminathan, C. Varun, dan K. S, “Multiple Plant Leaf Disease Classification Using Densenet-121 Architecture,” International Journal of Electrical Engineering and Technology, vol. 12, no. 5, pp. 38–57, 2021, doi: 10.34218/ijeet.12.5.2021.005.

S. Gulavnai dan R. Patil, “Deep Learning for Image Based Mango Leaf Disease Detection,” International Journal of Recent Technology and Engineering, vol. 8, no. 3S3, pp. 54–56, 2019, doi: 10.35940/ijrte.c1030.1183s319.

F. N. Cahya, N. Hardi, D. Riana, dan S. Hadiyanti, “Klasifikasi Penyakit Mata Menggunakan Convolutional Neural Network (CNN),” Sistemasi, vol. 10, no. 3, p. 618, 2021, doi: 10.32520/stmsi.v10i3.1248.

F. A. A. Harahap, R. M. Sinaga, K. Arifin, dan K. S, “Implementation of Convolutional Neural Network for Detecting Kidney Disease,” Teknologi Informasi, Komputer dan Aplikasi, vol. 4, no. 2, pp. 212–219, 2022. [Online]. Available: http://jtika.if.unram.ac.id/index.php/JTIKA/.

N. Sulaksono et al., “Jurnal Imejing Diagnostik,” Jurnal Imejing Diagnostik, vol. 6, p. 103, 2020. [Online]. Available: http://ejournal.poltekkes-smg.ac.id/ojs/index.php/jimed/index

R. Yohannes and M. E. Al Rivan, “Klasifikasi jenis kanker kulit menggunakan CNN-SVM,” Jurnal Algoritme, vol. 2, no. 2, pp. 133–144, 2022, doi: 10.35957/algoritme.v2i2.2363.

P. Rahayu et al., “Data preprocessing in data mining,” in Buku Ajar Data Mining, 1st ed., Yogyakarta, Indonesia: Penerbit Universitas Gadjah Mada, 2024, chap. 2, pp. 45–60.

A. S. J. Putra, I. M. I. Subroto, and B. S. W. Poetro, “Identifikasi kematangan buah jeruk medan menggunakan K-nearest neighbor berbasis metrik RGB,” Jurnal Transistor Elektro dan Informatika (TRANSISTOR EI), vol. 5, no. 3, p. 50112, 2023. [Online]. Available: http://jurnal.unissula.ac.id/online/index.php/EI.

S. Satwikayana, S. Adi Wibowo, and N. Vendyansyah, “Sistem presensi mahasiswa otomatis pada zoom meeting menggunakan face recognition dengan metode convolutional neural network berbasis web,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 5, no. 2, pp. 785–793, 2021, doi: 10.36040/jati.v5i2.3762.

U. Khultsum and G. Taufik, “Komparasi kinerja DenseNet 121 dan MobileNet untuk klasifikasi citra penyakit daun kentang,” JURIKOM (Jurnal Riset Komputer), vol. 10, no. 2, p. 558, 2023, doi: 10.30865/jurikom.v10i2.6047.

Downloads

Published

2024-10-01